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Introduction: In recent years, the application of deep learning models at

the edge has gained attention. Typically, artificial neural networks (ANNs)

are trained on graphics processing units (GPUs) and optimized for e�cient

execution on edge devices. Training ANNs directly at the edge is the next

step with many applications such as the adaptation of models to specific

situations like changes in environmental settings or optimization for individuals,

e.g., optimization for speakers for speech processing. Also, local training

can preserve privacy. Over the last few years, many algorithms have been

developed to reduce memory footprint and computation.

Methods: A specific challenge to train recurrent neural networks (RNNs) for

processing sequential data is the need for the Back Propagation Through Time

(BPTT) algorithm to store the network state of all time steps. This limitation

is resolved by the biologically-inspired E-prop approach for training Spiking

Recurrent Neural Networks (SRNNs). We implement the E-prop algorithm on a

prototype of the SpiNNaker 2 neuromorphic system. A parallelization strategy

is developed to split and train networks on the ARM cores of SpiNNaker 2

to make e�cient use of both memory and compute resources. We trained

an SRNN from scratch on SpiNNaker 2 in real-time on the Google Speech

Command dataset for keyword spotting.

Result: We achieved an accuracy of 91.12% while requiring only 680 KB of

memory for training the network with 25 K weights. Compared to other spiking

neural networks with equal or better accuracy, our work is significantly more

memory-e�cient.

Discussion: In addition, we performed a memory and time profiling of the E-

prop algorithm. This is used on the one hand to discuss whether E-prop or

BPTT is better suited for training a model at the edge and on the other hand to

explore architecture modifications to SpiNNaker 2 to speed up online learning.

Finally, energy estimations predict that the SRNN can be trained on SpiNNaker2

with 12 times less energy than using a NVIDIA V100 GPU.

KEYWORDS

SpiNNaker 2, E-prop, online learning, training at the edge, parallelism, memory

footprint, neuromorphic hardware
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1. Introduction

Nowadays AI applications at the edge are gaining interest.

In some real world applications, it is better to process data at the

edge. Specifically, there are three main categories where this is

important. First, these devices can be used everywhere, especially

the places where communication infrastructure is not available.

Second, when working with highly sensitive data like medical

data, privacy is very important. We do not want to send our

private data to the cloud for processing. Third, when a machine

or software with Artificial Intelligence (AI) is interacting with

the real world, like surgery or autonomous driving, latency plays

an important part. We do not like to wait while sending the data

to the cloud to be computed and get data back later. In addition,

devices which depend on cloud computing are at greater risk

of cyber-attack and hacking. By omitting the communication

between edge and cloud, we can reduce power consumption of

devices and increase their lifetimes (Sze et al., 2017; Chen and

Ran, 2019; Cai et al., 2020).

We are living in a dynamic world and due to many

reasons such as aging, changing seasons, new construction, and

pandemic (Bavel et al., 2020), our behavior and environment

change continuously. Edge devices such as smartphones,

wearable smartwatches, Internet of Things, and autonomous

vehicles are used in our daily life. Data privacy for these devices

is very important and we do not like to collect user data

and send it to cloud for further processing. Some examples

include learning user behavior in smartphones or learning

modifications in the Internet of Things applications like smart

home. One may use federated learning to train and update

models on these devices in such a way that the data are

local (Li et al., 2020b).

For reasons mentioned in previous paragraphs, in some

applications, there is a need to continue training at the edge. But

the problem is that training on edge devices is challenging as we

have access to limited memory and clock frequency, and power

budgets of these devices are limited.

In this paper our focus is mainly on learning at the edge,

with limited memory and clock cycles. Specifically, we are

interested in online training of sequential data. Recurrent neural

networks (RNNs), because of their sequential nature, are widely

used in temporal applications like machine translation, speech

recognition, image tagging, and so on.

Compared to ANNs, SNNs are more energy efficient and

they are neuromorphic hardware friendly because they use

spikes (one bit data) to communicate to other neurons (Poon

and Zhou, 2011; Tavanaei et al., 2019). In this paper, our focus is

on training SRNNs. By using surrogate gradients (Neftci et al.,

2019), one can train SRNNs through the Back Propagation

Through Time (BPTT) method. The main drawback of BPTT

is that, it is not a memory efficient algorithm, because in the

backward path it needs information of all previous time steps

in the forward path. Also BPTT is not an online learning rule,

because when it processes data in the forward path it could not

update the weights and it should come back to the first time step.

Then there is enough information to update weights. For these

two reasons, BPTT in not an edge device-friendly learning rule.

