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Restoring the correct or realistic color of a cultural heritage object is a

crucial problem for imaging techniques. Digital images often have undesired

color casts due to adverse effects caused by unstable illuminant conditions,

vignetting, and color changes due to camera settings. In this work, we

present an improved color correction method for color cast images that

makes the color appear more realistic. It is based on a computational

model of the human visual system that perceives objects by color constancy

theory; it realizes illumination non-uniformity compensation and chromaticity

correction for color cast images by taking into account the color stability

of some pigments. This approach has been used to correct the color in

Cave 465 of the Mogao Grottoes. The experimental results demonstrate that

the proposed method is able to “adaptively correct” color cast images with

widely varying lighting conditions and improve the consistency efficaciously.

It can achieve improved consistency in the mean CIEDE2000 color difference

compared with the images before correction. This colorimetric correction

methodology is sufficiently accurate in color correction implementation for

cast images of murals captured in the early years.

KEYWORDS

color constancy, illumination non-uniformity, color cast correction, Dunhuang
murals, homomorphic filter

Introduction

The human visual perception system has the ability to match objects’ colors in
scenes taken under ambient lighting conditions; the color appears to be approximately
constant to human observers. A scientific theory can be defined as color constancy;
some explanation of color constancy has been confirmed by observation or experiment
(Barbur et al., 2004; Foster, 2011; McCann et al., 2014; Gao et al., 2015, 2019). It is part of
a larger system of subjective constancy, which is used by the brain to help people perceive
objects in changing situations. This ensures that we can recognize objects, which assists
in comprehending the world and is important for safety.
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Color-accurate image archives of cultural heritage items
have played a vital role in their preservation, and scientific
studies have been carried out during restoration and renovation.
Color constancy is a complex problem for cultural heritage
digitization because the image color depends on the spectral
reflectance function of the object and the spectral distribution
function of the incident light, both of which are generally
unknown. Therefore, color constancy became the problem
of removing the color of the light that illuminated a scene
(Campagnolo and Celes, 2019; Akazawa et al., 2021; Huang
et al., 2021). Precise digitization facilitates the preservation of
a real object’s color and appearance in optimal circumstances
and provides a digital simulation available for research at
large (Li et al., 2000, 2013; Granzier et al., 2009; Akazawa
et al., 2021). In the early years, conservators and conservation
scientists preserved murals by taking pictures using film-
based photography because good digital cameras did not have
sufficient image quality (Verhoeven, 2016). After that, high-
resolution scanning and processing of the negative analog film
frames needed to be performed to achieve digitization and saved
as tiff image format. Obviously, the chromaticity of these images
lacked accurate correction.

Thanks to advancements in technology, such as high-
resolution imaging (Srisa-ard, 2006; Fischer and Kakoulli, 2013),
hyperspectral imaging (Berns et al., 2006; Elias and Cotte,
2008; Colantonio et al., 2018; Berns, 2019), and 3D imaging
(Yastikli, 2007; Mączkowski et al., 2011; Simon Chane et al.,
2013; Axer et al., 2016; Sitnik et al., 2016), conservators
currently apply digital techniques to preserve the current state
information of cultural heritage objects; they can be measured
once and restored digitally without using chemicals that might
irreversibly damage the objects. In addition, these techniques
aim to restore lost information while performing materials
analysis, color science, image processing, and so forth to
explore the evolution of the fading process (Berns, 2019). The
linearity of an initial image captured by digital systems makes it
possible to specify the captured spectral information much more
accurately than is possible with film systems. Color correction
is essential in determining if a digital image is acceptable for
cultural heritage applications because highly accurate images
are necessary for preservation. An accurate correction of mural
images is significant for conservation, preservation, restoration,
and historical purposes. Early digital mural images cannot meet
these requirements since they lack color management.

The discussion above highlights several issues associated
with color-accurate image archives. One prime goal is to capture
the colors of cultural heritage objects accurately. A high-
resolution panoramic image was stitched together from small
overlapping pictures captured along the customed rail tracks.
Color accuracy is affected by illumination conditions, lighting
uniformity, geometry conditions, white balance, and camera
settings. Specifically, the following issues are addressed:

(a) The color appearance of the object shifts depending on the
lighting conditions present when the image is captured and
the object’s intrinsic properties, i.e., color is an unstable
visual feature (Hoeben Mannaert et al., 2017).

