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Electromyography (EMG) generated by human hand movements is usually

used to decode different action types with high accuracy. However, the

classifications of the gestures rarely consider the impact of force, and the

estimation of the grasp force when performing natural grasping movements is

so far overlooked. Decoding natural grasping movements and estimating the

force generated by the associated movements can help patients to improve

the accuracy of prosthesis control. This study mainly focused on two aspects:

the classification of four natural grasping movements and the force estimation

of these actions. For this purpose, we designed an experimental platform

where subjects could perform four common natural grasping movements in

daily life, including pinch, palmar, twist, and plug grasp, to complete target

profiles. On the one hand, the results showed that, for natural grasping

movements with different levels of force (three levels at 20, 50, and 80%), the

average accuracy could reach from 91.43 to 97.33% under five classification

schemes. On the other hand, the feasibility of force estimation for natural

grasping movements was demonstrated. Furthermore, in the process of force

estimation, we confirmed that the regression performance about plug grasp

was the best, and the average R2 could reach 0.9082. Besides, we found

that the regression results were affected by the speed of force application.

These findings contribute to the natural control of myoelectric prosthesis and

the EMG-based rehabilitation training system, improving the user’s experience

and acceptance.
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natural grasping movements, grasping force, electromyography (EMG), action
decoding, force estimation

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1020086
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1020086&domain=pdf&date_stamp=2022-10-20
https://doi.org/10.3389/fnins.2022.1020086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1020086/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1020086 October 15, 2022 Time: 15:31 # 2

Xu et al. 10.3389/fnins.2022.1020086

Introduction

Electromyography (EMG) is a typical bioelectrical
phenomenon, which is the measurement of muscle electrical
activity during voluntary contraction or after nerve stimulation.
Surface EMG (sEMG) is the EMG signal measured on the skin
surface by a non-invasive technique. Many EMG signals are
generated by the muscles of the arm along with the execution
of various hand movements (Scheme and Englehart, 2011). In
this process, EMG contains much information about motions
and forces. Studies have shown that the terminal muscle
nerves of amputees are still active (Tan et al., 2015; Cracchiolo
et al., 2020) and the extraction of biological signals from arm
muscles can help disabled people with motion assistance and
prosthetic control (Nielsen et al., 2011; Nizamis et al., 2020).
Taborri et al. (2018) gave a review on the present study of
the muscle synergy theory, which indicated that it is possible
and promising to apply this theory to the fields of clinics,
sports, and robotics. Castellini et al. devised an experiment
specifically for below-elbow amputees for the first time. They
found that the accuracy of the posture classification ranged
from 79.72 to 95.74% and that the RMSE of the estimated
force ranged from 6.54 to 17.76% after being normalized. The
results demonstrated that sEMG could be utilized to help
the amputees (Castellini et al., 2009). Therefore, studying
the classification and force estimation of natural grasping
movements based on EMG is of great significance for the daily
life of the disabled (Peerdeman et al., 2011; Farina et al., 2014;
Qi et al., 2019).

In the past decades, gesture recognition has made great
achievements. Zhang et al. proposed a framework for hand
gesture recognition based on the fusion of a three-axis
accelerometer and multichannel EMG sensor. This framework
got an accuracy of more than 95% in recognizing 72 Chinese
Sign Language words through the combination of decision
tree and multistream hidden Markov models (Zhang et al.,
2011). In the study of Castellini et al., the principal component
analysis (PCA) was used to extract the effective information
of sEMG signals and the general regression neural network
(GRNN) was applied to recognize nine static gestures. The
classification accuracy could reach 95.1% (Castellini et al., 2008).
Geng et al. (2016) introduced a new concept of sEMG image,
which could be utilized to recognize numerous gestures only
with sEMG signals at a specific instant. Shenoy et al. (2008)
obtained 92–98% accuracy by linear support vector machines for
offline processing of eight gestures. The bilinear model proposed
by Matsubara et al. successfully recognized five gestures and
controlled a robotic arm (Matsubara and Morimoto, 2013).
Khushaba et al. (2021) proposed a new method called Recurrent
Spatial-Temporal Fusion, which significantly outperformed all
other traditional pattern recognition methods or deep learning
approaches. Blana et al. (2020) applied a biomechanical model
to prosthesis control, and the average correlation between

