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Alzheimer’s disease (AD) is a highly damaging disease that affects one’s

cognition and memory and presents an increasing societal and economic

burden globally. Considerable research has gone into understanding AD;

however, there is still a lack of effective biomarkers that aid in early

diagnosis and intervention. The recent discovery of the glymphatic system and

associated Perivascular Spaces (PVS) has led to the theory that enlarged PVS

(ePVS) may be an indicator of AD progression and act as an early diagnostic

marker. Visible on Magnetic Resonance Imaging (MRI), PVS appear to enlarge

when known biomarkers of AD, amyloid-β and tau, accumulate. The central

goal of ePVS and AD research is to determine when ePVS occurs in AD

progression and if ePVS are causal or epiphenomena. Furthermore, if ePVS

are indeed causative, interventions promoting glymphatic clearance are an

attractive target for research. However, it is necessary first to ascertain where

on the pathological progression of AD ePVS occurs. This review aims to

examine the knowledge gap that exists in understanding the contribution of

ePVS to AD. It is essential to understand whether ePVS in the brain correlate

with increased regional tau distribution and global or regional Amyloid-β

distribution and to determine if these spaces increase proportionally over

time as individuals experience neurodegeneration. This review demonstrates

that ePVS are associated with reduced glymphatic clearance and that this

reduced clearance is associated with an increase in amyloid-β. However,

it is not yet understood if ePVS are the outcome or driver of protein

accumulation. Further, it is not yet clear if ePVS volume and number change

longitudinally. Ultimately, it is vital to determine early diagnostic criteria and

early interventions for AD to ease the burden it presents to the world; ePVS

may be able to fulfill this role and therefore merit further research.
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Introduction

Alzheimer’s disease (AD) is the most common form of
dementia, with approximately 10 million people diagnosed each
year globally (Iqbal et al., 2010; World Health Organization,
2017). It is anticipated that there will be approximately 150
million cases of dementia worldwide by 2050, with 60–
80% likely attributed to AD (Nichols et al., 2022). Despite
this, no effective treatments are available, and AD diagnosis
is confirmed only on autopsy (Wren et al., 2018). AD
presents an enormous societal and economic burden globally,
and the critical question is how early pathology can be
identified and how potential treatments can promote positive
patient outcomes.

Alzheimer’s disease proteins have long been the target of
AD research, most notably Amyloid-β (Aβ) and tau. Recent
research has determined that while these proteins are implicated
in the pathophysiology of AD, mechanisms by which Aβ and tau
accumulate in the brain are thought to be due to the impaired
clearance of proteins and other toxins by the glymphatic
system (Jessen et al., 2015), and its Perivascular Spaces (PVS).
Further investigation is needed regarding this system’s role in
AD pathophysiology as a diagnostic marker and a potential
therapeutic target in AD (and other proteinopathies).

Alzheimer’s disease

Diagnosis of a cognitive disorder requires the patient to
present with progressive impairment in one or more cognitive
domains (Petersen et al., 1999). Mild cognitive impairment
(MCI) is the transitional stage between normal cognition
and impaired cognition (dementia) (Petersen et al., 1999).
According to the diagnostic criteria, individuals are diagnosed
with MCI when presenting with cognitive changes; however,
functional abilities remain (Hugo and Ganguli, 2014). When
impairment progresses to a level with a significant impact
on social or occupational function, a dementia diagnosis is
given (McKhann et al., 2011). AD diagnosis occurs when the
patient presents with severe progressive impairment in several
cognitive domains, which interfere with everyday functioning
and independence, as well as positive to the known AD
biomarkers (McKhann et al., 2011). The certainty of an AD

Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-beta; PVS,
perivascular space; MCI, mild cognitive impairment; NFT, neurofibrillary
tangle; p-tau, phosphorylated-tau; APP, amyloid precursor protein;
PS, presenilin; CSF, cerebrospinal fluid; CN, cognitively normal; MAP,
microtubule-associated protein; PET, positron emission tomography;
ADNI, Alzheimer’s disease neuroimaging initiative; AQP4, aquaporin-4
water channel; ISF, interstitial fluid; NfL, neurofilament light-chain;
APOE4, apolipoprotein E gene; BBB, blood-brain barrier; MRI, magnetic
resonance imaging; ePVS, enlarged perivascular space; t-tau, total-tau.

TABLE 1 ATN biomarker classification was established by Jack et al.
(2018).

A Aggregated Aβ Reduced CSF Aβ42 or CSF Aβ42/Aβ40 ratio
Increased binding on Aβ-PET

T Aggregated Tau
(NFTs)

Increased CSF phosphorylated tau
Increased binding on Tau-PET

N Neurodegeneration
and neuronal injury

Brain atrophy on MRI
Reduced brain metabolism FDG-PET
Increased CSF total tau

The classification includes an imaging and CSF option to allow maximum inclusion if
patient data is missing (Jack et al., 2018).

diagnosis can be increased by supporting biomarker data—
the ATN classification, as shown in Table 1. This system
was designed to contain two biomarkers in each category, a
Cerebrospinal Fluid (CSF) and an imaging biomarker (Jack
et al., 2018). These biomarkers have been included to allow
the use of the ATN classification system when there was
imaging or biomarker data available, without needing both
(Jack et al., 2018). Patients can be diagnosed with possible
or probable AD depending on the symptom presentation
(Table 2). Furthermore, as described in Table 3, Biomarkers
can further support a diagnosis of AD (or other dementia)
(Jack et al., 2018).