(b) The imaging system setup is inadequate because of limited
space or non-optimum lighting conditions, which can
cause spatial non-uniformity in the images.

(c) The lens vignetting or light falloff with spherical aberration
could result in an image that is brighter in the middle and
darker around the edges because the stronger the refracted
light, the more significantly the imaging signal will be
reduced; this effect is especially prominent for wide-angle
lenses. In most cases, the illumination is brightest in the
middle of the image, with a steady decrease toward the
edges (Verhoeven, 2016).

(d) Most color constancy algorithms assume that the incident
illumination remains constant across a scene, but this
assumption is very often not valid for real images (Cardei
et al., 2002). Illumination is rarely constant in intensity or
color throughout a scene.

(e) White balancing is widely applied to avoid color distortion
caused by illumination changes. In general, estimates
of illumination chromaticity are from space-average
chromaticity or the brightest patches across scenes (Foster,
2011; Akazawa et al., 2021); it can be used for normal
color calibration purposes but is insufficient for high-
accuracy non-linear color correction, resulting in a lack of
consistency among lighting conditions.

To address these issues and concerns, the specific objective
of this study is to develop an image correction solution
that employs a computational model of the human visual
system to make the color appear more realistic. We specifically
focus on chromatic transfer for color cast images using the
color constancy theory proposed in this study. To solve the
illumination non-uniformity problem, we compensated the
non-uniform illumination in the scene using homomorphic
filtering to eliminate illumination variations. The superior
performance of this proposed method is evaluated and
compared with existing methods in cave 465 of the Mogao
Grottoes. The key contribution of this work is the solution it
provides to “adaptively correct” color cast images with widely
varying lighting conditions, and it improves color consistency
efficaciously. It is hoped that this research will contribute to a
deeper understanding of cultural heritage digitization.

Materials and methods

Methodology overview

The methodology for producing a color correction of
color cast image is diagrammed in Figure 1 using a
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FIGURE 1

Schematic diagram for proposed methodology.

mural as an example; this mural is on the south wall of
cave 465 in the Mogao Grottoes. The required equipment
includes an image acquisition system, photography rail track,
pigment identification capabilities, and an integrating sphere
spectrophotometer. Two paths radiate from the murals.

Path 1 began with the mural image acquisition system
and included image denoising, image enhancement, geometric
distortion correction, and image stitching. Next, the image was
converted to hue, saturation, and value (HSV) color space from
red, green, and blue (RGB) space, which was defined for the
international commission on illumination (CIE) 1931 standard
observer and standard illuminant D65 to resemble how humans
tend to perceive color. Then, the non-uniform illumination was
compensated using low-pass filtering in the brightness (value)
channel (Section “Compensation algorithm for non-uniformity
illumination”). It should be noted that the separability of the
scene’s illumination and reflection components were processed
in the image frequency domain.

In Path 2, the palette was defined using analytical techniques
and documentation by conservation scientists. Samples with
different particle sizes and concentrations were prepared for
the palette following the essential techniques of Chinese mural
painting, and the chromaticity and spectral properties were
measured to identify the pigments (Section “Optical database”).
Image masks were made for pigment segments of murals that

were corrected. The HSV color coordinates were transformed
into a pigment map mask using chromaticity characteristics.
The size of the image mask is a compromise between minimizing
the range of colors and maximizing the accuracy of the pigment
map (Section “Color cast correction based on color constancy”).
Moreover, the selected pigments must result in a colorimetric
match for the specific illuminant and observer.

An assumption was that the concentration of the colorant
was constant throughout the masks. The change in the hue
component channel of the HSV color space between the mask
area and the reference pigment was calculated next. These
differences were converted to CIEDE2000 color differences.
Pigments were selected from the optical database resulting in
the closest chromaticity match for the specific illuminant and
observer. The color cast correction model was constructed to
complete the color compensation of relevant pigment colors.
Finally, all the colors in the mask area were translated into
realistic colors.

