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Stimuli consisting of an interaurally phase-shifted tone in diotic noise—often

referred to as N0Sψ—are commonly used to study binaural hearing. As

a consequence of mixing diotic noise with a dichotic tone, this type of

stimulus contains random fluctuations in both interaural phase- and level-

di�erence. We report the joint probability density functions of the two

interaural di�erences as a function of amplitude and interaural phase of the

tone. Furthermore, a second joint probability density function for interaural

phase di�erences and the instantaneous cross-power is derived. The closed-

form expression can be used in future studies of binaural unmasking first

to obtain the interaural statistics and then study more directly the relation

between those statistics and binaural tone detection.

KEYWORDS

sound localization, probability density function, interaural level di�erence, interaural
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1. Introduction

Tone in noise detection thresholds improve when the interaural configuration of

tone and noise differ compared to the diotic case. A rich literature reports on the

influence of virtually every parameter of acoustic stimuli on this binaural unmasking (see,

e.g., Culling and Lavandier, 2021, for a review). Amongst these parameters, the phase

difference ψ introduced between the target tones of the two ear signals is fundamental

and was explored already in the first study of dichotic tone in noise detection by Hirsh

(1948). Such a signal is commonly referred to as N0Sψ where the subscripts indicate the

interaural phase difference (IPD) of the noise (N) or signal (S). The difference between

the detection threshold for the purely diotic N0S0 and the N0Sψ signal is referred to as

the binaural masking level difference (BMLD) and is largest for the case where ψ = π

(Hirsh, 1948).

Adding a dichotic Sψ tone to diotic N0 noise reduces the correlation between the

left and right signals but also introduces random fluctuations of the interaural phase

and level differences (IPD, ILD) (visualized in Figure 1A). The interaural correlation

decreases with the tone level, so binaural unmasking and incoherence detection are often

treated synonymously (Durlach et al., 1986). However, especially for narrowband noise,
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the value of interaural correlation itself was found to be an

insufficient predictor for decorrelation detection performance.

Instead, detection performance correlated with the amount of

IPD and ILD fluctuations as measured by the standard deviation

(Goupell and Hartmann, 2006). Similarly, other studies reported

the performance in detecting the tone within an N0Sψ stimulus

to vary considerably depending on the individual noise token.

This token to token variability was best accounted for by models

that did consider the amount of instantaneous fluctuations in

IPD and ILD (Davidson et al., 2009).

Therefore, accounting for binaural tone-in-noise sensitivity

can be subdivided into two components: First, the signal-based

analysis of how stimulus design parameters such as ψ or the

SNR influence the interaural cue statistics. In the second step,

binaural sensitivity can then be studied more directly by relating

it to the interaural cues. Only relatively few studies, however,

have previously treated these statistics. The probability density

function (PDF) underlying the statistical distribution of IPDs

in (partly) decorrelated noise has been derived in the frame of

optical interferometry (Just and Bamler, 1994). Henning (1973)

derived the PDF for IPDs in the special case of N0Sπ and using a

very similar approach for the same stimulus condition, Zurek

(1991) additionally derived marginal PDFs for ILDs. Other

studies also seemed to have worked on stimuli where the tone

IPD did not equal π , but this work seemed to have remained

unpublished (Levitt and Lundry, 1966). The present study closes

this gap by deriving a closed form expression for the joint PDF

of IPDs and ILDs in the general case of a N0Sψ stimulus. From

this distribution, the marginal PDFs can also be calculated using

numerical integration. These PDFs are especially useful when

FIGURE 1

(A) Visualization of the random fluctuations in IPD 18(t) and ILD 1L(t) and P′(t) due to mixing an antiphasic 500 Hz tone with a 500Hz wide band

of diotic noise (SNR = −10dB). (B) Signal model used to derive the PDFs for an N0Sψ stimulus. The graphic shows the Complex-plane

representation of the basebands of the left and right ear signal: ZL(t) = AL(t)e
i8L (t) (blue), and ZR(t) = AR(t)e

i8R (t) (red). The left-ear-baseband is

constructed by adding a “tone”-vector with length C and angle +ψ/2 to the noise baseband X(t)+ iY(t). The right-ear-signal is constructed by

adding a “tone”-vector with an angle of −ψ/2 to the same baseband. The instantaneous IPD 18(t) of the N0Sψ signal equal the di�erence

between 8R and 8L. (C) Complex-plane representation of the interaural-baseband Z1(t) = 4(t)+ iϒ (t) which is gained by dividing the

left-ears-baseband by the right-ears-baseband. The absolute value of the baseband equals the interaural amplitude ratio R while the phase

equals the interaural phase di�erence 18.