One of the algorithms that solves these issues is E-prop (Bellec

et al., 2020a), a memory efficient online learning mechanism

for SRNN. In E-prop, memory storage is O(N2) where N is

the number of recurrent neurons, it is an online and spike-

based algorithm. Similar to other online learning algorithms

that use approximation to compute gradients, E-prop loses some

accuracy compared to BPTT, too.

Our purpose here is to implement E-prop on the SpiNNaker

2 hardware. SpiNNaker 2 is an ARM-based multi-core

neuromorphic system and it is specially designed for simulating

spiking neural networks. The final SpiNNaker 2 chip will consist

of 152 processing elements (PEs) containing an ARM cortex-

M4F core with 128 KB SRAM memory. By a dedicated on-chip

packet router and chip-to-chip links, one can connect thousands

of chips in a hexagonal grid to form a large SpiNNaker machine

with millions of cores (Furber et al., 2014; Mayr et al., 2019).

What makes SpiNNaker a “neuromorphic” system is (1) the

scalable event-based communication (Navaridas et al., 2015),

and (2) the massively parallel real-time operation where the

cores are only loosely synchronized by a regular timer event to

start the computation of neuron updates in the software.

In this work, we implement the training process of an SRNN

from scratch by using the E-prop algorithm in a SpiNNaker

2 prototype. First, we use a single processing element (PE)

for evaluating a small SRNN. The network contains only 20

recurrent neurons due to memory and computing limitations.

Then we expand our work and implement a larger network (120

recurrent neurons) on 12 PEs. The network and the E-prop

training is parallelized by dividing the synapses among PEs and

using spikes as the main communication mechanism. We verify

our implementation result with a TensorFlow implementation

of the E-prop algorithm for the Google Speech Commands

dataset. Further, we perform a clock profiling analysis to find

bottlenecks and learn how we could improve the speed by

integrating a hardware accelerator in future work. This is

complemented by fitting models to predict the timing (number

of clock cycles) of the main algorithm functions to see how the

E-prop scales up. In addition to this, we compare the memory

consumption of E-prop and BPTT in detail and analyze when

either of the two is more memory efficient while achieving the

same accuracy.

Our main contributions for short, are as follows:

• We implement the E-prop algorithm on a neuromorphic

system.

• We successfully train a SRNN by using E-prop from scratch

on a neuromorphic system.
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• Weprovide a parallel implementation of E-prop on amulti-

core neuromorphic system to achieve real-time operation.

• We verify that the E-prop learning rule works with a mini

batch size of one.

• We perform a clock profiling analysis to find the bottleneck

for future hardware accelerators.

• We conduct a memory and clock cycle analysis of E-prop

in comparison to BPTT.

The remainder of the article is structured as follows. Section

2 introduces the considered SRNN, the E-prop algorithm, the

SpiNNaker 2 hardware system, and describes in detail the E-

prop implementation on SpiNNaker 2. In Section 3 we compare

the SpiNNaker 2 E-prop results to a TensorFlow reference and

provide further analysis on the memory and computing cost.

Finally, in Section 4 we provide a thorough discussion on related

work for memory-efficient online learning (in theory and on

neuromorphic hardware) and compare our results to state-of-

the-art SNNs for the Google Speech Commands dataset.

2. Materials and methods

2.1. Network model and training

2.1.1. Network architecture

We used a two-layer SRNN architecture as our model.

The architecture is shown in Figure 1. Here Nin denotes input

neurons, Nrec represent recurrent spiking neurons, and Nout

is output neurons. The input neurons are connected to the

recurrent neurons with weights Win. Wrec shows the recurrent

weight matrix and Wout represents the weights between

recurrent neurons and output neurons. All weight matrices are

dense. xt is the input vector at time step t; note that the inputs xtj
have floating-point values, not spikes. ht is the hidden state of the

spiking neurons (e.g., representing the membrane potential) and

zt is a binary vector representing the spikes in time step t. The

output neurons just sum up the received synaptic events and are

represented by the scalar output vector yt .

2.1.2. Spiking neuron models

In this paper we consider two kinds of spiking neuron

models in the recurrent layer: the leaky-integrate-and-fire (LIF)

neuron and the Adaptive LIF (ALIF) model. The dynamics of

the LIF neuron model is defined by the following equations:

vt+1j = αvtj +
∑

i 6=j

Wrec
ji zti +

∑

i

Win
ji x

t+1
i − ztj vth (1)

ztj = H(vtj − vth) (2)

FIGURE 1

Schematic of recurrent spiking neural network. The middle layer

consists of spiking recurrent neurons.