System setup

The Mogao Grottoes is a world cultural heritage site located
in northwest China that is famous for the exquisite murals
and Buddhist sculptures kept inside the caves. The Mogao
Grottoes have 735 caves, more than 45,000 square meters of
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FIGURE 2

The mural image of the mandala from Cave 465, Mogao Grottoes (Yuan dynasty, 1271–1368 AD).

murals, and 2,415 colored sculptures of different sizes. They
provide abundant vivid materials depicting various aspects
of medieval life, such as farming, textiles, war, architecture,
marriage, funerals, daily dress, arts, and commercial activities
in ancient China.

The approach in this paper is used to correct the mural
color of the three-paved double-body mandala on the south
wall of Cave 465, Mogao Grottoes, Dunhuang, Yuan Dynasty
[1271–1368 anno domini (AD)], which is the earliest and most
complete Tibetan-style mural outside of the Tibetan area, with
a size of 13.13 m by 5.3 m, as shown in Figure 2. In the double
mandala image on the east side, the male body is blue with three
eyes and four arms, and the other three faces are green, gray-
brown, and black; the female body is a black-brown Buddha
Dakini with four hands on one face. In the double mandala in
the middle, the male body is reddish-brown with three faces
and six arms, the other two faces are yellow-brown and light
blue, and the female body is blue with one face and six arms.
In the double body mandala on the west, the male body has
three faces and six arms, the body color is cyan, the rest of the
face is dark brown and pink, and the female body is pink. Each
mandala portrait is surrounded by small panels of deities and
Great Adepts.

The developed image acquisition system included a
commercial trichromatic camera (Canon EOS 1D X Mark
III) with 14-bit digitization and 21 MP pixels. The lens was
a Canon EF 50 mm USM. Two Elinchrom Ranger Free Lites
mounted with translucent diffuse reflectors were arranged at
an angle of approximately 45◦ to the capturing area of the
murals. The imaging plane of the digital camera was set to
be approximately parallel to the sample placement plane. Ten
percent of the illumination deviation falls within the mean
distribution. The camera was mounted on a rail track slider
to capture images horizontally; each image corresponded to
0.15 square meters. After white balance, color management,
and geometric distortion correction, 578 overlapped adjacent
pictures were digitally stitched into a large image with a
resolution of 150 dpi.

Optical database

A database of chromaticity and spectral reflectance for the
mural palette began with the image cast correction of Cave 465,
Mogao Grottoes. The palette was approximated using several
color pigments (Su et al., 1996; Wu, 2003; Kogou et al., 2020).
The red pigments were cinnabar, red ochre, and red earth
(iron oxide red). The orange pigment was Vermilion, which
had a beautiful and intense tint, but it is chemically unstable
and contains lead, resulting in the color fading to brown or
black with the passage of time. Yellow pigments were mainly
massicotite, laterite, and orpiment, in which massicotite has
poor lightfastness and soon faded from yellow to coffee. The
green pigments were mineral green and chlorocopperite, which
have stable chemical and optical properties. The blue pigments
were indigo and azurite. The white pigments were chalk and
gypsum. The black pigments were discolored carbon and PbO2.

To adaptively and accurately correct the mural, some
reference pigments commonly used in the mural are
essential. The reference pigment selection is significant in
at least two major aspects of consideration, chemical and
chromaticity properties.

Of the many colorants in the mural, red earth, lazurite,
mineral blue, mineral green, limestone, and calcite, are all
capable of maintaining the same color in chroma with time.
However, ochre and ultramarine are faded or darkened; some
pigments, such as miniumite, lithargyrum, massicot, and white
lead, have poor chemical stability; hence, their color would
change under ultraviolet light, high temperatures, and humidity.
These changes have dramatically influenced the mural’s color
appearance, because these fading pigments cause the colors in
the faces and skin to change from pink to brown. Some palette
pigments are summarized in Table 1.

Dry pigments, such as vermilion, orpiment, litharge,
cinnabar, azurite, ultramarine, and mineral green were dispersed
in animal-derived gelatin-producing paints. Some pigments
have many particle sizes, such as the minerals green, mineral
blue, ultramarine, and cinnabar. Each pigment was mixed
with titanium dioxide to achieve a different concentration of
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TABLE 1 The structure and properties of pigments in the Mogao Grottoes.