considering narrowband noises that remain relatively unaffected

by the bandpass properties of the auditory periphery. Statistics

at the stimulus level should thus well describe statistics of the

binaural parameters at the level of binaural integration.

Suppose fluctuations of the IPD are indeed a cue used

to detect the tone in an N0Sψ stimulus. In that case, the

stimulus energy at which these fluctuations occurred might also

affect performance. A larger IPD occurring during low-energy

stimulus sections can be expected to have less impact than the

same IPD occurring at high stimulus energy. Information about

the stimulus energy in both ears is captured by the product

of the left and right ear stimulus envelope, also called the

instantaneous cross-power P′(t). Furthermore, the cross-power

plays an essential role in defining the interaural coherence of

a stimulus (Encke and Dietz, 2022). Consequently, this study

derives the joint PDF for p′(t) and IPD.

2. Deriving the probability density
functions

The following section will derive the two joint PDF. A

computational-notebook that can be used to reproduce these

derivations in the computer algebra system sympy (Meurer et al.,

2017) can be found as Supplementary material.

IfN(t) is a Gaussian noise process with a mean value of zero,

the process can be represented using its in-phase and quadrature

components X(t) and Y(t):

N(t) = X(t) cos(ω0t)− Y(t)sin(ω0t), (1)

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1022308
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Encke and Dietz 10.3389/fnins.2022.1022308

where X(t) and Y(t) are orthogonal noise processes with the

same variance and mean as N(t). The reference frequency ω0
is not of relevance for the derivation and can thus be chosen

freely. For computational convenience, ω0 is set to equal the

frequency of the tone S(t) which is added with the amplitude

C and phase ψ :

S(t) = C sin (ω0t + ψ) (2)

The resulting signalW(t) = N(t)+ S(t) then equals:

W(t) =
[

X(t)+ C cos(ψ)
]

cos(ω0t)

− [Y(t)+ C sin(ψ)] sin(ω0t). (3)

When dealing with instantaneous phase and amplitude

values, it is beneficial to instead work with the analytic

representationWa(t) of the signal:

Wa(t) =
{[

X(t)+ C cos(ψ)
]

+ i
[

Y(t)+ C sin(ψ)
]}

eiω0t , (4)

where i =
√
−1 is the imaginary unit. The first term of this

expression (enclosed in curly brackets) can be interpreted as

an amplitude and phase modulator of the harmonic oscillation

eiω0t . This combined modulator will be referred to as the signals

complex baseband Z(t)

Z(t) =
[

X(t)+ C cos(ψ)
]

+ i
[

Y(t)+ C sin(ψ)
]

= A(t)ei8(t),

(5)

where A(t), 8(t) are the instantaneous amplitude and phase of

the baseband. In the case of theN0Sψ stimulus, a tone with phase
ψ/2 is added to the noise in the left-ear signal while the phase

of the tone in the right-ear signal is − ψ/2 resulting in the two

basebands:

ZL(t) =
[

X(t)+ C cos ψ/2
]

+ i
[

Y(t)+ C sin ψ/2
]

= AL(t)e
i8L(t)

(6)

ZR(t) =
[

X(t)+ C cos − ψ/2
]

+ i
[

Y(t)+ C sin − ψ/2
]

=AR(t)e
i8R(t). (7)

A vector model of the basebands ZR and ZL is shown in

Figure 1B where the individual components are visualized as

vectors in the complex plane.