the model and real movement reached 0.89. Sierotowicz
et al. (2022) proposed a soft glove that can detect the user’s
motion intention by EMG to help patients with grip assistance
and rehabilitation training. Xie et al. (2021) also made an
exoskeleton for hand movement to help stroke patients reach
and grasp. However, to the best of our knowledge, although
studies focusing on the recognition of gestures based on sEMG
have been widely conducted, there is still a lack of the decoding
of natural grasping movements, such as pinch, palmar, twist,
plug grasp, etc. Furthermore, most classification schemes didn’t
consider the force of natural movements and it is worth
exploring the impact of force in classifying natural grasping
movements.

Meanwhile, compared to the classification of gestures by
EMG, little research has been done on the force estimation
of natural grasping movements. Martinez et al. proposed to
predict palmar force by high-density EMG, which reached an
absolute error of 2.52% offline. Then, they got an absolute
error of 2.06% (for non-amputees) and 2.04% (for amputees)
online (Martinez et al., 2020a,b). Zhang et al. (2018) applied a
fast independent component analysis to decompose the high-
density EMG, and then used K-means clustering to extract
the input signal for force estimation, with R2 reaching 0.877–
0.955. Moreover, some researchers set different force levels and
target profiles to observe the effect of EMG in experiments
(Boudaoud et al., 2015; Li et al., 2018). Hoozemans and van
Dieen (2005) also found that the regression performance of
three muscles was not worse than six muscles when using
forearm muscles to estimate hand grip force, which means
that we need to choose different muscle channels to avoid
mutual interference. Nevertheless, most grasping movements
have not been studied yet, such as twist grasp and plug grasp,
which are commonly involved in the fields of rehabilitation,
especially for natural control of the prosthesis. In addition,
the force curve is another aspect that deserves attention.
Solomonow et al. (1986) mentioned that the appropriate
selection of force curves should take the recruitment pattern of
muscles into consideration. Kamavuako et al. (2009) obtained
the results that different force profiles may lead to different
consequences under certain conditions. However, the force
curves in many experiments are set at will without considering
the impact of the force curves. And the effects of different
parts of muscles on force estimation were not investigated
deeply.

In this manuscript, we aimed to investigate the classification
and continuous force estimation of four natural grasping
movements when different forces were involved. The
experimental apparatus was designed to perform these
actions: pinch, palmar, twist, and plug grasp. In addition,
different classification schemes involving force information
were evaluated by EMG. In terms of force estimation, we
designed four target profiles to simulate the force application
mode in real-life situations.
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Materials and methods

Subjects

Five able-bodied subjects (aged 22–26, right-handed)
participated in this experiment. All subjects had no previous
experience with this study and had signed an informed
consent form. The experiments were conducted at Southeast
University, Nanjing, China. The experimental protocols were
approved by the Ethics Committee of Southeast University
and did not cause any harm to humans. To avoid bad muscle
conditions during the experiment, each subject was asked to be
prohibited from participating in strenuous upper limb exercises
before the experiment.

Experimental setup and paradigm

During the experiment, the subject sat in a comfortable
chair and performed four natural grasping movements, always
in a natural and relaxed state (Figure 1A). The fan-shaped
platform, which was composed of a pinch device, a grip device,
a twist device, and a plug device from left to right, was designed
to complete four movements: pinch, palmar grasp, twist, and

plug grasp. The forces were measured in the directions as
illustrated in Figure 1C. Eight wireless electrodes were placed
on the surface of the forearm and the upper limb (Figure 1B).
A 24-inch monitor displayed the target force profile and the
real-time force application curve to ensure the accuracy of the
subject’s hand motion execution. The subject completed the
experimental task according to the sound and screen. Figure 2
shows the experimental paradigm based on the audio, visual
cues, and data synchronization scheme. Trigger signals were
adopted to synchronize EMG signal and force data. When the
trigger was pressed, there would be a pulse in the signal. As
the experiment started, the upper computer began to sample
data and instructed the subject. After the initial 30 s rest, there
were 50 trials immediately following. The acquisition of force
and trigger signals started at T0 and stopped at T3, and the
EMG acquisition started at T1 and stopped at T2. The whole
experiments were divided into two parts: classification and force
estimation. Before each experiment, the subject was required
to perform each natural grasping movement with maximum
voluntary contraction (MVC) thrice. The calculated average
value was used as the final reference value.