No. Pigment name Original color Chemical structures Current color Result

1 Gypsum White CaSO4 .H2O White Invariant

2 Chalk White CaCO3 White Invariant

3 Orpiment Yellow AsS3→ AsO3 Light yellow Faded

4 Ochre Brownish red Fe2O3→ Fe3O4 Dark red Faded

5 Ultramarine Blue Na6Al4Si6S4O20 Light blue Faded

6 Mineral green Light green CuCO3·Cu(OH)2 Green Invariant

7 litharge Yellow PbO→ PbO2 Coffee Changed

8 Cinnabar Red HgS (Hexagonal system)→ Isometric system Black Changed

9 Lead white White Pb3(OH)4CO3→ PbO2 Coffee Changed

10 Vermilion Orange Pb3O4→ PbO2 Black Changed

FIGURE 3

The spectral and chromaticity properties of the pigments. (A) The spectral reflectance, (B) the chromaticity coordinates in the brightness-hue
plane in HSV color space.

tints and applied to a smooth white substrate at a thickness
resulting in opacity. For each pigment, there were at least ten
mixture patches with white paint at weight concentrations of
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%. Additionally,
tint ladders were created following the essential techniques of
Chinese mural painting.

The spectral reflectance and chromaticity of all the patches
were measured by an X-Rite Ci64 UV portable integrating
sphere spectrophotometer from 400 to 700 nm at intervals
of 10 nm over the wavelength range. Measuring the specular
component included (SCI) would capture accurate color data
from the sample and negate the effect of surface appearance to
measure only color. It makes little or no difference if the patches
are mirror-like or matte in appearance. The measurement
aperture of the spectrophotometer was 3.5 mm in diameter, and
colors within the aperture were averaged spatially.

Figure 3 illustrates the spectral reflectance and color
distribution of patches plotted in the HSV color space. In the
right color distribution subgraph, the horizontal axis presents

the brightness component in HSV space, and the vertical axis
presents the hue component, that is, the color type specified
by the dominant wavelength of the color, such as red, yellow,
green, and blue. It has been shown that some pigments overlap
in hue components in high brightness, such as red earth,
cinnabar, ultramarine, and vermilion. Blue pigments, such as
mineral blue, have varied chromaticity at different granularities
and concentrations. In contrast, only green pigments, such as
mineral green, have a stable hue at different concentrations and
partial sizes (10#, 11#, 12#, 13#), ranging from 0.4 to 0.5 overall
pigments, as shown in Figure 4, and were suitable for image
segmentation and color correction based on color constancy.

Compensation algorithm for
non-uniformity illumination

In terms of chromaticity, an image observed by people is a
visual perception of color stimuli formed by light irradiated on
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FIGURE 4

Tint ladders of the mineral green pigment. (A) The spectral reflectance, (B) the chromaticity coordinates in the brightness-hue plane in HSV
color space.

the object’s surface; the light is typically absorbed predominantly
at some wavelengths and reflects or transmits light at other
wavelengths; it is well-known as the illumination-reflectance
model. That is, images captured in complex scenes can be highly
degraded due to unstable lighting conditions. Illumination
distributions are typically very slow across an image compared
to reflectance, which can change quite abruptly at object edges
(Gonzalez and Woods, 2018); this difference is the key to
separating the illumination component from the reflectance
component.

The HSV (Hue, Saturation, and Value) color model is
normally used because of its similarities to how humans tend
to perceive color; the brightness is roughly analogous to the
stimulus after illumination irradiation and object reflection.
We, therefore, corrected colors by estimating the scene’s overall
illumination in the HSV brightness channel.

The first step in this process is to convert the RGB image into
HSV color space, and the brightness channel is used to separate
image luminance from color information. In general, the light
stimulus can be regarded as the product of the illumination of
the scene and the reflectance of the objects; i.e.,

I
(
x, y

)
= L

(
x, y

)
R
(
x, y

)
(1)

where I(x, y) is the light stimulus at each point (x, y), L(x, y)
is the scene illumination resulting from the lighting conditions
at the time of image capture, and R(x, y) is the reflectance
arising from the properties of the scene objects themselves. In
homomorphic filtering, we first transform the multiplicative
components into additive components by moving to the log
domain.

ln
(
I
(
x, y

))
= ln

(
L
(
x, y

))
+ln

(
R
(
x, y

))
(2)

The Fourier transform is then used on both sides of the
upper expression;