Based on these two basebands, PDFs for the interaural

parameters will be derived using two separate approaches. In

the first approach, the baseband of the left-ear signal ZL(t) is

divided by the baseband of the right-ear signal ZR(t) resulting

in the interaural baseband Z1(t):

Z1(t) =
ZR(t)

ZL(t)
= AR(t)

AL(t)
ei[8R(t)−8L(t)]

= R(t)ei18(t), (8)

where 18(t) and R(t) are the instantaneous IPDs and the

interaural amplitudes ratios (IARs), respectively. Instantaneous

ILDs can then be calculated as: 1L(t) = 20 log10 R(t). In

the second approach, the PDF for IPDs and the product of

the left and right-ear envelope (cross power) p′ are derived

by multiplying ZL(t) with the complex conjugate of ZR(t)

resulting in

Z2(t) = ZR(t)Z
∗
L(t) = AR(t)AL(t)e

i[8R(t)−8L(t)]

= P′(t)ei18(t). (9)

The process of deriving the PDFs from Equation (8) and

Equation (9) follows the exact same rationale so that the process

will only be detailed for Equation (8). Results for the second

approach will then be stated without further detail.

For the interaural baseband, ZL and ZR as resulting from

Equations (6) and (7) are inserted into Equation (8) resulting in:

Z1(t) =
[X(t)+ C cos (ψ/2)]+ i [C sin (ψ/2)+ Y(t)]

[X(t)+ C cos (− ψ/2)]+ i [C sin (− ψ/2)+ Y(t)]

= 4(t)+ iϒ(t) (10)

where 4(t) and ϒ(t) are the in-phase and quadrature

components of the baseband Z1(t). They can be derived from

Equation (10) as:

4(t) = Y2(t)+ [C cos (ψ/2)+ X(t)]2 − C2 sin2 (ψ/2)

[C sin (ψ/2)− Y(t)]2 + [C cos (ψ/2)+ X(t)]2
(11)

ϒ(t) = 2C [C cos (ψ/2)+ X(t)] sin (ψ/2)

[C sin (ψ/2)− Y(t)]2 + [C cos (ψ/2)+ X(t)]2
. (12)

Figure 1B visualizes the resulting baseband in the complex plane.

From this visualization, it can be seen that the instantaneous

IPDs and IARs can be calculated as the argument: 18(t) =
arg

{

Z1(t)
}

= arctan2
(

ϒ(t), 4(t)
)

and modulus R(t) =
∣

∣Z1(t)
∣

∣ =
√

ϒ(t)2 +4(t)2 of the baseband. Here, arctan2 is the

two-argument arctangent that returns the angle in the Euclidean

plane.

Both Random Processes R(t) and 18(t) are functions of

X(t) and Y(t) which are uncorrelated Gaussian noise processes

with the variance σ 2. The joint PDF fX,Y (x, y) of X(t) and Y(t)

is thus that of a bivariate Gaussian distribution:

fX,Y (x, y) =
1

2πσ 2
e
− 1

2σ2

(

x2+y2
)

, (13)

where

∞
∫∫

−∞
fX,Y (x, y) dxdy = 1. (14)

Here and in all future equations, lower-case variables will be

used to refer to the individual instances generated by a given

noise process. x and y are thus two instances generated by the

noise processes X(t) and Y(t) and ξ , υ are generated by4(t) and

ϒ(t).
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Probability density functions for 4(t) and ϒ(t) can

be gained by applying a coordinate transformation to

Equation (13). For this, Equations (11) and (12) are rearranged

to calculate x and y given the values of ξ and υ:

x(ξ , υ) = C

[

2υ sin (ψ/2)

υ2 + (ξ − 1)2
− cos (ψ/2)

]

,

y(ξ , υ) =
C

(

υ2 + ξ2 − 1
)

sin (ψ/2)

υ2 + ξ2 − 2ξ + 1
. (15)

These expressions allow us to derive the Jacobian

determinant
∣

∣J(x, y)
∣

∣. The Jacobian is then used to apply a

coordinate transformation from dx and dy to dξ and dυ:

dx dy =
∣

∣J(x, y)
∣

∣ dξ dυ = 4C2 sin2 (ψ/2)
[

υ2 + (ξ − 1)2
]2
dξ dυ. (16)

Applying the transformations in Equations (15) and (16) to

change the variables of Equation (13) results in:

f4,ϒ (ξ , υ)

= 2C2 sin2 (ψ/2)

πσ 2
[

υ2 + (ξ − 1)2
]2
e
−

C2
[

υ2−2υ sin (ψ)+ξ2−2ξ cos (ψ)+1
]

2σ2[υ2+(ξ−1)2] .

