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Omnidirectional images (ODIs) have drawn great attention in virtual reality

(VR) due to the capability of providing an immersive experience to users.

However, ODIs are usually subject to various quality degradations during

different processing stages. Thus, the quality assessment of ODIs is of critical

importance to the community of VR. The quality assessment of ODIs is quite

different from that of traditional 2D images. Existing IQA methods focus on

extracting features from spherical scenes while ignoring the characteristics of

actual viewing behavior of humans in continuously browsing an ODI through

HMD and failing to characterize the temporal dynamics of the browsing

process in terms of the temporal order of viewports. In this article, we resort

to the law of gravity to detect the dynamically attentive regions of humans

when viewing ODIs. In this article, we propose a novel no-reference (NR)

ODI quality evaluation method by making efforts on two aspects including

the construction of Dynamically Attentive Viewport Sequence (DAVS) from

ODIs and the extraction of Quality-Aware Features (QAFs) from DAVS. The

construction of DAVS aims to build a sequence of viewports that are likely

to be explored by viewers based on the prediction of visual scanpath when

viewers are freely exploring the ODI within the exploration time via HMD.

A DAVS that contains only global motion can then be obtained by sampling

a series of viewports from the ODI along the predicted visual scanpath. The

subsequent quality evaluation of ODIs is performed merely based on the

DAVS. The extraction of QAFs aims to obtain effective feature representations

that are highly discriminative in terms of perceived distortion and visual quality.

Finally, we can adopt a regression model to map the extracted QAFs to a single

predicted quality score. Experimental results on two datasets demonstrate that

the proposed method is able to deliver state-of-the-art performance.

KEYWORDS

omnidirectional images, image quality assessment, no-reference, spatiotemporal
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Introduction

The omnidirectional image (ODI), which records and
delivers 360-degree surround information, plays an important
role in virtual reality (VR) photography. The brand-new
viewing experience enabled by ODIs is substantially different
from traditional 2D plane images, as humans are allowed to
freely change their viewport to explore the immersive virtual
environments through head-mounted display (HMD) (Li et al.,
2018; Zhang et al., 2018; Tran et al., 2019; Deng et al., 2021). Due
to its capability of providing natural immersions of real-world
scenarios, ODIs have attracted lots of attentions from both
academia and industry. In the meanwhile, ODIs have been put
into widespread use in many practical VR applications (Chen
et al., 2019; ISO, 2019; Alain et al., 2020).

The visual quality of ODIs is a researching-worth topic
as ODI content with poor visual quality may cause both
physical and mental discomforts. Compared with the traditional
2D plane image, the visual quality issues of ODIs are much
more acute and challenging. On the one hand, the currently
mainstream methods for acquiring a typical ODI are to stitch
multiple images which are captured by using a wide-angle
camera array with partially overlapped field of view. These
images from multiple cameras are stitched to produce an
omnidirectional panorama in the spherical format. However,
the stitching process will inevitably introduce stitching artifacts
at the stitching boundaries, which are scarcely occurred in
traditional 2D plane images (Ho and Budagavi, 2017). On the
other hand, compared with traditional 2D plane images, the
storage space requirement and the spatial resolution of ODIs
are much higher, e.g., 4K, 8K, or higher. Therefore, ODIs are
often heavily compressed to facilitate transmission and storage
(Kim et al., 2020). As a result, ODIs with serious compression
artifacts inevitably lead to even worse quality-of-experience.
In addition, ODIs are usually with the spherical format to be
displayed on HMD. Therefore, the human viewing behavior
when freely exploring the ODIs with HMD is dramatically
different with that of 2D plane images. This dramatically
different viewing behavior will also affect the human quality
perception of ODIs accordingly. On considering the above
quality issues, it is necessary to develop effective ODI quality
metrics by jointly considering the effects of different distortions
as well as the human viewing behaviors in viewing ODIs with
HMD.

Despite its high importance, the problem of ODI quality
evaluation has been not well addressed so far. One of the
most important challenges is that human viewing behavior in
browsing ODIs through HMD is dramatically different from
that in viewing 2D plane images by human eyes directly.
Typically, when viewers are browsing a spherical ODI through
HMD, they can obtain immersive and interactive viewing
experiences by freely changing the viewpoint, and only the
visual contents within the current viewport can be viewed

at a certain time (Chen et al., 2020; Xu M. et al., 2020).
Besides, viewers usually tend to focus on the regions near
the equator during the exploration of ODIs with HMD.
Therefore, the prediction of viewports plays a critical role
in designing accurate ODI quality evaluation metrics as it
can extract the most important visual contents from ODIs to
facilitate the quality evaluation process. To account for this,
some previous efforts have been made to extract viewports
from ODIs for ODI quality evaluation. For example, the
VGCN-based ODI quality evaluation method proposed in Xu
J. et al. (2020) was dedicated to extracting viewports with
higher probabilities of being explored by viewers according
to the human visual sensitivity to structural information and
adopted the graph convolution network (GCN) to predict
ODI quality score by implicitly modeling the interactions
among different viewports. In Sun et al. (2019), the authors
proposed to project the equirectangular image into six equally
sized viewport images and then generate a corresponding
channel for further study. These previous works have achieved
promising performance and demonstrated the validity and
importance of viewport generation toward creating reliable
ODI quality evaluation metrics. Despite the effectiveness,
the viewport generation strategies of these methods have a
common limitation, i.e., they both ignore the actual viewing
behavior of humans in continuously browsing an ODI through
HMD and fail to characterize the temporal dynamics of
the browsing process in terms of the temporal order of
viewports. Therefore, research efforts dedicated to more
accurate viewport sequence generation by accounting for the
temporal order of viewports will undoubtedly facilitate the
quality evaluation of ODIs.