0
(
ln
(
I
(
x, y

)))
= 0

(
ln
(
L
(
x, y

)))
+0

(
ln
(
R
(
x, y

)))
(3)

or

F (u, v) = FL (u, v)+FR (u, v) (4)

where FL(u, v) and FR(u, v) are the Fourier transforms of
ln(I

(
x, y

)
) and ln(R

(
x, y

)
), respectively. F(u, v) is the Fourier

transform of the image being filtered.
As previously stated, with the low frequencies of the

Fourier transform of an image with illumination and the high
frequencies with reflectance, a separation can be gained over the
illumination and reflectance components with a homomorphic
filter. This control requires the specification of a low-pass
filter H(u, v) in the frequency domain to extract the low-
frequency illumination component while preserving the high-
frequency reflectance component. Then, we process F(u, v)
using a Gaussian low-pass filter function H(u, v) from

G (u, v) = H (u, v) F (u, v) = H (u, v) FL (u, v)

+H (u, v) FR (u, v) (5)

where G(u, v) is the Fourier transform from the image that
has been processed. The H(u, v) filter used in this procedure is
the Gaussian low-pass filter defined as

H (u, v) = e
−

D2(u,v)
2D2

0 (6)

where D(u, v) is the distance from the origin of the center
transform at point (u, v) in the frequency domain and D0 is the
cutoff distance measured from the origin, which determines the
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bandwidth of the low-frequency band that will be filtered out. To
obtain the actual results, the following formula must be returned
to the spatial domain:

G
(
x, y

)
= 0−1 (G (u, v)) = 0−1 (H (u, v) FL (u, v))+

0−1 (H (u, v) FR (u, v)) (7)

The next step is to apply an exponential function to invert the
log-transform at the beginning of the process and obtain the
homomorphic filtered image g(x, y), which is denoted by

g
(
x, y

)
= eG(x,y) (8)

Finally, the illumination compensation model can be expressed
as follows.

İ =
1

MN

M∑
x = 1

N∑
y = 1

I
(
x, y

)
(9)

Ioutput
(
x, y

)
=

I
(
x, y

)
∗İ

g
(
x, y

) (10)

where I(x, y) is the brightness image in the HSV color space,
Ioutput(x, y) is the corrected brightness image, and İ is the mean
value of the brightness channel.

Finally, the processed image is converted back into the
RGB color space.

Color cast correction based on color
constancy

The human visual system exhibits some color constancy
that can keep the color perception of a scene constant when
the illumination changes. Since cameras do not intrinsically
have this ability, white balancing is widely applied to avoid
color distortion caused by illumination changes. However,
white balancing is not enough to achieve a more accurate and
professional color correction, resulting in a lack of consistency
among lighting conditions. Color constancy, therefore, is a
feasible approach to correcting the mural’s color in a way that
uses pigments with stable optical properties in chromaticity. As
indicated previously, the HSV color space does a substantially
better job mimicking how humans interpret color than the
standard RGB color space. Hue is the primary chromaticity
property that allows distinguishing pigments of different colors.
To address these color casts, the following steps are taken:

The first step in this process is to convert an input image
from the RGB color space into the HSV color space.

A pixel-wise mask is then created based on the angular
character in the hue coordinate system dividing an image into
its constituent parts or pigment colors. That is, image masks are
made of areas identified for hue-based color cast correction.

In the follow-up phase, the mean and standard deviation
(SD) of hue channels are computed for the cast color and
reference color. For a mask image of pigments, formal definition
of mean and SD are given by Eqs 11, 12:

Ḣmask =
1

MN

N∑
y = 1

M∑
x = 1

Hmask(x, y) (11)

σ =

√√√√ 1
MN− 1

N∑
y = 1

M∑
x = 1

∣∣Hmask
(
x, y

)
−Ḣmask

∣∣2 (12)

where Hmask(x, y) represents the pixel value in the hue
channel of the color cast image, (x, y) denotes the coordinates
of the image, Ḣmask represents the mean value of hue channels,
σ represents the SD. M,N presents the size of the pixels in
mask, respectively. Then, we scale the hue channel by the ratio
determined by the respective SDs and add in the mean of the
hue channel to obtain an image of the cast. The color correction
model is defined as

Hcorr
(
x, y

)
=

(
Hmask

(
x, y

)
−

Ḣmask

)
σpatches

σmask
+Ḣpatches (13)

where Hcorr(x, y) represents the corrected value in the Hue
channel, Ḣpatches represents the mean hue value of reference
patches, σmask and σpatches represent the SD of the target image
and reference patches, respectively, and the reference patches
are of the mineral green pigment in the pigments database. The
illuminant chromaticity change is given by:

4H
(
x, y

)
= Hcorr

(
x, y

)
−Hmask

(
x, y

)
(14)

After that, in order to estimate the scene’s illuminant
chromaticity distribution, a two-order polynomial surface
fitting model of illumination chromaticity change 4H

(
x, y

)
is

performed based on the mask defines the list of pixels.