(17)

Which is the joint PDF for the two random processes 4(t)

and ϒ(t). To gain the joint PDF fR,18(r,1ϕ), Equation (17)

is transformed from rectangular to polar coordinates (see

Figure 1C). This is achieved by using the transforms: ξ =
r cos1ϕ, υ = r sin1ϕ, dξ dυ = r dr d1ϕ resulting in:

fR,18(r,1ϕ) =
C22r sin2 (ψ/2)

σ 2πh(0)2
e
− C2h(ψ)
σ22h(0) , (18)

where h(ψ) = r2 − 2r cos(1ϕ − ψ) + 1 and r ∈ [0,∞], 1ϕ ∈
[−π ,π].

This equation can be interpreted as the distribution of all

possible values of the interaural baseband z1 = rei1ϕ and thus

the distribution of all possible combinations of IPDs 1ϕ and

IARs r. It is also apparent from Equation (18) that equal ratios

of C2/σ 2 result in the same PDF so that PDFs will be referenced

using the signal to noise ratio SNR = C2/2σ 2 instead of σ 2 and

C. Some examples of these functions are shown in Figures 2A–

D. Deriving the joint PDF of 1ϕ and ILD 1l instead of IAR

r is easily done by using transforms r = 10
1l/20 and dr =

r/20 ln(10)d1l.

f1L,18(1l,1ϕ) = C210
1l/20 ln(10) sin2 (ψ/2)

σ 2πh(0)2
e
− C2h(ψ)
σ22h(0) . (19)

To derive the joint PDF of 18(t) and P′(t), the process

detailed above is repeated based on the interaural baseband Z2(t)

as defined in Equation (9) resulting in the PDF:

fP′,18(p
′,1ϕ) = e

− C2

2σ2
− p′[cos(1ϕ)−cos(1ϕ−ψ)]

2σ2[cos(ψ)−1] p′

2πσ 2
√
g

(20)

where g is given by:

g = 2C2 sin2 (ψ/2)
[

2p′ cos (1ϕ)− C2 (cos (ψ)− 1)
]

− p′2 sin2 (1ϕ). (21)

and the range of values is defined by:

p′ ∈ [0, p̂′(1ϕ)], 1ϕ ∈ [−1̂ϕ(p′),+1̂ϕ(p′)], (22)

where

p̂′(1ϕ) = C2
cos(ψ)− 1

cos (1ϕ)− 1
. (23)

The function 1̂ϕ(p′) can be gained by solving Equation (23)

for1ϕ.

Similar to Equation (19) which defined the distribution of

all possible values of 1ϕ and r, this function can be interpreted

as the distribution of all possible combinations of 1ϕ and

p′. However, the range of these combinations is limited by

Equation (23) so that large areas of the exemplary PDFs shown

Figures 2E–H are undefined. This limitation will be treated

further in the discussion.

The marginal PDFs of the IAR R, the IPD18 and the cross-

power P′ can be calculated from the two joint PDFs defined in

Equations (19) and (20) by integrating over the other variable.

f18(1ϕ) =
∫ ∞

0
fR,18(r,1ϕ)dr

=
∫ p̂′(1ϕ)

0
fP′,18(p

′,1ϕ)dp′ (24)

fR(r) =
∫ π

−π
fR,18(r,1ϕ)d1ϕ (25)

fP′ (p
′) =

∫ 1̂ϕ(p′)

−1̂ϕ(p′)
fP′,18(p

′,1ϕ)d1ϕ (26)

f1L(1l) =
∫ π

−π
f1L,18(1L,1ϕ)d1ϕ. (27)

As previously discussed, the PDFs of 1ϕ and 1l (and thus

r) only depend on the SNR and not on the absolute stimulus

power. The cross-power P′, however, is the product of the left

and right stimulus envelope and must thus also depend on

stimulus power. For this reason, PDFs for P′ will always be

shown normalized by C2 so that PDFs only depend on the SNR

and are independent of overall stimulus power.