In this article, we propose a novel no-reference (NR) ODI
quality evaluation method by making efforts on two aspects
including the construction of Dynamically Attentive Viewport
Sequence (DAVS) from ODIs and the extraction of Quality-
Aware Features (QAFs) from DAVS. The proposed method is
named Spatiotemporal Scene Statistics of Dynamically Attentive
Viewport Sequence (S3DAVS) in short. The construction of
DAVS aims to build a sequence of viewports that are likely
to be explored by viewers based on the prediction of visual
scanpath when viewers are freely exploring the ODI within
the exploration time via HMD. A DAVS that contains only
global motion can then be obtained by sampling a series of
viewports from the ODI along the predicted visual scanpath.
As a result, the obtained DAVS can be considered a human
viewing behavior-characterized compact representation of the
whole ODI. The subsequent quality evaluation of ODIs is
performed merely based on the DAVS. The extraction of
QAFs aims to obtain effective feature representations that are
highly discriminative in terms of perceived distortion and visual
quality. Finally, we can adopt a regression model to map the
extracted QAFs to a single predicted quality score.
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The contributions of this work are 2-fold. First, we make
the first attempt to predict the visual scanpath based on which
a DAVS is accordingly obtained as one kind of human viewing
behavior-characterized compact representation of the whole
ODI. Second, we model the spatiotemporal scene statistics by
analyzing the 3D-MSCN and spatiotemporal Gabor response
maps of the DAVS to serve as the QAFs for the quality
evaluation of ODIs. Finally, we conduct extensive experiments
on two benchmark databases to validate the effectiveness of our
proposed S3DAVS method.

The rest of this article is arranged as follows. Section
“Related works” provides a brief review of some representative
ODI quality metrics. Section “Proposed spatiotemporal scene
statistics of dynamically attentive viewport sequence approach”
illustrates the details of our proposed ODI quality evaluation
metric. Section “Experimental results” presents the experiments
and performance comparisons. Section “Conclusion” concludes
and discusses future works.

Related works

Compared with traditional 2D plane images, ODIs are
always extremely high-resolution and a large amount of data
which hereby directly increases the burden of transmission and
storage. Therefore, the visual quality issues of ODIs are much
more acute and challenging, calling for dedicated ODI quality
evaluation metrics. During the past decades, image quality
evaluation has been widely investigated and can be roughly
categorized into three categories including full-reference (FR),
reduced-reference (RR), and no-reference (NR) according to
the participation amount of information from reference image
(i.e., without distortion) (Mittal et al., 2013; Zhu et al., 2019;
Liu et al., 2021). Compared with the FR/RR methods which
require full/partial reference information, the NR methods do
not require any information from the reference image, which
can have much wider applications in practical systems. In this
section, we will provide a brief review of some representative FR
and NR ODI quality metrics in the literature.

FR-OIQA

There have been many FR image quality assessment (IQA)
metrics designed for 2D plane images (Wang et al., 2003;
Zhou et al., 2004; Sheikh et al., 2006; Zhang et al., 2011; Xue
et al., 2014). However, the existing 2D FR-IQA metrics cannot
be directly applied to evaluate ODIs because the geometric
distortions induced by projection will be wrongly treated
and evaluated. Therefore, the previous research efforts mostly
concentrate on studying to improve existing 2D FR-IQA metrics
by removing the influence of the projection-related geometric
distortions. Yu et al. (2015) proposed a spherical PSNR (S-
PSNR) metric to improve the performance of traditional PSNR

by sampling pixel locations from a sphere uniformly and getting
pixel contents from the reference image and the distorted
image according to the relation of spherical coordinates to 2D
coordinates, then calculated the error between the pixels on
the reference image and the pixels on the distorted image.
Zakharchenko et al. (2017) introduce a Craster’s parabolic
projection (CPP-PSNR) method by projecting the reference
image and distorted image into a shared CPP format domain
before calculating the PSNR. However, the drawback of CPP-
PSNR methods is that interpolation may introduce errors and
decrease the accuracy. Sun et al. (2017) advocated calculating
weighted-to-spherically uniform PSNR (WS-PSNR) on the
2D format of the omnidirectional image directly, which may
decrease the negative effect of interpolation in CPP-PSNR.
However, PSNR is not highly correlated with human perception
(Horé and Ziou, 2010). Inspired by the good consistency of
structure similarity (SSIM) metrics with subjective perception in
2D-IQA, Zhou et al. (2018) introduce a weighted-to-spherically
uniform SSIM metric for FR-OIQA. Besides, some studies
suggest figuring out more information from other dimensions
to improve performance. For example, the phase consistency-
guided method (Xia et al., 2021) proposes to utilize the abundant
structure and texture features of high-order phase information
from ODIs. Recently, with the development of deep learning,
Kim et al. (2020) constructed a novel FR-OIQA model by
learning the visual and positional features with the guidance of
human perception through adversarial learning.