The first experiment was designed for the classification of
the four natural grasping movements with force information
and required subjects to: (1) move their right hand to the

A B

C

FIGURE 1

Experimental setup for four natural grasping movements. (A) The experimental table with a screen in front. (B) EMG electrode setup on right
arm (left: front, right: back). (C) Force sensor measurement direction.
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FIGURE 2

The experimental paradigm based on the audio and visual cues and data synchronization scheme.

experimental device and perform the corresponding hand
action, (2) apply force in three ways: a. reach 20% MVC in 1.5 s
and hold for 4 s; b. reach 50% MVC in 1.5 s and hold for 4 s; c.
reach 80% MVC in 1.5 s and hold for 4 s, and (3) move the right
hand back to the center to rest and wait for the instruction of the
next round (see Figure 3). The second experiment adopted four
target profiles for force estimation, which were: (1) a rectangular
profile of 20% MVC, 50% MVC, and 80% MVC, each with a
width of 2 s, (2) a triangle profile with a maximum of 80%
MVC, lasting 5 s, (3) a step-climbing profile of 8.5 s, and (4) a
random profile within 5 s, but required to reach 80% MVC at
most during force application (see Figure 4).

For the first experiment, subjects were instructed to perform
four natural movements under three target forces: 20% MVC,
50% MVC, and 80% MVC, respectively. Each session consisted
of 50 trials of 13 s length, including 7 s rest time, 0.5 s reaching
time, 1.5 s lifting force, and 4 s holding force. For the second
experiment, four target profiles were performed by subjects for
hand actions. Each target profile contained 20 trials and one
trial lasted 13 s (as shown in Table 1). Furthermore, subjects
were asked to familiarize themselves with the grasps and target
profiles. In addition, subjects were given a rest period of about
10 min between each session to avoid muscle fatigue (Downey
et al., 2017). Each experiment took about 4 h.

FIGURE 3

Three profiles to apply force in the first experiment. Blue lines
represent the target force profiles.

Signal acquisition

The EMG acquisition system (Delsys Inc., Natick, MA, USA)
was adopted in this experiment, and eight wireless channels with
a sampling frequency of 2000 Hz were used. Before electrode
sticking, subjects were asked to clean the skin surface with
alcohol. The positions of the eight electrodes were flexor carpi
radialis, extensor digitorum, palmaris longus, brachioradialis,
extensor carpi radialis, extensor carpi ulnaris, biceps brachii, and
triceps brachii, representing eight channels {C1, C2, C3, C4, C5,
C6, C7, C8} (see Figure 1B). EMG signals were filtered by using
a sixth-order Butterworth filter of 10–500 Hz and a notch filter
at 50 Hz. The force of the grasping movements was recorded
by miniature transducers inside the grasp handles. The force
data and trigger signal were sent to the host computer by a data
acquisition card. The force signal was also sampled at 2000 Hz.

Data processing

The EMG and force signals were processed offline, and
the data were segmented and characterized with the sliding
window approach. We selected five time-domain features as
input for classification and force estimation, which were Mean
Absolute Value (MAV), Root Mean Square (RMS), Variance
(VAR), Willison Amplitude (WAMP), and Waveform Length
(WL) (Phinyomark et al., 2012, 2013; Wang et al., 2019).