No closed-form solution for Equations (24)–(27) could be

found so that numeric integration was used to evaluate them

(QUADPACK algorithms QAGS/QAGI; Piessens et al., 1983).

Figures 2I–K show some examples of the PDF of18,1L, P′ and
verifies the results by comparing Equations (24)–(25) to PDFs

that were numerically estimated from signal waveforms.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.1022308
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Encke and Dietz 10.3389/fnins.2022.1022308

FIGURE 2

(A–D) Some examples of the joint PDF of IAR and IPD given in Equation (18). All plots show results for a tone-IPD of π with the SNR increasing

from left to right. Angles in the polar plot are the IPDs, while the radial variable is the IAR. Colors indicate the probability density. A

logarithmically-scaled colormap was used due to the large dynamic range of the PDF. White areas located at an IAR = 1 and IPD = 0 for 0 and

10dB indicate a probability density of 0. (E–H) Joint PDF for cross-power and IPDs given in Equations (20). Results are shown for the same

parameters as in (A–D). As in the first row of plots, angles indicate the IPD and color the probability density. The radial variable, however, is the

cross-power. These PDFs were calculated for a noise variance of σ 2 = 1. A logarithmically-scaled colormap was used due to the large dynamic

range of the PDF. White areas indicate undefined combinations of cross-power and IPD as defined by Equation (23). (I–K) Evaluation of the

analytical results by comparing the derived marginal PDFs with numerically estimated PDFs. In all cases, black, dashed lines indicate analytical

results gained from Equations (24)–(27). Colored lines indicate results that were instead numerically estimated from waveforms. Panel (I) shows

marginal PDFS for IPDs 18, (J) for ILDs 1L and k) for the cross-power P′.

3. Discussion

Figures 2A–D show joint PDFs for IAR and IPD calculated

at a tone-IPD of ψ = π and different SNRs. Without any

tone, this distribution would equal a delta distribution with

infinite probability density at an IPD of zero and an IAR

of 1. At low SNRs (Figures 2A,B), the antiphasic tone has

only a small influence on the noise resulting in probability

densities that are still tightly clustered around the IPD of 0

and an IAR of 1. With increasing amplitude of the tone and

thus increasing SNR, this clustering becomes less pronounced

(Figures 2B,C). When the tone starts to dominate the stimulus,

the probability density becomes highest around the tone-IPD

of π (Figures 2C,D). At large SNRs, the PDF would converge

toward a delta distribution at the tone-IPD of π and an IAR

of 1. Figures 2E–H shows joint PDFs for cross-power and IPD

at the same conditions as used in Figures 2A–D. Without the

antiphasic tone, the stimulus density would be concentrated on

a single line at zero IPD. Also, the signal is diotic so that the

cross-power equals the stimulus power so that the cross-power

distribution would equal that of the squared envelope. At low

SNRs (Figures 2E,F), the addition of the tone starts to introduce

IPD fluctuations thus widening the joint PDF. A large area of

these joint PDFs are, however, undefined. These undefined areas

are determined by Equation (23) and become intuitive when

studying the signal model shown in Figure 1B. At low tone

amplitudes C, it is only possible to gain large IPDs at moments

where the envelope of the noise and thus x + iy are small.

This also result in a small cross-power p′ = aL × aR. With

increasing C, large IPDs can then also appear at increasingly
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FIGURE 3

Exemplary marginal PDFs for IPDs (first column), ILDs (second column), and the cross-power (third column). For better visualization, the

cross-power values were normalized with the squared tone amplitude so that the x-axis shows 10 log10
(

p′/C2
)

. (A–F) PDFs calculated for two

fixed signal phases ψ = π (top-row) and ψ = π/2 (bottom row). Di�erent colors indicate results at di�erent SNRs. (G–L) PDFs calculated for two

fixed SNRS: −10dB (top-row) and 0dB (bottom row). Di�erent colors indicate results at di�erent signal phases ψ .

large values of p′. This is seen in Figure 2G and especially

Figure 2H.