Hpoly
(
x, y

)
= a1+a2x+a3y+a4x2

+a5y2
+a6xy (15)

where, (x, y) represents the pixel position of the image,
respectively, Hpoly(x, y) represents the scene’s illuminant
chromaticity distribution, a1, a2, ...a6 represents the surface
fitting parameters. In particular, the chromatic components
are changed by moving their deviation distributions caused
by illumination changes. The corrected image Hnew(x, y) is
obtained from the original image H(x, y) by:

Hnew
(
x, y

)
= H

(
x, y

)
−Hpoly

(
x, y

)
+Ḣpoly (16)

where, Ḣpoly is the mean value of the polynomial image.
Finally, the channels are merged back together and

converted back into the RGB color space from the HSV space.
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FIGURE 5

The intermediate results of illumination compensation for murals taken under ambient lighting conditions. (A) The brightness channel in HSV
space, (B) estimated illumination field, (C) illumination compensation in brightness channel, (D) restored mural image by illumination
compensation.

FIGURE 6

Coordinates of selected reference samples in the basal layers of the murals.

Experiment and results

In this section, the proposed method is implemented
and compared with the currently existing methods. We
conducted experiments to confirm the effectiveness of the
proposed method.

TABLE 2 Evaluation of reducing the lighting effects.

Method Mean Minimum Maximum Range SD Entropy

Original 0.559 0.463 0.647 0.184 0.055 6.666

Our method 0.652 0.593 0.699 0.106 0.031 6.747

Gaussian 0.534 0.471 0.612 0.141 0.037 7.050

Morphology 0.647 0.467 0.769 0.302 0.087 7.110

Evaluation of reducing lighting effects

In this experiment, the effectiveness of illumination
compensation was demonstrated by using homomorphic
filters. Figure 2 shows the main reason for developing this
technique. The original digital mural image shows obvious
severe vignetting and darkening distortion on the bottom side,
and in the center of the middle portrait, the illumination changes
gradually from the bottom to the top. Figure 5 illustrates the
intermediate results of illumination compensation for murals
taken under ambient lighting conditions, where the estimated
illumination field presents obvious dark in left-bottom while
light in upside (see Figure 5B). The result demonstrates that the
corrected image is a very nice uniform image of the same scene
with the same lighting (Figure 5C). By comparing the original
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FIGURE 7

Hue histogram of Cave 465, Mogao Grottoes. (A) Hue polar
histogram, (B) LOWESS plot of the hue histogram.

and the compensated images, we can see that the gradual change
of illumination in the original image has been corrected to a
large extent on the bottom.

To verify the proposed approach, the performance of non-
uniform compensation with a different method [including

the Gaussian process (Kier, 2009) and a morphology method
(Gonzalez and Woods, 2018)] was evaluated in terms of
statistics. The color accuracy was dated at 24 color regions in
the basal layers across the murals, as illustrated in Figure 6.
All results are given in Table 2: comparing the evaluation
results of different methods, it was observed that our proposed
method achieves the best performance, i.e., the smallest range
between maximum and minimum and the lowest SD. In more
detail, the illuminance distribution across the mural image after
compensation was in the range of 0.106, and the lowest SD was
0.031, which means that the compensated illuminances are all
concentrated around the mean. Moreover, a very nice uniform
image of the same scene is obtained. It has the largest entropy
value of 6.747, where entropy is used to measure the amount
of information within an image. High entropy values indicate
greater randomness while low entropy values result from a more
uniform image in the brightness channel. The entropy equation
is as follows.