NR-OIQA

The limitation of FR-OIQA metrics is the dependence
on reference images which may be unavailable in practical
applications. Therefore, NR-IQA metrics that do not require
any reference information are desired (Gu et al., 2015). In
the literature, several NR-IQA metrics for 2D images have
been proposed (Moorthy and Bovik, 2011; Min et al., 2018;
Yan et al., 2019). However, as demonstrated in Xu J. et al.
(2020), NR-OIQA involves new challenges, such as stitching
artifacts, sphere representation, and wide field of view (FoV).
Therefore, a reliable no-reference quality metric for ODIs is
extremely needed. There have been some algorithms proposed
for NR-IQA of ODIs. Zhou W. et al. (2022) captured the multi-
frequency information by decomposing the projected ERP maps
into multiple images on sub-bands. However, the conventional
method of studying the overall ODI is not necessary, because the
salient region in ODIs mainly locate on the equator (Sitzmann
et al., 2018). Therefore, the thought of exploring the information
from a viewport-based image is proposed and obtained broad
acceptance. Sun et al. (2019) projected each ODI into six
viewport images and then proposed a multi-channel CNN
framework including six parallel ResNet34. However, the way
to obtain viewport-based images is directed by the behavior of
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humans when they view omnidirectional images through HMD
(Li et al., 2019; Xu et al., 2019; Jiang et al., 2021; Zou et al.,
2021). Xu J. et al. (2020) noticed this problem and constructed
a viewport-oriented graph convolutional network (VGCN) to
address the perceptual quality assessment of ODIs.

Proposed spatiotemporal scene
statistics of dynamically attentive
viewport sequence approach

The framework of our proposed method is shown in
Figure 1. Our proposed method involves three modules,
including DAVS generator, QAF extractor, and image quality
regressor. DAVS which is composed of a series of viewports
sampled from the ODI along the scanpath can be considered a
human viewing behavior-characterized compact representation
of the whole ODI. Specifically, part (a) is an unprocessed ERP
image from the OIQA database. The spherical format ODI
converted from ERP format ODI is presented in part (b). The
predicted results of scanpath are shown in part (c). We get the
center location of each viewport on spherical format ODI from
precomputed locations in the ERP format ODI provided in part
(c) by coordinate mapping. Then, we offer the value of FOV
to set the size of the viewport, and finally obtain the complete
viewport content from part (b). All those viewport contents are
shown in part (f). In the QAF extractor, the image sequence is
generated by arranging the viewport images along the order in
the scanpath. The QAF extraction is performed on the DAVS
and involves obtaining effective feature representations that are
highly discriminative in terms of visual quality. Finally, the
extracted QAFs are used to predict the quality score via a learned
regression model.

Dynamically attentive viewport
sequence construction

1) Scanpath prediction: Sitzmann et al. (2018) proposed that
humans mainly pay attention to salient regions located on the
equator in ODIs. Therefore, our original intention of building
this omnidirectional image quality assessment algorithm is to
simulate human behavior when they observe ODI through
HMD (Zhu et al., 2020). Besides, different trajectories of
visual scanpath will produce different contents of DAVS and
accordingly affect the perceptual quality assessment. Based on
these two considerations, the key to DAVS construction is
accurately predicting the scanpath of viewers when they are
exploring the virtual scene via HMD. The fixation is decided
by visual attention shift, i.e., a phenomenon of the temporal
dynamics of human visual attention (Yang et al., 2021). Current
approaches in modeling scanpath prediction are based on the

saliency map that illustrates the probability of each human visual
attention (Ling et al., 2018). However, these approaches fail to
characterize the temporal dynamics of visual attention. Recently,
it has been revealed that the law of gravitation can well explain
the mechanisms behind the dynamic process of attention shift
in exploring a visual scene. Inspired by this, we intuitively
propose a gravitational model-based visual scanpath prediction
approach for ODIs. Given an ODI image as input, this model
can yield a continuous function that describes the trajectory of
the fixations over the exploration time as output.

We think the process that humans pay attention to
the interesting area can be regarded as a field effect in
HMD. Therefore, it is necessary to define the virtual mass
corresponding with ODI content and the virtual field in ODIs
for building a relationship between ODI content with fixation.
Here, we employ the model proposed by Zanca and Gori
(2017) and Zanca et al. (2020) for the utilization of gravitation
theory. The ODI content noticed by humans should contain
abundant details and motion information. Details reflect masses
proportional to the magnitude of the gradient, while motions
illustrate proportional to the optical flow which mainly occurs
when humans shift to the next fixation. If we set virtual mass
µ that obeys a certain distribution as the assembling of all the
fixation during the exploration, and think it degenerates to a
single distributional mass concentrated in x, then the virtual
mass can be expressed as µ

(
y, t
)
= δ(y− x), y = a (t) , where

a(t) represents the focus of attention at time t. The µ
(
y, t
)

consists of two elements: gradient of brightness µ1 and optical
flow µ2. The field we set makes effects on the virtual mass we
have designed, and then the Green function (G) will construct
the correlation between the field and its corresponding mass.
Therefore, our scanpath can be associated with attention a(t) by
the potential,

G (a− x) = − 1
2π

log (||a− x||) (1)

Then the gravitational field e at time t can be written as:

e (a− x) = 1
2π

a−x
||a−x||2 (2)

where Equation (2) illustrates that the strength of field is
inversely proportional to the distance between the a (t) and x.
Then the overall field can be demonstrated by,