Pathologically, AD is characterized by Aβ plaques,
neurofibrillary tangles (NFTs), and atrophy (Kinney et al.,
2018). It is currently understood that Aβ plaques develop
over many years without associated or significant cognitive
decline (Bouras et al., 1994; Braak and Braak, 1997; Caselli and
Reiman, 2013), some suggesting Aβ plaque build-up occurs up
to 20 years before dementia onset (McDade et al., 2018), before
seeming to reach a plateau as cognitive symptoms present
(Sperling et al., 2011). In comparison, the accumulation of
tau, phosphorylated-tau (p-tau), and NFTs tend to coincide
with the presentation of cognitive issues (Hock et al., 1995;
Buchhave et al., 2012).

Brain atrophy, beyond what is associated with normal aging,
is also seen in AD (Miller et al., 1980; Silbert et al., 2003).
Ventricular enlargement and volume loss occur in temporal
gray matter and orbitofrontal and temporal cortices, including
the hippocampus, and act as reliable biomarkers of AD
progression (Silbert et al., 2003; Driscoll et al., 2009; Schuff et al.,
2009). Hippocampal volume loss appears most characteristically
in MCI individuals and can predict the likelihood of AD
progression (Henneman et al., 2009). Notably, Desikan et al.
(2011) demonstrated that global Aβ-associated volume loss
only occurred in the presence of p-tau (Desikan et al., 2011).
Subsequent studies showed that accelerated decline from MCI
into dementia only occurred with the presence of p-tau (Desikan
et al., 2011). Such findings suggest that there is a synergistic
interaction between Aβ and p-tau that promotes volume loss
and therefore accelerates cognitive decline more significant than
what is seen in normal aging individuals.
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TABLE 2 Criteria for an Alzheimer’s disease (AD) diagnosis including biomarkers.

Diagnostic category Biomarker probability of
AD etiology

Aβ (PET or CSF) Neuronal injury (CSF tau,
FDG-PET, structural MRI)

Probable AD dementia

- Based on clinical criteria Uninformative Unavailable, conflicting, or
indeterminate

Unavailable, conflicting, or indeterminate

- With three levels of evidence of
AD pathophysiological process

Intermediate
Intermediate

High

Unavailable or indeterminate
Positive
Positive

Positive
Unavailable or indeterminate

Positive

Possible AD dementia (atypical clinical
presentation)

- Based on clinical criteria Uninformative Unavailable, conflicting, or
indeterminate

Unavailable, conflicting, or indeterminate

- With evidence of AD
pathophysiological process

High but does not rule out second
etiology

Positive Positive

Dementia-unlikely due to AD Lowest Negative Negative

Diagnosis of AD falls into Probable, Possible, or Unlikely. Table adapted from McKhann et al. (2011).

Amyloid-beta pathology

Amyloid-β, a primary pathological hallmark of AD, exists
as a transmembrane protein in the brain and is produced
from the cleaving of the amyloid precursor protein (APP)
(Fan et al., 2020). APP possesses a single membrane spanning
domain, a large N-terminus and short C-terminus (Chen et al.,
2017). APP undergoes two proteolytic cleavages, resulting in
different fragments with differing pathologies (Vaillant-Beuchot
et al., 2020). APP cleaved first by β-secretase produces N- and
C-terminal moieties 43, 45, 46, 48, 49, and 51 amino acids
in length (Checler, 1995; Olsson et al., 2014). These moieties
are again cleaved by γ-secretase in the endocytic compartment
to form Aβ40 and Aβ42 (Olsson et al., 2014). These final
Aβ monomers can aggregate in a number of ways, including
oligomers, protofibrils and Aβ fibrils (Chen et al., 2017). Aβ

fibrils are insoluble and large and can further aggregate in Aβ

plaques, while Aβ oligomers are soluble and spread globally
through the brain (Chen et al., 2017). Several studies have
suggested that truncated forms of Aβ aggregate and correlate
with disease severity and progression (Piccini et al., 2005;
Güntert et al., 2006).

It has been suggested that microglia play a key role in the
degradation of both Aβ forms (Soto-Rojas et al., 2021). And
it is further postulated that this degradation may cause the
activation or production of toxic molecules that could then go
on to affect the Blood-Brain Barrier (BBB) or PVS, promoting
disease progression (Moore et al., 2002; Merlo et al., 2020;
Soto-Rojas et al., 2021).

Genetic forms of AD, which lead to early onset, are
associated with mutations in APP or Presenilin 1/2, exacerbating
Aβ accumulation (Ryan and Rossor, 2010). This knowledge
suggests that Aβ mutations or dysfunction promote AD onset;
therefore, therapies targeting Aβ removal would prevent disease
onset. As such, the removal of Aβ plaques has long been

investigated as a potential AD treatment. However, these Aβ-
targeted interventions have had limited success in delaying
cognitive decline even when Aβ removal was successful
(Ackley et al., 2021).