For the first experiment, we classified different natural
grasping movements and studied the relationship between
movements and muscles. The grasp force phase, which is the
10∼13 s time of the experiment, was selected for data analysis.
Moreover, grasping force was divided into three levels (level
1: 20% MVC, level 2: 50% MVC, and level 3: 80% MVC).
Five classification schemes (SCH) were proposed to investigate
the effect of grasping force on the four natural grasping
movements, which were: (1) performing four-class classification
for these actions, without distinguishing three levels of force,
(2) performing eight-class classification for these actions, with
level1 and level 2, (3) performing eight-class classification for
these actions, with level 2 and level 3, (4) performing eight-class
classification for these actions, with level 1 and level 3, and (5)
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FIGURE 4

Four profiles to apply force in the second experiment. Blue lines represent the target profile. In the random profile, the red dotted line
represents that the subject should not exert force beyond this range.

performing 12-class classification for these actions, with level 1,
level 2, and level 3. We selected a sliding window with a window
width of 175 ms and a step size of 20 ms to process the data. The
Support Vector Machine (SVM) was selected as the classifier and
the robustness was evaluated via 5-fold cross-validation.

For the second experiment, we selected a Back Propagation
(BP) network (Zhang, 2019) as the force regression model. The
inputs of the BP network were the eigenvectors that consisted
of different features extracted from each channel, such as root
mean square, mean absolute value, Willison amplitude, and so
on. The outputs were the force regression values corresponding
to the different movements. By comparing different window
widths and step sizes, a window width of 200 ms and a step
size of 80 ms were chosen, and the force was the average of this
sliding window. We trained the regression model with the data
segments and obtained the non-linear relationship between the

TABLE 1 Target grasping force for different experiments.

Experiment Target grasping force Trials

First experiment 20% MVC 50

50% MVC 50

80% MVC 50

Second experiment A rectangular profile 20

A triangle profile 20

A step-climbing profile 20

A random profile 20

EMG features and the force. We also evaluated the relationship
between eight muscles and four natural grasping movements
to select the best channels for force estimation. In this paper,
the regression performance of the model was evaluated by the
coefficient of determination, R2.

Results

Classification with force information

The variation of recognition rates is described for five
different classification schemes under different total numbers
of channels. All the combinations under the same number
of channels were tested and the average recognition accuracy
was adopted for subsequent calculations. It is easy to see from
Figure 5A that the classification results have a rapid rise at first
and then tend to be stable. From Table 2, we can see that at IR5
for SCH4, a negative increase appears for the first time, which
represents no improvement in recognition rate with the increase
in the total number of channels. For IR7 and IR8, the recognition
rates of the five classification schemes are not improved, and the
most significant improvement is at IR2, with an average value
of 33.34%. These results indicated that the recognition rates of
various classification cases tended to be stable at four channels.
The performance of subject one under five schemes can be
seen in Figure 5B, which is presented in the form of the box
plot. Under one channel, the difference between the maximum
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FIGURE 5

Average recognition rate about the five classification schemes under different total numbers of channels and the box diagram of subject one.
The horizontal axis represents the total number of channels. SCH1: four-class classification for four actions without using force information.
SCH2: eight-class classification for four actions with level 1 and level 2 of force. SCH3: eight-class classification for four actions with level 2 and
level 3 of force. SCH4: eight-class classification for four actions with level1 and level3 of force. SCH5: 12-class classification for four actions
with level1, level2, and level3 of force. The horizontal axis represents the total number of channels.

and the median fluctuates around 10–30%, and the results are
unstable. When the total number of channels reaches four, the
fluctuation of classification results is 5–10%. Moreover, we can
observe that, for the five classification schemes, the increase
in the average recognition rate slows down gradually as the
number of channels increases. As a result, the total number of
four channels was selected to classify the four natural grasping
movements.

Figure 6 shows the classification rates and the averages of
five subjects under each classification scheme when the number
of channels was four. All the results were verified by the five-
fold validation method. The average accuracy of the four-class
classification reached 97.33%, the average results of the eight-
class classification reached 95.75% (force: level 1 and level 2),
90.5% (force level: level 2 and level 3), and 97.65% (force level:

TABLE 2 The increase of rate (IR) when the number of channels
increased, compared with the previous number of channels.