E (a (t)) = − 1
2π
∫R dx

a(t)−x
||a(t)−x||2

µ (x, t) (3)

E (a (t)) = − (e ∗ µ) (a (t)) (4)

where Equation (3) can be rewritten as Equation (4) using
convolution operation. It depicts the links between the virtual
mass in the field and the attention of viewers. Subscript R
represents the overall field. However, the method first explores
the focus of attention in the most attentive regions which
may hinder the method from searching unexplored locations
and finishing a complete exploration of the scene. Therefore,
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FIGURE 1

The overall framework of our proposed S3DAVS method. It contains DAVS generator, QAF extractor, and image quality regressor. The viewport
sequence produced by the DAVS generator will be sent into the QAF extractor and then the image quality regressor will predict the final quality
score based on the features coming from the QAF extractor. Source for the photos in this figure: open source OIQA Database.

the shift of attention is needed to be triggered by an extra
setting. Zanca proposed to introduce the inhibitory function
(I(t)) which will return value 0 for the pixels that have not
been explored and value 1 for the pixels that have already been
explored. Then all the focus of attention a (t) can finally be
represented as follows:

İ (t) = β
(
g (x− a (t))− I (t)

)
(5)

ȧ (t) = z (t) (6)

ż (t) = −λz (t)− (e ∗ µ) (t, a (t)) (7)

Here, g (u) = e−
u2
2δ2 and 0 < β < 1. The dumping term ȧ (t)

prevents strong oscillations and makes the overall dynamics
closer to human scanpath. Figure 2 shows the scanpath
prediction of four images in the OIQA database. We could
obtain specific coordinates of these viewport centers to be
utilized in the following part.

2) Scanpath-based Viewport Sampling: Based on the
predicted scanpath data, we can obtain a series of viewport
images from the ODI by sampling along the trajectory of the
scanpath. The precomputed locations denoted by {s1, s2, . . . , st}
are human fixations that have been listed along the timeline,
but they only represent the center of attentive regions on the
ERP ODIs. Each st includes st,x and st,y, where, (st,x, st,y)
correspond with width and height values on the ERP image.
To obtain the realistic viewport content from the spherical
scene, we first map those locations onto a unit sphere and
then define those coordinates as the predicted scanpath which
is written as {p1, p2, . . . , pt}, where the subscript of st and pt
records the overall exploration time and keep the consistency
between locations from the ERP image and locations from the

spherical image. Specifically, given the current attentive location
in the ERP image is st , we calculate its spherical location pt
and consider it to be the actual fixation. Then, based on the
theory about near peripheral vision (Besharse and Bok, 2011),
we first set the field of view (FoV) to [-π/6, π/6], after which
the scale of viewport content can be determined (Sui et al.,
2022). Finally, bicubic interpolation will be used to sample the
viewport image and construct the sequence according to the
order of the time. Figure 3 shows how viewers perceive spherical
content with HMD at time t. In the spherical coordinate, the
behavior of viewer position mainly decided by rotation matrix
(Rai et al., 2017) and is mainly calculated by the Cartesian
theory for the location transformation. Figure 4 shows partial
viewport content from the DAVS. (A) is an original distorted
ERP image in the database and (B) displays the examples
of different viewports in DAVS. Those overlapping viewport
contents illustrate a dynamically attentive process when humans
view the ODI from one attentive point to the next and
finally composite into a sequence that curve the dynamically
spatiotemporal information which will facilitate us to extract
spatiotemporal features from the DAVS. Comparing the content
in these viewports, some of these viewport contents are rich in
luminance information, while others are not. This phenomenon
corresponds to the theory of not depending on the saliency
map but predicting the scanpath with the law of gravity, so the
scanpath is more accurate than the common method.

Quality-aware feature extraction and
quality prediction

As stated, the built DAVS can be considered as a human
viewing behavior-characterized compact representation of the
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FIGURE 2

Examples of scanpath prediction results. The red squares in each image denote fixation locations based on which the viewport
images are sampled. Source for the photos in this figure: open source OIQA Database.

whole ODI. The remaining issue is how to perform the quality
evaluation of an ODI based on the DAVS. As known, the
most important step of quality evaluation is to extract effective
QAFs that are highly descriptive of distortion level (i.e., visual
quality level). Since the DAVS is a sequence composed of a
series of viewports sampled from the ODI along the scanpath,
we can naturally treat the DAVS as a pseudo video with
only global camera motion and each viewport in DAVS just
corresponds to a specific frame in the video. Obviously, just like
a natural video, the DAVS also contains information regarding
the spatial variations in pixels along with the dynamic motion in

FIGURE 3

The illustration of the spherical scene. The viewer with HMD
stands at the center of the sphere. The location of attention can
be described with both longitude and latitude.

successive frames (Mittal et al., 2016). Thus, the QAF extraction
from DAVS should well account for the characteristics in
the spatiotemporal domain. In this work, we propose to
model the spatiotemporal scene statistics of the DAVS as the
QAFs of the corresponding ODI. The obtained spatiotemporal
scene statistics are used as the QAFs based on which quality
prediction is performed.