Amyloid-β is a commonly synthesized and secreted protein
(Seubert et al., 1992); however, in AD, two primary oligomers
become dominant, Aβ40 and Aβ42. Aβ40 is produced in
higher concentrations, though Aβ42 is most prevalent in
plaques (Jarrett et al., 1993; Iwatsubo et al., 1994). In AD,
Aβ42 aggregates into plaques, and the brain’s clearance system
cannot clear the proteins into the CSF. This aggregation
explains the decrease of Aβ42 in CSF in AD compared to
Cognitively Normal (CN) controls while Aβ40 levels remain
consistent across diagnoses (Lewczuk et al., 2004; Sturchio
et al., 2021). Due to these established changes over time,
the CSF Aβ40:Aβ42 ratio has been implicated as a good

TABLE 3 Alzheimer’s disease (AD) profiles and categories depending
on biomarker status.

AT(N) Biomarker category
profiles

A-T-(N)- Normal AD biomarkers

A+T-(N)- Alzheimer’s pathologic change

A+T+(N)- Alzheimer’s disease

A+T+(N)+ Alzheimer’s disease

A+T-(N)+ Alzheimer’s and concomitant

suspected non − Alzheimer’s

Pathologic change


Alzheimer’s Disease Continuum

A-T+(N)- Non-AD pathologic change

A-T-(N)+ Non-AD pathologic change

A-T+(N)+ Non-AD pathologic change

Bracket indicates AD diagnosis that lies on the Alzheimer’s disease Continuum.
Alzheimer’s continuum is a diagnosis of AD or AD pathologic change. Adapted from
Jack et al. (2018).

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1021131
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1021131 October 14, 2022 Time: 8:13 # 4

Lynch et al. 10.3389/fnins.2022.1021131

FIGURE 1

Updated model of the jack graph. In this new model, the ordering of some biomarkers has been altered to reflect a new understanding, and the
horizontal axis now depicts time. As all curves converge in the top right of the graph, this indicates the point of maximum abnormality, and the
red shaded area indicates a cognitive response to this abnormality. Cerebrospinal fluid (CSF) Aβ42 and amyloid-positron emission tomography
(PET) measure amyloid-β burden. CSF tau to measure tau burden. MRI + FDG PET to measure neurodegeneration. Cognitive impairment with
low and high-risk regions. Scale is biomarker abnormality, not concentration increase. Figure from Pawlowski et al. (2017).

FIGURE 2

The time-course of amyloid-β and tau spread. (A) Amyloid-β spread, global by 30 years. (B) Regional spread of tau. The predominant
appearance of tau in the temporal lobe before spreading outwards in cell-to-cell contacts (Spotorno et al., 2020). Six Braak stages (I–VI), tau
burden, begins in the trans-entorhinal region (I–II), moves to the entorhinal region (III), then into the CA1 hippocampus (IV), before moving into
almost all regions of the hippocampus and isocortex (V). Finally, these regions become severely affected (VI). Blue corresponds with mild tau
burden, green with moderate and red with severe (Braak and Braak, 1991). Figure from Swarbrick et al. (2019).

measure of AD progression. PET studies have demonstrated that
utilizing this ratio is a more effective and reliable measure than
using the decrease in CSF Aβ42 alone (Janelidze et al., 2016;
Lewczuk et al., 2017).

It is well-established that Aβ accumulation begins many
years prior to the onset of AD symptoms and that people
can have an excess of Aβ in their brains without cognitive
symptoms. Many other hypotheses in the literature attempt
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to explain the pathologic processes that occur through AD;
however, the Aβ hypothesis has the most support currently
(Liu et al., 2019). The Aβ hypothesis posits that the excess of
Aβ initiates further pathogenic mechanisms that lead to the
onset of neurodegeneration and disease symptoms (Hardy and
Higgins, 1992). Despite the Aβ hypothesis being dominant for
the last 30 years, excess Aβ in a substantial proportion of CN
people and the failure of Aβ targeting therapies to impact AD
suggest other mechanisms are at work. This theory has been
elegantly illustrated by “the Jack curve” (Figure 1; Jack et al.,
2013), whereby the onset of cognitive symptoms is temporally
related to the increase in tau and brain atrophy long after the
accumulation of Aβ.

Tau pathology

In healthy brains, tau binds to microtubules to aid stability
and promote axonal transport in neurons as a microtubule-
associated protein (MAP) (Mandelkow and Mandelkow, 2012;
Chang et al., 2021). This axonal stability is regulated through
a balance between phosphorylation and dephosphorylation of
tau (Wang et al., 1995). Disruption of this balance is observed
in AD, and hyperphosphorylation of tau is able to occur
(Luna-Muñoz et al., 2013). Phosphorylation of tau is known
to affect its solubility, localization, function, interactions, and
susceptibility to further post-translational modification (Luna-
Muñoz et al., 2013). As such, it is suggested that abnormal
phosphorylation causes the loss of tau’s positive charge, leading
to a formation change and ultimately causing detachment
from the microtubules (Mietelska-Porowska et al., 2014). Once
detached, tau is free to move toward the neuronal soma,
where it can accumulate as aggregated tau and eventually
form NFTs (Mietelska-Porowska et al., 2014).There has also
been a relationship observed between the post-translational
truncation and phosphorylation of tau preceding aggregation
in AD (Flores-Rodríguez et al., 2015). It appears that the tau
pathogenesis in AD involves both hyperphosphorylation and
predominantly N-terminal truncation of tau (Zhou et al., 2018).