While joint PDFs are the main contribution of this study,

they are hard to visualize and, consequently, difficult to discuss

in detail. Instead, the following section discusses marginal PDFs

for IPDs, cross-power, and ILDs as a function of different

stimulus properties. These PDFs lack information about the

interaction between the individual metrics, such as IPD and

cross-power or ILD. However, they do convey the impact of

different metrics more intuitively. Figures 3A,D show examples

of the marginal IPD PDFs for ψ = π and ψ = π/2 while

varying the SNR. The instantaneous IPD 1ϕ can be interpreted

as a result of the mixture of zero IPD due to the diotic noise

and the IPD ψ of the tone. The weighting of the two IPDs is

determined by the noise’s instantaneous power relative to the

tone’s power. Thus, at large negative SNRs where the stimulus

is dominated by noise, IPD PDFs show a mean value close to

zero and only little variance. With increasing SNR, the IPDs are

increasingly influenced by the tone-IPD so that the distributions

mean moves toward ψ and variance increases. At larger positive

SNRs, where the noise power is small compared to the tone,

the IPDs are dominated by the tone-IPD ψ so that the variance

decreases again. In the two extreme cases where the SNR would

either be −∞ or +∞, the signal consists of only the noise or

the tone so that neither IPD nor ILD fluctuates—both PDFs

are then δ-distributions. For the IPD, this distribution is either

be located at zero (SNR=−∞) or at ψ (SNR=+∞) while the

ILD distribution is always centered at 0 dB. Figures 3B,E show

ILD PDFs for the same parameters as used for the IPD PDFs

in Figures 3A,D. Instantaneous ILDs 1l, are a direct result of

the relative energy of the instantaneous noise and the tone.

As a result, ILD PDFs exhibit the same change of variance as

discussed for the IPDs, low variance at both high or low SNRs

where the stimulus is either dominated by the tone or noise and

an increase of variance at intermediate SNRs. Figures 3C,F show

distributions for the remaining parameter P′ plotted in decibels

relative to the squared amplitude of the tone. For large SNRs, the

signal is dominated by the tone, p′/C2 is thus narrowly distributed

around 0 dB. With decreasing SNR, the noise power increases

relative to C2 so that the peak of the distribution shifts toward

larger values of p′/C2 with the overall shape of the distribution

remaining largely unchanged.
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FIGURE 4

Joint probability functions of the cross-power P′ and IPD as

defined in Equation (20). For better comparison, the y-axis was

normalized with the squared tone amplitude so that the y-axis

shows 10 log10
(

p′/C2
)

. The top row shows PDFs at an SNR of

−10dB, while the bottom row shows PDFs at an SNR of 10dB.

Columns show Each panel shows a PDF at di�erent SNRs and

Tone-IPDs ψ . The horizontal dashed black lines indicate the

location where p′ = C2 so that the normalized cross-power is

0 dB. The vertical black lines indicate where the IPD matches the

tone-phase 1ϕ = ψ . Note that the color map is

logarithmically-scaled and that changes in the scale were

limited to values between 1 and 10−3.

Figures 3G–L additionally show IPD, ILD, and P′ PDFs for
cases where the SNR was fixed while varying ψ . From the

vector summation shown in Figure 1B, it is intuitive that, at

the same tone amplitude C, a smaller value of ψ also results

in smaller IPDs. As a direct consequence, IPD and ILD PDFs

also show less variance for smaller values of ψ . The PDFs for

P′, however, are largely uninfluenced by ψ—with the notable

exception of a sharp peak located at p′/C2 = sin2(ψ/2). This peak

is a consequence of Equation (23), which limits the possible

combinations of IPDs and P′. To better understand the origin

of this peak, Figure 4 shows joint PDFs of IPD and P′. Notably,
the probabilities are heavily clustered close to the limit defined

by Equation (23). The low slope of the limiting p̂′ function

toward±π in combination with the accumulation of probability

density along this limit results in the observed peak in the cross-

power PDFs. From Equation (23) follows that p̂′(1ϕ = ±π) =
C2 sin2(ψ/2) which is the location of the peaks in Figures 3I,L.