Scheme IR2
(%)

IR3
(%)

IR4
(%)

IR5
(%)

IR6
(%)

IR7
(%)

IR8
(%)

SCH1 15.75 3.90 2.65 0.78 0.21 −0.04 −0.26

SCH2 36.00 5.88 2.36 0.72 0.31 −0.05 −0.15

SCH3 31.02 6.20 2.63 0.78 0.31 −0.15 −0.36

SCH4 31.33 5.65 2.96 −0.50 1.78 0.22 −0.87

SCH5 52.60 7.25 1.10 1.53 1.18 −0.07 −0.18

AVE 33.34 5.78 2.34 0.66 0.76 −0.02 −0.36

level 1 and level 3), respectively and the average accuracy of
the 12 classifications reached 89.23%. Among the eight-class
classifications, the results of SCH2 and SCH4 were similar
but 5∼7% higher than that of SCH3. Compared with SCH1,
the recognition rate of other classification schemes was lower.
However, the recognition rate of more than 90% indicated that
the classification of four natural grasping movements with force
was possible.

Evaluation of force estimation for
natural action

We designed four target force profiles for natural grasping
movements, including a rectangular profile, a triangular profile,
a step-climbing profile, and a random profile. The step-climbing
profile can be regarded as a combination of a rectangular profile
and a triangular profile, containing force information from 0 to
80% MVC. In addition, the coefficient of determination (R2) was
chosen for the evaluation of model performance.

1. Selection of sliding windows: We explored the sliding
window under the step-climbing profile and eight channels
were used simultaneously. The delay between the obtained
feedback and the awareness of specific motions that
ordinary people can feel is about 300 ms. Therefore,
we determined the step of sliding windows under the
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FIGURE 6

The accuracy of each subject under five classification schemes when the number of channels was four.

window size of 300 ms first. The regression performance
of different steps could be seen in Figure 7A. The brown
curve represents the mean value of the R2 of four natural
grasping movements. Under the window of 300 ms, the
step length of 80 ms was the best. Then, with the step size
of 80 ms, it was shown in Figure 7B that when the window
size reached 200 ms, local optimization was achieved. As
result, the sliding window with a window size of 200 ms
and a step size of 80 ms were selected for force estimation.

2. Channel selection for force estimation: Figure 8 describes
the regression performance of four natural grasping
movements regarding the force estimation under different
total numbers of channels, which shows an increasing
trend followed by a decreasing trend. When the total
number of channels reached four, the mean reached the
maximum and the regression performance was the best.
Additionally, the force estimation of the plug grasp was
the best and the standard deviation was the smallest. At
the same time, we carried out correlation analysis for eight
channels and four natural grasping movements. From
Table 3, we could see that correlations were different
between these channels and hand movements (p< 0.01). It
could be also observed that C7 and C8 were not generally
related to movements other than plug force. C2, C3, and C4
showed significant strong correlations with all four actions.

3. Force estimation for four natural grasping movements:
According to Figure 8 and Table 3, we selected different
combinations of channels for different natural grasping
movements. For pinch grasp, C1, C2, C3, and C5 were

selected, for palmar grasp, C2, C4, C5, and C6 were
selected, for twist grasp, C1, C2, C3, and C4 were selected,
and for plug grasp, C2, C4, C5, and C7 were selected.

Figure 9 illustrates the regression results of subject five on
palmar force under four task profiles, where the black curve
represents the reference force and the red curve is the predicted
force. The result shows that good prediction could be achieved
by BP network with EMG when subjects performed natural
grasping movements. Figure 10 demonstrates the regression
results of the four natural grasping movements under the
step-climbing profile of subject three. We could observe that
the pinch grasp, twist grasp, plug grasp, and palmar grasp
achieved almost the same performance. Table 4 shows that it
is possible to establish an accurate regression model to predict
the force applied by subjects when performing natural grasping
movements. Consequently, it is possible to achieve accurate
force control of prosthetic limbs or robotic arms.

Discussion

Classification with force for four
natural grasping movements

For a long time, most of the studies about EMG focused
on gestures. These researches did not consider the influence of
force on the classification results. In this manuscript, for the
classification of different movements, a unique experimental
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FIGURE 7

Regression results of the four grasping forces with different step lengths (A) and window lengths (B).

FIGURE 8

Force estimation results of different natural grasping movements (Take the step-climbing profile as an example). All the combinations were
tested and the range of R2 is indicated. The bars were plotted with the mean values.

apparatus was designed to acquire the force for different
grasping movements. We discussed various schemes under
different force levels and studied the results under multiple
channel combinations. Specifically, we demonstrated the
feasibility of identifying different natural grasping movements
with force. Meanwhile, with the increasing number of channels,

the recognition rate of each classification scheme also improved
significantly. When the total number of channels reached four,
we observed that the classification accuracy would not improve.