1) Spatiotemporal MSCN Sequence: It has been widely
demonstrated that the local mean subtracted contrast
normalized (MSCN) coefficients of a pristine natural image
can be well modeled by a Gaussian distribution (Mittal et al.,
2012). However, when a natural image suffers distortions, the
distribution of its MSCN coefficients will deviate from the
original distribution (Mittal et al., 2012). These distributions
can be modeled either by a generalized Gaussian distribution
(GGD) or asymmetric GGD (AGGD). The parameters of GGD
and AGGD can be used as the QAFs of natural images and have
achieved great success in designing NR-IQA metrics during the
past decade. The main reason for working on MSCN images is
due to the decorrelation of local pixel dependency. Similarly,
the DAVS which records the dynamic visual contents seen by
the viewers along the scanpath has a high correlation among
neighboring pixels in both spatial and temporal domains. In
order to decorrelate such local dependency in the DAVS, we
propose to use the spatiotemporal MSCN. Specifically, let us
denote the DAVS as V(x, y, t), and the spatiotemporal MSCN
coefficients of V(x, y, t) is calculated as follows:

V̂
(
x, y, t

)
=

V(x,y,t)−µ(x,y,t)
σ(x,y,t)+c

(8)
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FIGURE 4

Visualization of viewports in DAVS obtained by the scanpath-based viewport sampling. (A) ODI with the ERP format and (B) examples of
different viewports in DAVS. Source for the photos in this figure: open source OIQA Database.

FIGURE 5

Statistical significance comparison by the t-test between our proposed method and other methods. (A,B) Depict the results on the OIQA and
CVIQD databases, respectively.

where x and y are the spatial indices and t is the temporal
index. A small constant c is imposed on the dominator to
avoid instability when σ

(
x, y, t

)
approaches to zero and we

empirically set c = 1 in this work. µ(x, y, t) and σ
(
x, y, t

)
are the

mean and standard deviation, respectively, which are defined as
follows:

µ
(
x, y, t

)
=

J∑
j=−J

K∑
k=−K

L∑
l=−L

ωj,k,lV
(
x+ j, y+ k, t + l

)
(9)

σ
(
x, y, t

)
= (10)√√√√√ J∑

j=−J

K∑
k=−K

L∑
l=−L

ωj,k,l[V(x+ j, y+ k, t + l)− µ
(
x, y, t

)
]2

where ω is a symmetric normalized 3D Gaussian weighting
function with zero mean and standard deviation of 1.166.
According to Dendi and Channappayya (2020), we set J = K =
L = 2.

2) Spatiotemporal Gabor Filter Response Sequence: It has
been hypothesized that the HVS employs spatiotemporal

bandpass filters to analyze and process dynamic visual signals
(Simoncelli and Olshausen, 2001). Our proposed approach is
motivated by this hypothesis that spatiotemporal Gabor filters
are a good approximation of the bandpass behavior of the
HVS (Petkov and Subramanian, 2007; Tu et al., 2020; Gotz-
Hahn et al., 2021). The spatiotemporal Gabor filters combine
information over space and time, which advocates a suitable
model for feature analysis of the DAVS. Mathematically, the
spatiotemporal Gabor filter is defined by the product of three
factors including a Gaussian envelope function that limits the
spatial extent, a cosine wave moving with phase speed v in the
θ direction, and a Gaussian function that determines the decay
along time:

Gv,θ,φ
(
x, y, t

)
=

γ

2πσ2 exp

(
−
(
(x̄+ vct)2 + γ2ȳ2)

2σ2

)
(11)

· cos
(

2π

λ
(x̄+ vt)+ ϕ

)
·

1
√

2πτ
exp

(
−
(t − µt)

2

2τ2

)
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where x̄ = xcos (θ)+ ysin (θ) , ȳ = −xsin (θ)+ ycos(θ). γ is the
rate that specifies the ellipticity of the Gaussian envelope in
the spatial domain and is set to γ = 0.5 for matching to
the elongated receptive field along the ȳ axis. σ describes the
standard deviation of Gaussian and determines the size of the
receptive field. v is the phase speed of the cosine factor, which
determines the speed of motion. In addition, the speed which the
center of the spatial Gaussian moves along the x̄ axis is specified
by the parameter vc. In our implementation, we simply set vc =
v. λ is the wavelength of the cosine wave and it is obtained
through the relation λ = 2

√
1+ v2. θ ∈ [0, 2π] determines the

motion direction and the spatial orientation of the filter. The
phase offset ϕ ∈ [−π,π] determines the symmetry in the spatial
domain. The Gaussian distribution with mean µt = 1.75 and
standard deviation τ = 2.75 is used to model the decay in
intensities along time.

With the above-defined spatiotemporal Gabor filter, the
bandpass response of a specific spatiotemporal MSCN sequence
can be obtained by convolving it with a bank of spatiotemporal
Gabor filters:

Rv,θ,φ
(
x, y, t

)
= V̂

(
x, y, t

)∗ Gv,θ,ϕ
(
x, y, t

)
(12)

where ∗ denotes the convolution operation. In this work,
we generate the bandpass spatiotemporal Gabor filter banks
by varying the values of v, θ, and ϕ. Specifically, we select
three different speeds {v = 0, 1, 2}, four different orientations
{θ = 0,π/3, 2π/3,π}, and two different phase offsets, i.e., ϕ =

0 for the symmetry case and ϕ = π/2 for the anti-symmetry
case. As a result, the total number of spatiotemporal Gabor filters
is 24. It means that we can obtain 24 bandpass spatiotemporal
Gabor filter response sequences for an input DAVS.