Where vtj is the membrane potential, α = e−δt/τm is

the decay factor with δt being the time step duration, τm
the membrane time constant, and vth the spike threshold. H

expresses the Heaviside step function and is used to detect a

spike. Hence, ztj is a binary variable where its value is 1 if neuron

j spikes in time step t, and 0 otherwise. When a neuron sends

a spike, its membrane voltage is decreased by vth (last term in

Equation 1).

As networks of LIF neurons have poor capabilities for

processing longer-term patterns, Bellec et al. (2018) have

introduced the ALIF neuron model. They added an adaptive

threshold to the LIF neuron model to add long short-term

memory capabilities to SRNNs. The dynamics of the ALIF

neuron model are defined by Equation (1) for the membrane

potential and the following equations:

At
j = vth + βa

t
j (3)

ztj = H(vtj − At
j ) (4)

at+1j = ρatj + ztj (5)

Here, At
j is the adaptive threshold potential, with the

adaptive component atj and a scaling constant β . ρ = e−δt/τa

is a decay factor of the adaptive component with τa being the

adaptation time constant. The adaptive threshold is increased by

β for each spike and decays back exponentially to the baseline

threshold. When LIF and ALIF neurons are combined in the

recurrent layer in Figure 1, the model is called Long short-term

memory Spiking Neural Network (LSNN) (Bellec et al., 2018).

We evaluated LIF, ALIF, and LSNN in our simulation and

we found that when adding LIF to ALIF neurons, the memory

and computation increases but test accuracy is not considerably

affected. So we decided to use only ALIF neurons in our model.

We used a discrete-time model of ALIF with time step δt =

10ms. In our model we defined the ALIF neuron parameters as:

τm = 5, β = 0.184, τa = 150 and vth = 0.01.
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2.1.3. Surrogate gradient

One problem of spiking recurrent neural networks (SNNs) is

that the spike function (Equation 2) at the occurrence of spikes,

is not differentiable. Hence, unlike the conventional neurons

in RNNs, spiking neurons are not appropriate for standard

gradient-based optimization. To overcome this limitation,

we use the surrogate gradient method (Neftci et al., 2019)

with a multivariate Gaussian function (Yin et al., 2021) as

an approximation to the derivative of the spike function.

Concretely, we approximate the partial derivative ∂ztj/∂v
t
j by the

multivariate Gaussian function ψ(vtj ):

ψ(vtj ) = (1+h)N (vtj |0, σ
2)−hN (vtj |σ , (sσ )

2)−hN (vtj |−σ , (sσ )
2)

(6)

whereN (vtj |µ, σ
2) is the Gaussian distribution withmeanµ and

standard deviation σ . Here σ is 0.5 and hyperparameters h and

s are 0.15 and 6, respectively.

2.1.4. E-prop algorithm

There are two main methods used to train RNN in machine

learning: Back Propagation Through Time (BPTT) (Werbos,

1990) and Real-Time Recurrent Learning (RTRL) (Williams and

Zipser, 1989).

For BPTT, during the forward path one needs to store the

hidden state variable of all time steps. Then, in the backward

path for computing the gradients of loss function with respect

to network parameters (weights), one starts from the last time

step, uses stored data from the forward path and goes back to

the previous time step, and uses that information until reaching

the first time step. Finally the gradients can be computed and the

weights can be updated.

There are two problems with this method. First, the memory

usage increases with the number of time steps, and second, it is

not an online learning mechanism. This means that when the

algorithm computes the last time step, it can not immediately

compute the gradients and update weights. Instead, BPTT needs

to iterate back to the first time step; only then all the necessary

information is available to compute the gradients. In other

words, a system with BPTT is a non-causal system and it is not

an appropriate fit for online real-time systems.

However, the RTRL algorithm solves these two problems.

In the forward path, the RTRL algorithm carries additional

information from the current to the next time step. At the

last time step, all the information to compute the gradients

and update the weights is available. On the other hand, still

two new drawbacks come with RTRL: It requires almost one

order of magnitude more memory than BPTT and also the

computation time is two orders of magnitude larger than

BPTT. For more information, please look at the research

of Marschall et al. (2020).

FIGURE 2

Computation graph for E-prop: In E-prop, unlike BPTT, for

computing the gradient in the current time step, we do not need

the information from next time step (dashed line). In this case in

time step t we have enough information to compute gradients.

In picture the blue arrows show the forward path and the

orange arrows show the backward path.