The tau aggregation mechanism is still unknown; however,
numerous findings suggest that aggregated tau acts as seeds that
spread in a prion-like mechanism and trigger tau aggregation
in surrounding cells (Wischik et al., 2018; Xu et al., 2022).
This prion-like mechanism suggests that abnormal tau “seeds”
from the donor transfer to a recipient, causing the recipient
to become abnormal and go on to act like a donor (Wu et al.,
2016). Accumulation of intraneuronal tau tangles is a common
hallmark of AD (Wang and Mandelkow, 2016), and the seeding
hypothesis may explain the regional spread that occurs in AD.
This seeding hypothesis follows the Braak staging mechanism of
NFTs (Braak and Braak, 1991).

Neurofibrillary tangles are the aggregates of
hyperphosphorylated tau that form intra-neuronally before

becoming extra-neuronal (Serrano-Pozo et al., 2011). Braak
and Braak (1991) determined that tau tends to spread in a
distinct pattern, beginning in the temporal lobe, progressing
into the association cortices and finally into the sensorimotor
cortices (Figure 2; Braak and Braak, 1991); subsequently, these
postmortem findings were corroborated by tau-PET studies
(Schöll et al., 2016).

Interestingly this set pattern of progression has also been
closely associated with cognitive stage and disease progression
long after Aβ has aggregated globally (Figure 2; Braak and
Braak, 1991; Nelson et al., 2012; Schöll et al., 2016). As such,
it is hypothesized that the toxic nature of tau arises from
its ability to sequester normal MAPs when phosphorylated;
this disrupts the microtubule network, eventually leading
to neurodegeneration (Gong and Iqbal, 2008). When tau
disruption becomes substantial, there is significant detachment
from axons, allowing tau to be released into the CSF and
NFT formation. Mounting evidence suggests that Aβ and tau
work together in AD progression, rather than Aβ causing
the aggregation of tau as hypothesized by the Aβ cascade
hypothesis (Rapoport et al., 2002; Shipton et al., 2011;
Busche and Hyman, 2020).

The time-course of Alzheimer’s disease
biomarkers

The relative time-course of these Aβ and tau pathologies and
their contributions to AD presentation have been consolidated
and presented by Jack et al. (2013) (Figure 1). Using the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to
examine MCI patients who progressed to AD, this team showed
that Aβ burden was not related to the risk of AD progression
(Jack et al., 2010) and produced a widely referenced graph that
depicts the time-course of different AD biomarkers, which has
since been updated to include new findings (Jack et al., 2013).

To date, AD therapies have targeted each of the biomarkers
of the Jack curve without success; therefore, alternative
therapeutic targets (and biomarkers of disease progression) are
needed. The glymphatic system presents a new diagnostic and
therapeutic target for AD.

Glymphatic system

The glymphatic system is the brain’s clearance pathway;
this system removes waste products and transports solutes
throughout the brain via CSF (Iliff et al., 2012). CSF makes
up a large proportion of the total fluid volume within the
mammalian head and flows throughout the four ventricles
and subarachnoid space (Khasawneh et al., 2018). From the
subarachnoid space, the CSF penetrates the brain parenchyma
via the PVS (Khasawneh et al., 2018).
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Iliff et al. (2012) identified and labeled the glymphatic
pathway, consolidating research that had observed lymphatic-
like clearance in the brain (Figure 3A; Papaiconomou et al.,
2004; Thrane et al., 2013). After flowing into the brain, CSF
passes through AQP4 channels and mixes with interstitial fluid
(ISF) (Figure 3; Shetty and Zanirati, 2020). AQP4 channels
are selective water channels located on astrocyte end-feet
that allow the mixing of CSF and ISF (Badaut et al., 2007).
This mixture can then leave the brain through perivenous
space and eventually out into the lymphatic vessels in the
meninges and the lymphatics in the neck (Shetty and Zanirati,
2020).

Imaging studies have demonstrated the importance of this
system in the clearance of Aβ and other proteins from the brain
(Mestre et al., 2020). One such study demonstrated, through
MRI and PET imaging, that ventricular CSF clearance was
impaired in AD and related to increase Aβ deposits (de Leon
et al., 2017). This team replicated this finding again in 2022
with a larger sample size (Li et al., 2022). Additionally, a recent
study by Harrison et al. (2020) demonstrated that inhibition of
Aquaporin-4 (AQP4) channels results in impaired glymphatic
clearance, leading to impairment in tau clearance (Harrison
et al., 2020).

Cerebrospinal fluid moves alongside the blood vessels in
the brain; solutes, such as glucose, are delivered to regions
where needed, while waste metabolites are removed to maintain
homeostasis (Figure 3C; Iliff et al., 2013b). The CSF is propelled
alongside the blood vessels through the pulsation of arterial
walls (Iliff et al., 2013b; Mestre et al., 2018b). This pulsation
was first observed by Iliff et al. (2012) through the use of two-
photon microscopy in mouse models (Iliff et al., 2012, 2013b).
The team labeled CSF with fluorescent tracers, which were
injected into the cisterna magna of mice (Iliff et al., 2012). This
study subsequently showed that CSF enters the brain along
the cortical pial arteries, followed by CSF entry into the PVS
along the penetrating arterioles (Figure 3B; Iliff et al., 2012).
Crucially, this study showed that CSF did not spread diffusely
or randomly in the parenchyma as previously believed; instead,
it followed a pattern that mirrored the brain vasculature (Iliff
et al., 2012).