3) AGGD Modeling and Parameter Estimation: In the legacy
NR-IQA works, it has been widely demonstrated that the
distribution of the coefficients in a 2D MSCN map can be
well modeled by GGD or AGGD. Inspired by this, we in this
work also employ the AGGD to model the distributions of
the coefficients in the spatiotemporal MSCN and bandpass
spatiotemporal Gabor filter response sequences, respectively.
The AGGD is a flexible model that can effectively characterize
a large variety of unimodal data with only three parameters.
Mathematically, the AGGD model is described as follows:

f (x; γ, βl, βr) =


γ

(βl+βr)0
(

1
γ

) exp
(
−

(
−x
βl

)γ)
; ∀x ≤ 0

γ

(βl+βr)0
(

1
γ

) exp
(
−

(
−x
βr

)γ)
; ∀x > 0

(13)

where γ, βl, βr are three parameters controlling the shape of the
distribution, and 0(·) is defined as follows:

0 (a) =
∞

∫
0
ta−1e−tdt; a > 0 (14)

We adopt the moment estimation method suggested in
Lasmar et al. (2009) to estimate the three parameters γ, βl, βr .
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TABLE 2 Performance comparison on CVIQD database.

Models JPEG AVC HEVC ALL

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

BRISQUE (Mittal
et al., 2012)

0.9519 0.9308 4.9825 0.8913 0.8559 5.6647 0.8979 0.8980 5.3367 0.9001 0.8814 6.2327

DIIVINE (Moorthy
and Bovik, 2011)

0.9331 0.8710 6.0475 0.9024 0.8927 5.0618 0.9031 0.8530 5.6397 0.8988 0.9080 6.0260

SSEQ (Liu et al.,
2014)

0.9745 0.9527 4.0731 0.9381 0.9180 4.2228 0.9115 0.9059 5.0884 0.9263 0.9134 5.2609

OG-IQA (Liu et al.,
2016)

0.9745 0.9261 3.6130 0.8871 0.8852 5.7588 0.9030 0.9055 4.6374 0.9197 0.8969 5.3562

NRSL (Li et al., 2016) 0.9570 0.9056 5.1460 0.9145 0.8823 4.9565 0.9000 0.8981 4.8063 0.8850 0.8944 6.8612

SSP-BOIQA (Zheng
et al., 2020)

0.915 0.853 6.847 0.885 0.861 7.042 0.854 0.841 6.302 0.890 0.856 6.941

MC360IQA (Sun
et al., 2019)

0.9410 0.9230 5.8040 0.9320 0.9410 5.3570 0.9140 0.8990 4.8010 0.9390 0.9040 4.6060

Zhou Y. et al. (2022) 0.957 0.923 5.601 0.953 0.949 3.873 0.929 0.914 4.525 0.902 0.911 6.117

S3DAVS 0.9707 0.9302 3.8675 0.9586 0.9447 3.3925 0.9367 0.8802 4.5675 0.9533 0.9426 4.1022

The best-performing NR metrics are highlighted in bold.

Besides, we also compute another parameter η = γ/ (βl + βr).
Finally, we use four parameters [γ, βl, βr,η] to represent an
AGGD model.

4) Final Feature Representation: By applying the AGGD to
model the distributions of the coefficients in the spatiotemporal
MSCN and bandpass spatiotemporal Gabor filter response
sequences, we can obtain a hybrid parameter set to serve as the
QAF representation of the DAVS:

f̂DAVS =
[
f̂V̂ , f̂Rv,θ,ϕ

]
(15)

where f̂V̂ is a 12-dimensional feature vector containing the
AGGD parameters obtained by applying the AGGD model
on the spatiotemporal MSCN sequence at three coarse-to-fine
scales (the coarser scale is first processed by a low-pass filter,
followed by a down-sampling operation with a factor of 2
and f̂Rv,θ,ϕ is a 288-dimensional feature vector also containing
the AGGD parameters at three coarse-to-fine scales and they
are obtained by applying the AGGD model on the bandpass
spatiotemporal Gabor filter response sequences with all v, θ,
and ϕ .

5) Quality Score Regression: After obtaining the overall
feature representation of the DAVS (also the ODI), the
remaining issue is how to predict the quality score of an input
ODI based on the extracted feature representations. Given the
subjective quality is provided in the form of scaler, the quality
prediction is a typical regression problem from the perspective
of machine learning. Therefore, we learn a regression model
via support vector regression (SVR) for mapping the 300-
dimensional QAF vector into a single quality score with the
usage of a radial basis function kernel. Once the SVR model
is built by training, it can be used for the quality prediction

of an input ODI in the test stage with its corresponding 300-
dimensional QAF vector as input.

Experimental results

Experimental protocols

We utilize two publicly available omnidirectional image
quality databases in the experiments. They are the OIQA
database (Duan et al., 2018) and CVIQD database (Sun et al.,
2018). The OIQA database contains 16 image scenes with
four distortion types, including JPEG compression (JPEG),
JPEG2000 compression (JP2K), Gaussian blur (BLUR), and

TABLE 3 Performance comparison of the OIQA database with each
single feature set.

Ablation models PLCC SRCC RMSE

ST-MSCN 0.6303 0.5901 1.6346

ST-Gabor 0.9259 0.9213 0.8130

ST-MSCN + ST-Gabor 0.9405 0.9348 0.7183

The best-performing results are highlighted in bold.