Cracchiolo et al. (2021) designed three different levels of
grip force to classify different forces and achieved a recognition
rate of 72.2%. Khan et al. (2021) also classified different levels
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TABLE 3 Correlation analysis of different channels for grasping movements.

Action types C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%) C7 (%) C8 (%)

Pinch 81.63 ± 7.44 79.06 ± 4.87 69.83 ± 14.58 69.75 ± 16.95 83.98 ± 3.57 64.92 ± 9.12 10.62 ± 4.09 25.85 ± 17.69

Palmar 73.15 ± 12.87 76.07 ± 11.36 71.97 ± 16.82 80.87 ± 8.86 82.6 ± 5.89 74.13 ± 4.79 27.43 ± 17.95 20.74 ± 22.03

Twist 85.2 ± 3.78 80.07 ± 5.08 80.37 ± 7.63 87.31 ± 3.11 79.92 ± 5.87 79.58 ± 3.61 67.92 ± 13.42 39.44 ± 20.87

Plug 59.26 ± 33.14 77.87 ± 9.66 75.52 ± 11.41 90.01 ± 3.41 86.54 ± 6.34 29.82 ± 18.63 88.92 ± 2.47 49.67 ± 22.14

A B

C D

FIGURE 9

The estimation result of palmar force under four profiles (Take subject five as an example). (A) A rectangular profile (R2 = 0.9375). (B) A triangle
profile (R2 = 0.9751). (C) A step-climbing profile (R2 = 0.9832). (D) A random profile (R2 = 0.9485).

of pinch grasping forces, with an accuracy ranging from 91.7 to
94.5%. However, their work was to investigate the possibility of
identifying different levels of force in one motion. It is difficult to
directly compare our study with theirs. Our work demonstrates
achieving natural force control for prostheses and robot arms is
possible.

Performance of regression

For the force estimation, the effect of different sliding
windows on the regression was investigated, and the window
length of 200 ms and the step length of 80 ms were established as
the best. Then, to compare different channel combinations, we
analyzed the correlation between the EMG signals and natural
grasping movements. Finally, the best channel combination
under different movements was established and the regression
models were built based on the selected channels. In our study,
we found the feasibility of classification for different actions with
force, which indicated that EMG was closely related to the force
information. Furthermore, literature (Martinez et al., 2020b)
also showed that force estimation could be performed by EMG.

Meantime, most researchers mainly focused on the regression
of palmar force or pinch force and did not explore the force
estimation of other natural hand motions. In this research,
we investigated force estimation of four natural grasping
movements: pinch, palmar, twist, and plug grasp.

1. Selection of the best channel: We performed force
estimation for four movements with different channel
combinations and found that the best regression was
achieved when the total number of channels was four,
but the optimal channel combination was not the same
for each movement. According to the correlation analysis
in Table 3, we chose different combinations for these
movements. For the pinch grasp and twist grasp, flexor
carpi radialis, extensor digitorum, and palmaris longus
were involved more. For the palmar grasp and plug grasp,
extensor digitorum, brachioradialis, and extensor carpi
radialis were used more. This suggests that we need to
consider the relationship between different muscle groups
when using EMG for action decoding and force estimation.
In the research of Castellini et al. (2008), electrodes were
similarly placed on the hand and forearm to acquire sEMG
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A B

C D

FIGURE 10

The estimation results of four grasping forces under the step-climbing profile (Take subject three as an example). (A) Pinch force (R2 = 0.9343).
(B) Palmar force (R2 = 0.9423). (C) Twist force (R2 = 0.9694). (D) Plug force (R2 = 0.9755).

TABLE 4 Coefficient of determination for each individual.