Further studies are now beginning to demonstrate that
impairment of the brain’s glymphatic drainage system is likely
related to several neurodegenerative diseases (Iliff et al., 2012,
2014), including AD and related proteinopathies (Iliff et al.,
2014). Iliff et al. (2012) also investigated whether Aβ was cleared
along the perivascular pathway they had observed. Fluorescent
Aβ was injected into the striatum of mice, which was then shown
to be removed through para-venous efflux (Iliff et al., 2012).
Furthermore, they found that AQP4 knockout mice showed a
65% reduction in CSF efflux compared to wild-type mice; this
further reduced Aβ clearance by up to 55% (Iliff et al., 2012).
These findings demonstrate the importance of an effective and
functioning glymphatic system in Aβ clearance from the brain.

Other Alzheimer’s disease biomarkers
and the glymphatic system

Neurofilament light chain (NfL) is a subunit of
neurofilaments that confer structural stability in neurons and
allow the radial growth of axons (Hoffman et al., 1987; Eyer and
Peterson, 1994). In AD and other neurodegenerative diseases,
NfL is elevated in both the CSF and Plasma and therefore
acts as a general marker of neurodegeneration (Lewczuk et al.,
2018). Although these measures are a sensitive marker for
neurodegeneration, they are not specific to AD (Beydoun
et al., 2021). The relationship between NfL and glymphatic
clearance in AD has yet to be investigated. Serum/CSF
NfL ratio has been found to be lower in patients who have
experienced subarachnoid hemorrhage versus controls which is
hypothesized to be due to reduced glymphatic efflux (Garland
et al., 2021). Another team showed that following subarachnoid
hemorrhage, patients undergo AQP4 mislocalization, similar to
those with AD, and show tau accumulation as the result of this
mislocalization (Pu et al., 2019).

Reduced glymphatic function risk
factors

Apolipoprotein E4
Apolipoprotein E4 (APOE4) is the most decisive genetic

risk factor for AD development (Corder et al., 1993), conferring
both higher likelihood and earlier onset (William Rebeck et al.,
1993). The APOE gene is responsible for lipid transport and
repair in the brain as a cholesterol carrier (Liu et al., 2013).
There are three dominant forms of the APOE gene, which
vary in their ability to predispose an individual to AD. This
gene exists as E2, E3, and E4 variants and has a frequency
of 8.4, 77.9, and 13.7%, respectively (Figure 4; Farrer et al.,
1997). The E4 allele predisposes one to an increased risk of AD
development, four times higher for those who are heterozygous
for the APOE4 mutation and twelve times higher for those
homozygous for the APOE4 mutation (Holtzman et al., 2012).
APOE4 carriers have increased cerebrovascular Aβ angiopathy
due to increased deposition of Aβ at the vessel walls (Yu et al.,
2015). This finding implicates APOE4 in the dysregulation of
Aβ metabolism, allowing it to be deposited extracellularly as
plaques, which supports previous findings (Schmechel et al.,
1993; Polvikoski et al., 1995). Additionally, it has been shown
that APOE4 carriers have increased degradation of the BBB and
brain pericytes (Halliday et al., 2016).

Sleep
Sleep disturbance is a commonly reported symptom of AD

patients (McCurry et al., 1999). Disturbance includes insomnia,
poor sleep quality, or reduced sleep quantity (Irwin and Vitiello,
2019). Many papers have demonstrated the need for adequate
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FIGURE 3

The glymphatic system. This system aids in the brain’s transport, movement, and removal of solutes. (A) Cerebrospinal fluid (CSF) enters via
para-arterial spaces (red) and mixes with interstitial fluid (ISF) (Iliff et al., 2012). The CSF-ISF mix enters the para-venous space through the AQP4
channels and exits via the para-venous efflux pathway (blue) (Shetty and Zanirati, 2020). (B) Neurovascular Unit. Complex unit, with astrocyte
end-feet enclosing the blood vessels (Sakai and Nishino, 2021). (C) Blood-Brain Barrier exchange of metabolites to maintain brain homeostasis
(Keable et al., 2016). Figure from Natale et al. (2021).

sleep to allow glymphatic clearance (Ju et al., 2013; Kress et al.,
2014; Ahmadian et al., 2018). It can therefore be hypothesized
that sleep quality is critical for glymphatic clearance efficiency.
A stand-out paper by Xie et al. (2013) used in vivo two-photon
imaging to understand CSF influx in awake, anesthetized,
and sleeping mice (Xie et al., 2013). The team discovered
that the interstitial space in sleeping and anesthetized mice
increased by 60%, resulting in a dramatic increase in convective

exchange between CSF and ISF (Xie et al., 2013). This increased
turnover resulted in an increased Aβ clearance during sleep,
suggesting that sleep increases glymphatic system clearance
(Xie et al., 2013). Ultimately, there is likely a bidirectional
relationship between sleep and AD, in which poor sleep impacts
the effectiveness of the glymphatic system, allowing Aβ and
tau to accumulate, which worsens dementia symptoms and
exacerbates sleep disturbances.
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FIGURE 4

Apolipoprotein (APOE) distribution in the glymphatic system. This schematic depicts the convective flow that occurs around an artery and
toward the venous space. APOE is responsible for lipid transport and repair in the brain (Liu et al., 2013). APOE is delivered around the arteries,
and density depends on the alleles present, with APOE4 having the greatest density near the artery (A) (Achariyar et al., 2016). Figure from
Achariyar et al. (2016).