TABLE 4 Performance comparison on the CVIQD database with each
single feature set.

Ablation models PLCC SRCC RMSE

ST-MSCN 0.6529 0.6091 10.6939

ST-Gabor 0.9223 0.9041 5.5126

ST-MSCN + ST-Gabor 0.9533 0.9426 4.1022

The best-performing results are highlighted in bold.
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Gaussian white noise (WN). Further, each distortion type
involves five distortion levels. So, the OIQA database includes
16 pristine ODIs and 320 distorted ODIs in total. Subjective
rating scores in the form of mean opinion score (MOS) are
given in the range of Xue et al. (2014) and Tran et al. (2019),
where a higher score means better visual quality. The CVIQD
database consists of 528 ODIs including 16 pristine images and
512 compressed ODIs. Three popular coding techniques, i.e.,
JPEG, H.264/AVC, and H.265/HEVC, are applied to simulate
the compression artifacts. Subjective rating scores in the form
of mean opinion score (MOS) are given in the range of [0, 100],
where a higher score means a better visual quality.

Our proposed method was run on a computer with a
3.60 GHz Intel Core i7 processor, 64 GB main memory,
and Nvidia GeForce GTX 3090 graphics. We utilize three
criteria to validate the performance of IQA models, including
Pearson’s linear correlation coefficient (PLCC), Spearman’s
rank-order correlation coefficient (SRCC), and root mean
squared error (RMSE). For PLCC and SRCC, the higher the
better, while for RMSE, the tendency is the opposite. For
a perfect match between prediction scores and ground-truth
subjective scores, we should have PLCC = SRCC = 1 and
RMSE = 0. Before computing PLCC and RMSE, according
to the recommendation of the video quality expert group
(VQE) (Video Quality Experts Group, 2003), we apply a
standard five-parameter logistic function to adjust the predicted
scores to minimize the non-linearity of the subjective rating
scores:

s = α1

(
1
2 −

1
1+exp(α2(p−α3))

)
+ α4p+ α5 (16)

where p represents the predicted score and s denotes
the mapped score. α1 to α5 are parameters for
fitting this function.

Since our proposed method requires the training process to
build the quality prediction model, it is necessary to describe
the details regarding the training process. Specifically, we equally
divide the whole dataset into five non-overlapping subsets with
each subset containing 20% samples. Then, we apply the fivefold
validation strategy to test the model performance. Specifically,
the whole dataset is trained and tested five times, with four
subsets as the training data and the remaining one subset as
the testing data. After training and testing the whole dataset
five times, we can get the predicted scores of all samples in
the dataset. Finally, the PLCC, SRCC, and RMSE values are
calculated between all the predicted scores and ground-truth
subjective scores provided in each dataset.

Single-dataset performance
comparison

We compare the performance of our proposed S3DAVS
model with eight representative NR-IQA models, including

BRISQUE (Mittal et al., 2012), DIIVINE (Moorthy and Bovik,
2011), SSEQ (Liu et al., 2014), OG-IQA (Liu et al., 2016), NRSL
(Li et al., 2016), SSP-BOIQA (Zheng et al., 2020), MC360IQA
(Sun et al., 2019), and Zhou Y. et al. (2022) work. The former five
models are traditional NR-IQA models that are developed for
2D natural images, while the latter three models are specifically
designed for ODIs. In these three blind omnidirectional image
quality assessments (BOIQA), MC360IQA (Sun et al., 2019)
and Zhou Y. et al. (2022) work employ deep learning methods,
while SSP-BOIQA (Zheng et al., 2020) focuses on segmenting
ODI into three regions and extracting features with weights.
Based on those training-based models, we re-trained the quality
prediction models on each dataset with the same 5-fold
validation strategy. Specifically, before testing the data, each
dataset should generate three sub-datasets with three different
scales respectively, and the reduction factor is 1/2. We fuse
the features from sub-datasets into final feature vectors. Then,
in the test session, a 5-fold cross-validation method is used
to verify the performance of the model. The performance
results in terms of PLCC, SRCC, and RMSE on the OIQA
and CVIQD databases are shown in Tables 1, 2, respectively.
We highlight the best performance model in each column.
From these two tables, we have several observations. First, for
both the OIQA and CVIQD databases, our proposed S3DAVS
model, although inferior to some compared methods on some
individual distortion types, presents the highest PLCC, SRCC,
and RMSE values when considering the overall database. It
means that our method is a good candidate for OIQA when the
distortion type is unknown. Second, since the OIQA database
contains more distorted types than the CVIQD database, the
overall results on OIQA are commonly lower than those on
the CVIQD database. According to the above experimental
results, we could get the conclusion that the S3DAVS model
owns the best performance among those models. Moreover,
we can observe that the results of SSP-BOIQA (Zheng et al.,
2020) which is designed for ODIs specifically are even worse
than traditional 2D models. This is mainly due to the fact
that SSP-BOIQA only focused on transforming the ERP image
into bipolar and equatorial regions, ignoring the extraction of
features from specific contents that are highly consistent with
human perception.

Statistical significance test

Besides the comparisons in terms of PLCC, SRCC, and
RMSE, we employ that the t-test to demonstrate the superiority
of our proposed S3DAVS model over other compared methods
is significant. T-test could be divided into three types: one-
sample t-test, independent samples t-test, and paired t-test, and
is used to judge whether the performance difference between
two models is significant or not. In this section, we first get
100 results of indicators and select the PLCC as the sample
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TABLE 5 Performance results of cross-database validation.