All PDFs derived above show discontinuities for 1ϕ ∈
{0,±π} for which the probability densities approach zero. Or, in
other words, a N0Sψ stimulus will never contain IPDs that are

exactly zero or π . Both discontinuities can be understood when

keeping in mind that the IPD is defined by1ϕ = arctan2 (υ, ξ).

Which can only result in a value of 0 or ±π if υ = 0. This is

only the case when x = −C cos (ψ/2). As the probability of x to

take this exact value approaches zero, the joint PDFs will also

approach zero. For further discussion of the PDFs, however, this

discontinuity was not shown explicitly in the plots above as its

implication in practice is limited.

Furthermore, the PDFs derived in this study are

independent of noise spectrum and bandwidth. They are

thus valid for any Gaussian noise with zero mean. Further,

the tone frequency does not need to be located within the

noise spectrum. However, with auditory processing, especially

peripheral filtering, the spectrum will influence the effective

SNR at the level of binaural interaction and, thus, the PDFs

of the encoded binaural cues. In these cases, PDFs will be

determined by the effective SNR of the stimulus as processed,

meaning after considering the bandpass properties of the

auditory periphery. While all PDFs were derived for the diotic

noise case N0Sψ , they can easily be generalized to cases where

an additional phase delay ψ2 is applied to the whole stimulus.

Such a signal could then be referred to as (N0Sψ )ψ2 and

would result in identical IPD distributions as in the N0Sψ case

but shifted by ψ2 with ILD and P′ distributions remaining

unchanged.

3.1. Quantifying IPD and ILD variability

Multiple studies have used models making use of the

variability of IPDs, ILDs, or a combination of the two, as a

detection cue for tone in noise experiments (e.g., Davidson et al.,

2009; Dietz et al., 2021; Encke and Dietz, 2022; Eurich et al.,

2022) or for decorrelation detection (Goupell and Hartmann,

2007). Based on the derived PDFs, the following section will

thus discuss different measures for the amount of IPD and ILD

fluctuation for the special case of N0Sπ .
The amount of ILD fluctuations can be quantified by

calculating the variance V of the underlying distribution
defined as:

V =< 1L(t)2 >=
π

∫

−π

∫ ∞

−∞
1l2f1L,18 d1l d1ϕ, (28)

where the angular brackets symbolize the ensemble average. The

resulting variance as a function of SNR is shown in Figure 5A.

As expected from the plots in Figure 3, ILD variance first

increases with SNR until reaching its maximum around an SNR

of−0.73 dB from where the variance decreases as the tone starts

to dominate the stimulus.
Most previous studies relied on the regular variance (or

standard deviation
√
V) as defined in Equation (28) when

quantifying IPD variance (Goupell and Hartmann, 2007;
Davidson et al., 2009). This approach makes sense at low SNRs
where IPDs are narrowly distributed around 0. At higher SNRs,
however, the distribution starts to move toward a mean value of
π , and calculating the regular variance is of little significance.
An alternative and better-suited metric for quantifying the
IPD variability is the circular variance Vcirc (Fisher, 1993)
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FIGURE 5

(A) Variance of ILDs in an N0Sπ signal calculated at di�erent SNRs. The dashed line marks the maximum of the function (B) Circular IPD variance

in an N0Sπ signal calculated at di�erent SNRs (blue line) and the matching interaural coherence (gray line). Dotted lines indicate the location of

the maximum in variance and minimum in coherence. (C) Circular IPD variance as a function of stimulus coherence for an N0Sπ stimulus (gray

line and symbols) as well as (partly) decorrelated noise (dashed black line) (Just and Bamler, 1994). Symbols and labels indicate SNRs resulting in

a given combination of coherence and variance.

defined as:

Vcirc = 1−
∣

∣

∣

〈

ei18(t)
〉∣

∣

∣
= 1−

∣

∣

∣

∣

∣

∣

π
∫

−π

∫ p̂′(1ϕ)

0
ei1ϕ fP′ ,18 dp′ d1ϕ

∣

∣

∣

∣

∣

∣

,

(29)

where the angular brackets symbolize the ensemble average,

Vcirc can take values between 0 and 1 with a value of 0 indicating

no IPD fluctuations. In contrast, a value of 1 indicates a wide

distribution of IPDs (but not necessarily a uniform distribution).