Furthermore, APOE has been implicated as an essential
factor linking sleep disturbance and AD. A study by Drogos et al.
(2016) determined that carriers of the APOE4 have decreased
sleep quality, even without subjective sleep complaints (Drogos
et al., 2016). Additionally, APOE4 carriers show a two-times
increase in disordered breathing during sleep compared to
non-carrier individuals (Kadotani et al., 2001). The increased
incidence of AD among APOE4 carriers may result from their
increased level of disordered sleep. Moreover, APOE4 carriers
may have increased Aβ build-up in the brain’s sleep centers, and
therefore it could be hypothesized that the body may begin to
struggle to produce restorative sleep, compounding the issue.
As such, a feedforward loop may be occurring with the driving
factor of APOE4 leading to poor sleep, thus reducing glymphatic
clearance, allowing Aβ build-up and driving worse sleep.

Aquaporin 4 water channel
Aquaporin-4 water channel channels are critical features

of the glymphatic system, and their function is required to
effectively remove toxins from the brain (Iliff et al., 2012).
This selective water channel maintains ionic and osmotic
homeostasis within the brain (Badaut et al., 2007). These
channels are localized to astrocytes and ependymal cells, with
the most extensive presence on the end-feet of perivascular

astrocytes (Figure 5; Mathiisen et al., 2010). Loss of localization
occurs when AQP4 loses its polarity and becomes broadly
associated with the entire astrocyte (Murlidharan et al., 2016).
This mislocalization of AQP4 is known to occur in normal aging
and excessively in AD (Yang et al., 2011).

Aquaporin-4 water channel has been shown to play an
important role in the removal of Aβ from the brain parenchyma
(Rosu et al., 2020). One such study determining that inhibition
of AQP4 decreases Aβ drainage from around cerebral vessels
(Rosu et al., 2020). However, this paper did not investigate Aβ42,
as Aβ40 is the soluble form of Aβ. However, one study was
able to demonstrate, through postmortem histological analysis,
that non-demented subjects showed a reduced end-feet AQP4
localization on capillaries that was associated with increases in
soluble and insoluble Aβ40 and soluble Aβ42 (Simon et al.,
2022). Furthermore, reduced end-feet AQP4 localization on
large vessels was associated with increases in soluble Aβ40 and
soluble Aβ42 (Simon et al., 2022). Although causality cannot be
conferred as this is a postmortem study, these recent findings
were only present in non-demented subjects (not those with
AD) which suggests that AQP4 mislocalization is occurring
early in the AD disease continuum.

Yang et al. (2011) inferred that Aβ accumulation is the
cause, rather than the consequence, of AQP4 mislocalization in
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FIGURE 5

Schematic of a perivascular unit. Perivascular space (PVS)
separates the astrocyte end-feet from the blood vessel. AQP4
(aquaporin-4 channel) allows for the influx/efflux of solutes into
the PVS for removal or distribution. The inability of the
cerebrospinal fluid (CSF) to flow through the PVS results in
stagnation and enlargement of the PVS. Figure adapted from
Troili et al. (2020).

a mouse AD model (Yang et al., 2011). The team concluded
that these Aβ deposits at the PVS were likely particularly
harmful to cognition as they compromised end-foot function
and, therefore, the homeostatic function of astrocytes (Yang
et al., 2011). However, this finding remains controversial
whether AQP4 mislocalization is the cause or consequence of
Aβ deposition. Several other studies have shown that AQP4
mislocalization suppresses glymphatic clearance and is the
cause of Aβ accumulation (Iliff et al., 2014; Kress et al., 2014;
Zeppenfeld et al., 2017). Opposing findings such as this may
suggest a feedforward relationship where Aβ can accumulate
due to other problems with the glymphatic system, which causes
AQP4 mislocalization, further promoting Aβ accumulation
(Silva et al., 2021).

Additionally, AQP4 mutations have been shown to promote
sleep disturbances (Rainey-Smith et al., 2018). A study by
Rainey-Smith et al. (2018) utilized a self-reported “overall” sleep
quality assessment and demonstrated that several AQP4 single
nucleotide polymorphisms were associated with poorer sleep
(Rainey-Smith et al., 2018). Another recent study on Parkinson’s
disease demonstrated that specific mutations in AQP4 were
likely the cause of sleep disturbance and may act as a prognostic
marker for cognitive decline (Fang et al., 2022). Conversely,
some studies have found that sleep disturbance results in AQP4
mislocalization; one such study found that mice who were sleep
deprived showed AQP4 mislocalization away from astrocyte
end-feet (Liu et al., 2017). In agreement with this finding,
Zhang et al. (2020) found that short-term sleep deprivation (1-
week) causes abnormal expression of AQP4 and a reduction in
glymphatic clearance (Zhang et al., 2020). So, again, it is unclear

if AQP4 mislocalization causes poor sleep or if poor sleep causes
abnormal expression of AQP4.

The APOE4 and AQP4 haplotypes may lie very early on
the Jack curve (Figure 1). Genetic variants in AQP4 and
APOE4, which influence gene expression and increase the
risk of progression to dementia, may help explain individual
differences in susceptibility to cognitive decline and dementia in
the context of sleep (Rainey-Smith et al., 2018). These alterations
in normal biology may ultimately disrupt the effectiveness of the
glymphatic system, promoting an individual’s vulnerability to
developing AD. This relationship warrants further investigation
to gain clarification and understand whether these markers
could aid in early intervention and treatment.