Models Train OIQA/Test CVIQD Train CVIQD/Test OIQA

PLCC SRCC RMSE PLCC SRCC RMSE

BMPRI (Min et al., 2018) 0.4904 0.2417 12.1862 0.7595 0.7205 1.3249

CEIQ (Yan et al., 2019) 0.6953 0.5470 9.9767 0.5012 0.4860 1.7856

BRISQUE (Mittal et al., 2012) 0.6166 0.5503 11.1772 0.4950 0.4054 1.8217

DIIVINE (Moorthy and Bovik, 2011) 0.5658 0.4114 11.4963 0.4454 0.3575 1.8904

SSEQ (Liu et al., 2014) 0.6175 0.6113 10.8955 0.4927 0.4568 1.7922

NRSL (Li et al., 2016) 0.6884 0.6199 10.4646 0.3651 0.2648 1.9431

OG-IQA (Liu et al., 2016) 0.6963 0.6392 10.1059 0.5154 0.5299 1.8076

SSP-BOIQA (Zheng et al., 2020) 0.726 0.705 9.588 0.627 0.601 –

MC360IQA (Sun et al., 2019) 0.8230 0.8140 7.8110 0.6816 0.5238 1.5471

Zhou Y. et al. (2022) 0.847 0.825 7.721 0.735 0.741 –

S3DAVS 0.8358 0.8125 7.9331 0.7817 0.6859 1.3938

The best-performing results are highlighted in bold.

data, and then use the independent samples t-test method to
calculate the final significance criteria. The formula can be
written as:

t = mA−mB√
S2
A
nA
+

S2
B
nB

(17)

For each model, m represents the means of samples, S2

represents the variance of samples, and n is the number
of samples. t illustrates the significant difference between
the two compared models. In Figure 5, the blue block
indicates that the model at a row is worse than model in
the column and is labeled as “-1.” The green block indicates
that there are no obvious differences between the models in
row and column and is labeled as “0.” The orange block
means the model at row is worse than that in column,
and is labeled as “1.” According to the data distribution of
each row in the statistical significance figure, the higher the
number of “1,” the better the algorithm. It can be observed
that our proposed model is significantly better than all the
others.

Ablation study

The proposed method mainly focuses on extracting
statistical features in the spatiotemporal domain and analyzing
the viewport content in a way that is consistent with human
viewing behavior. According to the aforementioned feature
extractor, we know that our method mainly depends on the
spatiotemporal MSCN (ST-MSCN) and the spatiotemporal
Gabor filter (ST-Gabor) to obtain feature vectors. To
figure out the performance of each module, we test the
performance by considering each single feature set, i.e.,
only using the feature set from the ST-MSCN or the
ST-Gabor filter. The results are shown in Tables 3, 4,

respectively. By comparing the results in these two tables,
we can easily find that the features from the ST-Gabor
play a dominant role, while the spatiotemporal MSCN
features play an auxiliary role in our S3DAVS. Overall, the
performance will be further improved by jointly considering
the spatiotemporal statistical features of the ST-Gabor and the
ST-MSCN.

Cross-dataset performance
comparison

To test the generalization ability of an image quality metric,
cross-database validation is necessary. Given two databases,
we use one database for training and another one for testing.
Because the OIQA database contains more distorted types,
such as Gaussian noise and Gaussian blur, whereas the CVIQD
database only contains compression distortion, we only tested
JPEG and JP2K in the OIQA database, and the results are shown
in Table 5. As shown in the table, the results on the CVIQD
database are generally higher than the results on the OIQA
database. The reason is that the model trained on the OIQA
database learns more feature types and could discriminate
the distortion types in the CVIQD database more accurately.
Overall, in comparison to other existing methods, our proposed
model has a better generalization capability.

Conclusion

This article has presented a novel no-reference (NR)
ODI quality evaluation method based on the construction of
Dynamically Attentive Viewport Sequence (DAVS) from ODIs
and the extraction of Quality-Aware Features (QAFs) from
DAVS. The construction of DAVS aims to build a sequence
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of viewports that are likely to be explored by viewers based
on the prediction of visual scanpath when viewers are freely
exploring the ODI within the exploration time via HMD.
A DAVS that contains only global motion can then be obtained
by sampling a series of viewports from the ODI along the
predicted visual scanpath. The subsequent quality evaluation of
ODIs is performed merely based on the DAVS. The extraction
of QAFs aims to obtain effective feature representations that
are highly discriminative in terms of perceived distortion
and visual quality. Finally, a regression model is built to
map the extracted QAFs to a single predicted quality score.
Experimental results on two datasets demonstrate that the
proposed method is able to deliver state-of-the-art performance.
However, its shortcomings are also obvious. Although this
method captures effective information to analyze the feature
of ODI and predict the quality, it is time-consuming and
computationally complex, and it needs to be improved. Taking
the OIQA database as an example, there are 320 ODIs in
this database, and the smallest resolution is 11,332 × 5,666.
The test result shows it takes about 1.983 min for an image
to complete all the steps. Besides, the scanpath can only
present the movements of human eyes, but the movements of
the head are not clear. We could explore these directions in
our future work.
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