Range = Maximum− Minimum

Entropy = −
n∑

i = 1

pilog2
(
pi
)

(17)

where i denotes brightness level and pi denotes the
probability associated with brightness level. It can be concluded
that the proposed method produces better illumination
uniformity and contrast in the enhanced images.

Evaluation of color cast correction
based on color constancy

Another common problem raised in the previous section
concerns removing color casts based on color constancy theory.
It was feasible to correct the mural’s color in a way that

FIGURE 8

Image masks; the masks for each area are shown in the figure as solid colors.
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FIGURE 9

Coordinates of selected reference samples in the mineral green areas.

FIGURE 10

Color patch diagram of the original and corrected colors.

uses pigments with stable optical chromaticity properties. Since
the hue channel in HSV space is an intrinsic property of
surfaces and remains approximately constant under variations
in illumination, this should make image segmentation easier on
the basis of quantities. A pixel-wise mask was then created based
on the hue in HSV space, and the image was divided into its
constituent parts or pigment colors.

Figure 7 illustrates the statistical diagram of the hue
distribution of the mural image. The x-axis represents hue
values and the y-axis represents the number of pixels. The
histogram follows a multimodal distribution, and each peak
represents the most common color of the pigments. The hue

of the mural image is mainly composed of red, orange, cyan,
blue, and purple. The mural image was then segmented into
several different regions, each corresponding to one of the
peaks. Despite considerable variations in brightness between the
mineral green pigments in the original image, the result gave rise
to one major region, as shown in Figure 8.

The color cast correction based on color constancy requires
that the reference pigment has color stability chromatic
properties; i.e., the chromaticity value of the pigment does not
change significantly due to the granularity and concentration.
As indicated previously, the mineral green pigment meets the
requirements (Su et al., 1996).
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TABLE 3 Comparison of the color cast correction accuracy in terms
of CIEDE2000 calculated with the reference mineral green pigments.

Method Mean Max Min Rang SD Kurtosis CoV

Original 1.70 4.47 0.45 4.01 1.21 2.33 0.71

Gray world 12.42 18.23 7.83 10.40 2.51 2.91 0.20

max-RGB 4.65 10.41 0.92 9.48 2.38 2.91 0.51

Chromadapt 12.96 18.23 8.47 9.76 2.44 2.68 0.19

PCA 9.91 15.87 4.77 11.10 2.70 2.76 0.27

Our method 0.56 1.53 0.001 1.53 0.42 2.66 0.75

To verify the proposed method, 20 color regions containing
mineral green were chosen for the evaluation of color correction,
all areas were located in the surrounding images of the portrait
in Cave 465, Mogao Grottoes, as shown in Figure 9.

The results section consists of tables and figures. Figure 10
illustrates the color appearance before and after correction
in the mean CIEDE2000 color difference value superimposed
on each patch. The corrected color values are displayed as
squares surrounded by the corresponding original color. The
results revealed that the color consistency of the mineral green
areas was significantly improved, particularly for some patches
appeared reddish were translated into green after correction,
such as patches 1, 12, and 19.

The proposed method was implemented and compared
with currently existing methods. These include the principal
component analysis (PCA) method (Cheng et al., 2014), max-
RGB algorithm (Ebner, 2007), gray world algorithm (Ebner,
2003), and traditional chromatic adaptation algorithm (Lam,
1985). The data in Table 3 demonstrate the evaluation result
of the CIEDE2000 color difference. They demonstrate that
our proposed method, the color correction method based on
color constancy, improves the precision of color cast removal,
while the traditional methods exhibit significant discrepancies
without considering the intrinsic properties of some pigments.
In particular, our proposed method has the smallest CIEDE2000
color difference (a mean value of 0.56, a maximum value of 1.53,
a SD of 0.42) compared to the other methods, which indicates
that the color variance tends to be close to the mean value and
that the model has strong performance after correction. The
chrominance of mineral green was significantly corrected to a
reasonable chromaticity range. Figure 11 presents a CIEDE2000
color difference histogram and color gamut comparison before
and after color correction for masked areas of mineral green.
More generally, the original image of the scene under an
incandescent lamp may lend a reddish or yellowish cast. After
correction, some reddish and yellowish would be translated
into green; that is, the gamut of green areas is expanded while
the whole gamut is reduced. The results demonstrate that
the proposed method could achieve improved consistency in
the mean CIEDE2000 color difference compared with before
correction.