Aging
Finally, aging is known to significantly influence the

development of neurodegenerative diseases, such as AD
(Figure 6). With aging comes degeneration in neurons,
Aβ plaques, astrocyte and microglia dysfunction and AQP4
mislocalization, ultimately leading to a reduction in protein
waste removal (Figure 6; Nedergaard and Goldman, 2020).
Moreover, aging is related to a drastic decline in the efficiency
of exchange between CSF and the brain parenchyma in mice
(Kress et al., 2014). Older mice had a 40% reduction in Aβ

clearance compared to young mice and a 27% loss in vessel
pulse ability and loss of AQP4 polarization (Kress et al., 2014).
Thus, the team proposed that cognitive decline associated with
aging is also associated with impaired glymphatic clearance and
may be a target for neurodegenerative disorder treatment (Kress
et al., 2014). Furthermore, findings such as this may suggest that
the elasticity of PVS is significantly decreased with age, and a
reduction in pulse ability of the PVS may suggest why age is
associated with enlarged PVS.

Perivascular spaces as a biomarker
for Alzheimer’s disease

Part of the glymphatic pathway, PVS are the small fluid-
filled spaces through which CSF flows in and out of the brain.
These spaces surround arteries, arterioles, capillaries, veins, and
venule walls as they pass from the subarachnoid space to the
parenchyma (Jessen et al., 2015).

Iliff et al. (2013a) discovered that PVS are molecular
size/weight dependent. Two molecules of differing molecular
weight were injected into the rat intrathecal space and
observed with MRI. Both molecules passed through the
para-arterial space, but the smaller molecule entered more
extensively into the brain parenchyma (Iliff et al., 2013a).
Interestingly, this finding points toward a size-selective
nature of the PVS when clearing molecules from the brain.
Moreover, this may suggest why large molecules found in
AD, such as Aβ plaques, are deposited around blood vessels,
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FIGURE 6

Aging and the glymphatic system. (A) Adequate influx and efflux of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is needed to remove
unwanted metabolites from the brain. (B) With aging, glymphatic dysfunction begins to occur, which contributes to the build-up of molecules
known to be associated with neurodegeneration (Da Mesquita et al., 2018). Figure reproduced with permission from Nedergaard and Goldman
(2020).

as they simply cannot enter and be clear from the PVS
(Yu et al., 2022).

Stagnation of the PVS occurs when there is insufficient
flow of CSF through these spaces, causing them to expand,
trap fluid and become visible on MRI (Figure 7; Wardlaw
et al., 2020). Although enlarged PVS (ePVS) are a typical
sign of aging, it is also established that neurodegeneration
increases the prevalence and severity of ePVS (Chen et al.,
2011). ePVS may function as indicators for disease initiation
and progression as these spaces must be functional to maintain
homeostasis and remove excess metabolites, such as those
that form Aβ plaques and NFTs (Keable et al., 2016). Peng
et al. (2016) showed that glymphatic clearance issues preceded
Aβ deposition and, therefore, may precede Aβ in the AD
disease continuum (Peng et al., 2016). The team utilized a
radiolabeled approach and intracisternal injection of Aβ40 and
inulin (reference molecule) to determine that Aβ influx was
reduced with aging and in mice models of AD (Peng et al.,
2016). The same approach then quantified Aβ clearance, and
it was found that there was greater inulin clearance compared
to Aβ; this suggests that the slower clearance time of Aβ

increases the time that Aβ can interact with endogenous Aβ

plaques, promoting further accumulation (Peng et al., 2016).
While this is not a direct measurement of glymphatic problems
preceding Aβ accumulation, the team believed that the data
suggested that glymphatic clearance is altered in AD and occurs
before the significant presence of Aβ (Peng et al., 2016). This
team also hypothesized that restoring glymphatic efficiency and
PVS dynamics may be a potential treatment for slowing AD
progression (Peng et al., 2016).

Banerjee et al. (2017) supported this finding and
hypothesized that centrum semi-ovale PVS clearance was
essential for Aβ clearance within the brain through their
analysis of Aβ-PET and MRI (Banerjee et al., 2017). ePVS were
quantified using a pre-defined slice from a T1/2/2∗ MRI and
FLAIR (Fluid attenuated inversion recovery) images (Banerjee
et al., 2017). An adjusted analysis found that the severity of
ePVS in the centrum semi-ovale was associated with AD, while
the severity of ePVS in the basal ganglia was associated with
subcortical vascular cognitive impairment (Banerjee et al.,
2017). However, they did not find an association between MRI
visible ePVS and Aβ-PET (using Pittsburgh compound B).
This team noted that their study would have been improved
with the use of CSF biomarkers of Aβ to ensure that the
Aβ-PET signal was not measuring only parenchymal Aβ but
also vascular Aβ (Banerjee et al., 2017). Nonetheless, this study
gives supporting evidence for using ePVS in the centrum
semi-ovale as an imaging marker for AD, although it is not
likely a measure of Aβ-PET positivity in patients (Banerjee
et al., 2017).