Action types Force profile S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) AVE (%)

Pinch Rectangle 79.26 ± 9.06 76.31 ± 7.79 77.22 ± 4.98 79.71 ± 5.83 89.69 ± 4.52 80.44 ± 4.79

Triangle 87.45 ± 5.86 80.5 ± 11.09 90.53 ± 3.19 91.33 ± 3.44 87.01 ± 6.14 87.36 ± 3.82

Step-climbing 67.07 ± 8.27 84.84 ± 5.7 89.22 ± 4.39 91.94 ± 3.79 92.5 ± 3.4 85.11 ± 9.42

Random 81.13 ± 9.72 68.76 ± 9.04 92.1 ± 2.26 89.65 ± 6.88 87.92 ± 6.89 83.91 ± 8.41

AVE 78.73 ± 7.38 77.60 ± 5.93 87.27 ± 5.89 88.16 ± 4.95 89.28 ± 2.09 84.21 ± 7.45

Palmar Rectangle 88.52 ± 4.24 74.62 ± 18.75 76.44 ± 5.98 87.59 ± 4.79 89.05 ± 3.29 83.24 ± 6.34

Triangle 94.56 ± 3.06 82.59 ± 6.85 91.34 ± 3.99 92.97 ± 3.16 92.2 ± 8.65 90.73 ± 4.21

Step-climbing 91.47 ± 2.5 86.85 ± 6.68 84.07 ± 7.08 85.73 ± 13.48 94.65 ± 1.95 88.55 ± 3.92

Random 93.3 ± 3.57 74.16 ± 13.26 90.21 ± 8.6 89.16 ± 6.43 90.48 ± 3.48 87.46 ± 6.79

AVE 91.96 ± 2.27 79.56 ± 5.38 85.52 ± 5.92 88.86 ± 2.66 91.6 ± 2.09 87.5 ± 6.1

Twist Rectangle 84.74 ± 2.95 81.3 ± 6.61 83.85 ± 6.42 77.33 ± 6.57 77.27 ± 8.06 80.9 ± 3.15

Triangle 90.68 ± 4.4 92.51 ± 2.65 92.43 ± 3.24 88.02 ± 4.25 81.37 ± 8.64 89 ± 4.15

Step-climbing 92.2 ± 5.83 91.34 ± 2.67 94.43 ± 1.69 93.46 ± 2.62 87.75 ± 8.19 91.84 ± 2.3

Random 92.14 ± 3.48 85.07 ± 9.16 93.59 ± 1.88 89.23 ± 5.47 88.95 ± 4.71 89.8 ± 2.94

AVE 89.94 ± 3.06 87.56 ± 4.59 91.08 ± 4.23 87.01 ± 5.94 83.84 ± 4.76 87.88 ± 5.25

Plug Rectangle 86.45 ± 2.84 83.59 ± 8.24 85.2 ± 11.31 88.49 ± 3.19 87.32 ± 3.75 86.21 ± 1.7

Triangle 96.07 ± 2.45 94.81 ± 2.18 94.54 ± 2.5 87.36 ± 11.82 94.5 ± 2.22 93.46 ± 3.1

Step-climbing 93.17 ± 2.32 91.84 ± 2.68 94.95 ± 2.9 93.77 ± 3.71 90.21 ± 6.96 92.79 ± 1.63

Random 94.22 ± 2.01 87.27 ± 8.56 93.36 ± 1.88 89.03 ± 6.86 90.24 ± 4.02 90.82 ± 2.61

AVE 92.48 ± 3.63 89.38 ± 4.29 92.01 ± 3.98 89.66 ± 2.45 90.57 ± 2.56 90.82 ± 3.68

signals and features were extracted subsequently. However,
the channels were not optimized, which might lead to
redundant information and less accuracy. Hoozemans and
van Dieen (2005) used 6 forearm muscles to predict the

palmar force and found that using 3, 4, or 5 muscles
to predict force was as effective as using all muscles,
which was in accord with our study. He speculated that
the random samples of three muscles could produce
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enough validity for model prediction and the positions of
some electrodes in the forearm were irrelevant. Regarding
correlation, we also found that not all arm muscles were
closely related to grasping movements.