The gray line shows the circular variance as a function of SNR in

Figure 5B. Like the ILD variance, IPD variance increases with

increasing SNR until reaching its maximum around an SNR of

−1.93 dB from where the variance starts to decrease.
A second and alternative metric for quantifying the amount

of IPD fluctuations has recently been shown to directly account
for the detection performance in a variety of tone in noise
tasks: The interaural coherence1 |γ | (Encke and Dietz, 2022;
Eurich et al., 2022). The interaural coherence is defined as the
modulus of the complex-valued correlation coefficient and can

1 Note that there are several di�erent definitions of coherence. Our use

of coherence as |γ | is a typical time-domain definition (Saleh, 2007). In

general signal processing, the coherence function is instead often defined

in the frequency domain and calculated as the normalized absolute

value of the cross-spectral power density (CSPD) (Shin, 2008). The two

definitions are closely related, as the time-domain coherence can also

be defined by using a Fourier transform of the CSPD. In binaural research,

a third definition exists, where interaural coherence is sometimes used

to refer to the maximum of the real-valued cross-correlation function

(Blauert, 1983).

be calculated as:

|γ | =
|
〈

Ra(t)L∗a(t)
〉

|
<

√

|Ra(t)|2 >< |La(t)|2 >
=

∣

∣

∣

〈

P′(t)ei18(t)
〉∣

∣

∣

<
√

|Ra(t)|2 >< |La(t)|2 >
,

(30)

= 1

2σ + C2

∣

∣

∣

∣

∣

∣

π
∫

−π

∫ p̂′(1ϕ)

0
p′ei1ϕ fP′ ,18dp

′d1ϕ

∣

∣

∣

∣

∣

∣

, (31)

where Ra, La are the analytical representation of the left and

right ear signals, the asterisk symbolizes the complex conjugate,

and σ 2 and C are the variance of the noise and the amplitude of

the tone, respectively. Comparing this equation to the definition

ofVcirc in Equation (29), shows that the twomeasures are closely

related, with the main difference being that |γ | weights the IPDs
by p′ before averaging. This weighting requires a normalization

achieved by the term before the integrals. In addition to this,

the two metrics show inverse behavior. A stimulus with no IPD

fluctuations will result in an interaural coherence of |γ | = 1

while the circular variance would be V = 0.

An interesting property of |γ | is that any stimulus with a

real-valued cross power density spectrum such as N0Sπ also

results in a real-valued γ which then equals the interaural

(Pearson) correlation. Figure 5B shows the interaural coherence

(and thus correlation) as a function of SNR (blue line). As

expected from the previous discussions, the coherence decreases

with increasing SNR until reaching a coherence of zero at an

SNR of 0 dB from where it starts to increase. Surprisingly,

however, the minimum in coherence does not match the

maximum in IPD or ILD variability. Figure 5C thus shows the

same data as in panel b but plotting IPD variance as a function

of coherence. The same plot also shows the IPD variance of

two partly correlated noise tokens as a function of coherence.

From this figure, one can appreciate that, depending on the

stimulus, the same coherence can result in different amounts of

IPD variance. These differences are caused by the p′ weighting
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of IPDs that is included when calculating |γ | (see Equation 31).

two stimuli that share the same IPD PDF but differing P′ PDFs
would thus show also differ in their coherence.

4. Summary

This study aimed to derive the joint PDF for ILDs (IARs)

and IPDs as well as IPDs and P′. The two functions are given

by the Equations (19) and (20). The two equations are a key

component for understanding how the SNR and ψ influence

the magnitude of binaural unmasking when considering IPD

and ILD variance as the underlying cue. The approach applied

to derive PDFs can further be used as a template for other

types of binaural signals. In the future, it will hopefully help to

get a better understanding of how different stimulus statistics

influence binaural unmasking.
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