Barisano et al. (2021) also demonstrated in an extensive
review of subjects using the Human Connectome Project that
the PVS are smaller in the morning and bigger in the afternoon
in the same subjects (Barisano et al., 2021). This finding
suggests a diurnal variation in the caliber of the PVS, which are
smaller during sleep and enlarged during the day. Furthermore,
this ability to change in caliber decreases as neurovascular
compliance decreases with aging, so the PVS will gradually
lose the ability to change in caliber as we age and remain
permanently dilated (Barisano et al., 2021).
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FIGURE 7

Enlarged perivascular space (PVS) visual score rating as shown on T2-weighted MRI. Grades 2, 3, and 4 are considered abnormally enlarged.
Panels (A–D) show severity of enlarged PVS in the Basal Ganglia. Panels (E–H) show severity of enlarged PVS in the centrum semi-ovale. The
Basal Ganglia and Centrum Semi-Ovale are currently implicated as the most accurate measures of PVS burden. Image from Yu et al. (2022).

Amyloid-beta and perivascular spaces

It has been demonstrated that the glymphatic pathway and
associated PVS are important in Aβ clearance. Studies by Xu
et al. (2015) utilized AQP4 knockout mice to demonstrate the
importance of Aβ clearance in AD (Xu et al., 2015). These
knockout mice could not effectively clear Aβ, resulting in
memory deficits (Xu et al., 2015). These results were supported
by Mestre et al. (2018a), who found that AQP4 knockout mice
had reduced CSF influx into the PVS (Mestre et al., 2018a).
Furthermore, the disruption of AQP4 localization, as seen in
AD, can increase Aβ pathology (Simon et al., 2022). Issues with
AQP4 are associated with AD pathology and cognitive function,
suggesting that AQP4 localization may be a key driver in disease
progression (Wilcock et al., 2009; Zeppenfeld et al., 2017; Simon
et al., 2022).

Another recent study determined, using ex vivo MRI on
humans, that ePVS were located mainly in the white matter
portion of perforating cortical arterioles (Perosa et al., 2021).
They showed reduced small muscle cells and increased vascular
Aβ that extended into the white matter, which individually
affected vessels with ePVS (Perosa et al., 2021). Thus, their

results were consistent with the current theory that ePVS reflect
an impaired outward flow along the arterioles that PVS follow
(Perosa et al., 2021).

Tau and perivascular spaces

Studies have demonstrated that both p-tau and total-tau (t-
tau) burden are associated with ePVS. Many believe that tau
is cleared through intracellular degradation (Tarasoff-Conway
et al., 2015); however, upon being released into the interstitium
(by AD-related neuronal death), it can then be cleared by the
glymphatic system (Iliff et al., 2014).

Vilor-Tejedor et al. (2021) used 322 CN individuals
diagnosed with AD-like pathology demonstrating that ePVS
in the centrum semi-ovale was associated with elevated CSF
p-tau and t-tau (Vilor-Tejedor et al., 2021). Another study
determined that NFT pathology was a good correlate for ePVS
burden in patients with AD and vascular lesion AD compared
to controls (Boespflug et al., 2018). By measuring postmortem
ePVS and AQP4 expression using immunofluorescence, this
team also found that AD patients had increased AQP4
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expression but a reduced localization to the astrocyte end-
feet (Boespflug et al., 2018). These patients also showed an
increased tau and Aβ burden associated with an increase in
ePVS (Boespflug et al., 2018). Both studies also support Iliff
et al. (2014), who determined that following traumatic brain
injury, mice lacking the AQP4 channel showed an increase
in NFT pathology and neurodegeneration (Iliff et al., 2014).
A more recent study in normal patients with AD pathological
biomarkers utilized an ePVS visual rating score to suggest that
impairment in glymphatic clearance could contribute to tau
accumulation through microglia neuroinflammation processes
(Zeng et al., 2022).

In a large cross-section study, PVS distribution was
found to be different in individuals with MCI compared
to CN participants, with a higher PVS volume fraction in
the centrum semi-ovale of the white matter (Sepehrband
et al., 2021). Further, it was shown that a lower PVS volume
fraction in the medial temporal lobe was correlated to a
more significant aggregation of tau NFTs in the adjacent
entorhinal cortex (Sepehrband et al., 2021). The team
hypothesized that the observed decrease in PVS volume
fraction in the medial temporal lobe might represent
occlusion of PVS prior to enlargement (Sepehrband et al.,
2021).

In opposition to these findings, Gertje et al. (2021) found
no significant association between ePVS and AD (Gertje et al.,
2021). In 39 individuals with AD, CSF levels of Aβ42, p-tau,
t-tau, neuroinflammatory markers, and Aβ-PET were not
associated with PVS (Gertje et al., 2021).

To date, the role of ePVS in the development and
progression of AD has yet to be established. We hypothesize
that the impairment of glymphatic clearance via perivascular
spaces is an early pathophysiologic mechanism that leads to
Aβ and tau deposition in the brain. The interaction between
ePVS, AD, and associated genetic and lifestyle risk factors needs
further elucidation to determine the potential of ePVS as both
an early diagnostic biomarker of neurodegeneration and a target
for more effective therapeutic interventions.

Conclusion

In conclusion, the glymphatic system and its associated
PVS are of great interest in AD. Understanding more about
AD and its underlying mechanisms is key to early intervention
and effective treatment. Recent findings regarding APOE4
and AQP4 haplotypes, as well as the effect of sleep on PVS,
demonstrate the complex nature of this neurodegenerative
disease. Enlarged PVS have the potential as a biomarker
able to predict the chance of neurodegeneration through to
AD; additionally, they may be able to demonstrate disease
progression and severity. Furthermore, these spaces and the
glymphatic system more generally may be a potential target

for treatment, with the promotion of glymphatic clearance
potentially delaying AD-associated cognitive decline.
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