2. Force estimation of different natural grasping movements:
We conducted force estimation experiments for four
natural movements on five subjects. Regarding palmar
grasp, the mean R2 is 0.9465 under the step-climbing
profile. Compared with palmar grasp, the regression
of twist grasp and plug grasp gets better performance.
Pinch grasp has relatively lower regression performance,
probably due to the small amplitude of the movement and
the fewer muscle groups called. The regression of plug
grasp can reach 0.9607 under the triangular profile, and
the average R2 under the four profiles can attain more than
0.8938.
Different performance for each action is observable.
Kundu et al. (2014) gave different stimulation to
large nerve animals, and the muscle mass responded
differently. This showed that for different natural grasping
movements, the muscle potentials of the eight muscles
would be very different. We speculate that the poor
performance of pinch grasp may be related to the applied
force, which is smaller than the other three movements
and may call for a smaller number of muscle groups as
well as a smaller degree of muscle response. Zhang et al.
(2021) confirmed that the muscle coordination of palmar
grasp and pinch grasp was different under different force
levels. Unfortunately, there is little research in this area
for us to compare force estimation of different grasping
movements. This suggests that researchers should not
simply rely on machine learning, but need to focus on
the connection between muscles and motions from a
physiological perspective.

3. Force estimation under different task profiles: For each
natural grasping movement, we designed four task profiles
that covered the magnitude of the subject’s force from 0
to 80% MVC, which contained rich force information. We
found that subjects performed best under the triangular
task profile, followed by the step-climbing profile and
the random profile, and the rectangular profile was the
worst. It is believed that the reason may be how the
subjects applied the force. Subjects applied and released
force slowly in the triangular profile task, and there were
jumps in force application under the other tasks.
Among numerous research, experimental tasks vary from
study to study. In Hu’s study, eleven gestures including
pressure, pinch, grip, and twist were extracted from the
typical gestures in daily life. They designed three types
of gesture acquisition tasks: (1) the Maximal Voluntary
Contraction Task; (2) the Regular Force Pattern Task; (3)
the Self-Selected Force Pattern Task. The Regular Force
Pattern Task contained two parts, one of which was the
sinusoidal force curve and the other was the constant force

curve. The former was set to collect data for classification
and regression models while the latter was conducted to
obtain data for the training of their proposed algorithm
based on the threshold method (Hu et al., 2022). Zhang
et al. (2018) adopted linear and constant force profiles
when estimating the muscle force. However, the reasons
for the choices of force curves were not clearly mentioned
in such articles and it is necessary to investigate the impact
of different profile tasks. These will bring new insights to
our next research: To study the influence of different force
application methods on the force estimation of EMG. The
work of Mamidanna et al. (2021) on the grasping force of
EMG prostheses also showed that better force estimation
could be achieved by sacrificing the speed of grasping
movement. Bog et al. (2011) also designed different task
profiles for grasping when studying the influence of
different EMG characteristics on the estimation of palmar
grasp, and found that the slope of the profile might
lead to changes in the regression effect. The findings of
Mamidanna and Bog are similar to our research, and the
speed of applying force can be clearly reflected in the
slope of the profile. Under the triangular profile and step-
climbing profile, the force application speed of subjects
is slow, and the performance of regression is the best. In
contrast, the force application speed of arbitrary profiles
and rectangular profiles is faster, and the performance
is lower. In future work, we will make a more detailed
experiment to investigate the effect of force speed.

Limitations

Our work is based on offline analysis, and online
experiments will put forward higher requirements for real-
time performance and accuracy of the algorithm. EMG-based
robotic arm control is the future work we envision, but it is a
complex project that involves techniques such as path planning.
Secondly, our work is based on healthy people and needs to
consider more conditions for amputees. The terminal muscle
nerves and incomplete muscle groups of amputees or limb
deformities are our new challenges. A richer group of subjects
will provide more data sets for better evaluation.

Conclusion

In this manuscript, we conducted a classification and force
estimation study for four natural grasping movements. On thek
one hand, we presented the high possibility of the classification
for these actions with different levels of force. On the other hand,
we investigated the feasibility of force estimation for natural
grasping movements and found that the regression performance
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of plug grasp was the best among the four natural grasping
movements. Furthermore, muscles responded differently to
different actions. Finally, we found that the speed of force
application affects the regression results of EMG. Our work is of
great significance to the force control of myoelectric prostheses
and EMG-based rehabilitation training systems.
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