FIGURE 11

(A) Comparison of the CIEDE2000 color difference histogram
before and after correction, (B) visual of the color gamut in CIE
LAB color space.

Building on the color correction work applied to the mineral
green color, the color of the light that illuminated a scene over
the whole image was constructed, and the further correction
was then achieved to calibrate the chromatic value of the entire
image. As illustrated in Figure 12, it is apparent that the wide
color appearance between before and after color correction. The
inside area shows the image appearance after color correction,
while the outside frame area shows the current condition of the
mural (Figure 12B). This reveals that the image’s overall color
was reddish and week-lighted before correction, especially at
the bottom of the murals, which was mainly influenced by the
color temperature of the light source and the white balancing
process during image acquisition. After correction, the overall
color appearance of the corrected mural image was reasonable
and acceptable, and color casts were obviously eliminated. The
intelligibility of the image has been greatly enhanced, and the
image is more suitable for human visual perception and contains
more realistic scene colors.

To compare the performance of the color correction
method. The above algorithm was tested on several mural
images. Figure 13 shows the calculated candidate images for the
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FIGURE 12

The intermediate results for color cast image correction. (A) The scene’s illuminant chromaticity distribution estimation, (B) comparison of the
murals before and after color correction. The inside area of the image is color corrected area while the outside frame of the image is the image
in its current condition, (C) the image appearance after color correction.

input image; when performing the visual assessment of color
accuracy, the proposed method produced better tint consistency
for color cast images. In particular, the pigment in the white
area of murals was actually not white but faded yellowish, and
the reddish or yellowish area was effectively dealt with after
correction.

Results and discussion

Restoring the correct or realistic color of a cultural heritage
object is a crucial problem for imaging techniques. Currently,
most methods fail to consider the intrinsic properties of
pigments. In this study, we propose a new method to improve
the color correction accuracy for early mural digital images with
color casts. The results illustrate that the tint consistency of the
corrected image can be significantly improved. The illumination
compensation based on homomorphic filtering could be an
effective approach to move non-uniformity illumination. The

color correction model based on color constancy theory can
transform a cast image into a more realistic state. The factors
that have contributed to the improvement in color correction
accuracy are as follows.

(1) The results from the studies imply that the spectral
reflectance is an intrinsic property of objects independent
of illumination; this should make image segmentation
easier on the basis of chromaticity value and should not
affect the overall luminance level of an image.

(2) For conservators and conservation scientists of cultural
heritage, assessing color accuracy in digital images is
useless when lacking concern for some pigments with color
stability, such as mineral green and carbon black. Our
approach is to estimate the illuminate chromaticity when
mineral green pigments with hue-value stability properties
as a reference are available, the experimental results show
that the corrected color is more realistic.
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FIGURE 13

Comparison of the resulting images. (A) Input image, (B) our method, (C) max-RGB, (D) gray world, (E) PCA.

(3) Our study demonstrates the effectiveness of this method
under color constancy theory and supposing non-uniform
illumination of the scene. Moreover, due to its scientific
evidence, the result remains speculative and is suitable for
color correction implementation.

(4) The color appearance restoration of early mural
images cannot be verified and, at best, is an informed
approximation when first executed. We should not lose
sight of the purpose of color correction—to provide an
informed impression of how a mural may have looked.

Conclusion

The main goal of the current study was to develop a color
correction solution for cast images of murals in the Mogao
Grottoes. This study firstly compensated the non-uniform

illumination using the homomorphic filter in the brightness
channel of HSV space. Then the color cast was removed from
the mural image using color constancy based on some pigments
with stable optical chromaticity properties. The experiment
results demonstrate that the proposed method can significantly
improve the consistency of the tint and the non-uniform
illumination compensated in the image frequency domain; it can
achieve improved consistency compared with before correction.
The contribution of this study may assist in understanding how
images looked when first created to extend our knowledge of
cultural heritage. These results highlight the potential usefulness
of image restoration and color simulation for conservators and
conservation scientists of cultural heritage. Further studies need
to be carried out to evaluate the color gamut of the mask
area. This colorimetric correction methodology is sufficiently
accurate in color correction for cast images of murals from
the early years.
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Sitnik, R., Bunsch, E., Mączkowski, G., Załuski, W., Lech, K., Michoński, J.,
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