In recent years many algorithms such as KF-RTRL (Mujika

et al., 2018), UORO (Tallec and Ollivier, 2018), KeRNL (Roth

et al., 2018), RFLO (Murray, 2019), SnAp (Menick et al.,

2020), E-prop (Bellec et al., 2020a; Zenke and Neftci, 2021),

SuperSpike (Zenke and Ganguli, 2018), DECOLLE (Kaiser et al.,

2020), and OSTL (Bohnstingl et al., 2022) were developed to

simplify the RTRL method. These algorithms actually tried to

make some approximation on RTRL. In RTRL, the memory

complexity is O(N3) and computation is O(N4), where N is

the number of recurrent neurons. These algorithms reduce the

memory complexity to O(N2) and computation to O(N2) or

O(N3) at the cost of losing accuracy. One of these algorithms

is E-prop (Bellec et al., 2020a). In E-prop (Bellec et al.,

2020a), information that is not accessible in the current time

step is ignored. In Figure 2 this information is shown by

the dashed line. E-prop tries to train SRNN without the

knowledge of future time steps. The E-prop algorithm is

an online learning method and compared to BPTT is more

memory efficient. This claim is discussed in more detail in

Section 4.1.

In E-prop, the gradient of loss function with respect to

weights is computed as:

∇WL =

T
∑

t=1

λtj ē
t
ji (7)

The first term is called the learning signal and is

computed as:
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λtj =
∂Ltj

∂htj
=

∑

k

Bjk(y
t
k − yt

∗,k) (8)

where j denotes the number of recurrent neurons and k denotes

the number of output classes, ∗ denotes ground truth labels and

Bjk are neuron-specific weights. They can be equal to the output

weights (symmetric E-prop), or selected randomly (random E-

prop) or evolve through a simple local plasticity rule (adaptive

E-prop). In our model we use symmetric E-prop because we

could achieve better accuracy. The second term in Equation (7)

is called eligibility trace and is computed as:

etji = ψ
t
j

(

z̄t−1j − βǫtji,a

)

(9)

where ψ t
j is the surrogate gradient of membrane potential

function in Equation (5) and the bar sign means a low pass filter

and can be computed as:

z̄tj = kz̄t−1j + ztj (10)

where k is the decay factor. In Equation 9, ǫtji,a is the eligibility

vectors for adaptive threshold:

ǫtji,a = ψ
t
j ǫ

t
ji,v +

(

ρ − ψ t
j β

)

ǫt−1ji,a (11)

where ǫtji,v is eligibility vectors for the membrane potential and

its value for input and recurrent neurons can be computed as

follows:

ǫ
t,in
ji,v = x̄tj (12)

ǫ
t,rec
ji,v = z̄t−1j (13)

actually eligibility vectors for the membrane potential are

matrices where rows are repeated.

2.1.5. Network output and loss functions

The output neurons could be computed as:

ytk = Cyt−1
k
+

∑

j

Wout
kj ztj + boutk (14)

where subscript k denotes the number of output neurons (here

number of categories), constant C defines the leakage and bout
k

shows the bias term. For the classification task we chose cross-

entropy loss function and it is computed as:

L = −
∑

t,k

π
∗,t
k
π tk (15)

where ∗ denotes the ground truth label and π t
k
is:

π tk = softmax(ytk) =
yt
k

∑

k exp(y
t
k
)

(16)

For computing the gradient of the output weights, there is no

need to apply the E-prop learning rule, instead we can compute

it as follows Bellec et al. (2020b):

1Wout
kj =

∑

t

(π tk − π
∗,t
k

)z̄tj (17)

2.2. Dataset and preprocessing

We applied E-prop to train a RSNN for key word spotting

using the 12-category Google Speech Commands (GSC-12)

dataset (Warden, 2018). The primary goal of the GSC dataset is

to provide a way to build and test small models that are suitable

for edge devices. The model detects what word is spoken, from

a set of ten target words, with as few false positives as possible

from background noise or unrelated speech.

Before the audio signals move into the model, they should

be preprocessed. For preprocessing, we use a similar approach

as Zimmer et al. (2019). We remove extra information from the

audio signal, the model becomes simpler and also it is more

robust to noise. Amethod that is widely used in literature is Mel-

Frequency Campestral Coefficients (MFCCs). In this method,

log Mel filters and their first and second-order derivatives are

extracted from raw audio signals.

For the FFT, we used a window size of 30 ms and a hop

length of 10 ms. Then, the log of 40 Mel filter coefficients was

extracted with LibROSA (McFee et al., 2015) using a Mel scale

between 20 and 4,000 Hz, as this frequency band contains the

most information. Finally, the spectrograms corresponding to

each derivative order are re-scaled. After preprocess, the one

second input audio is converted to a 100 time steps signal. The

preprocess task has been done offline.

2.3. Implementation of E-prop on the
SpiNNaker 2 FPGA prototype

2.3.1. SpiNNaker 2 FPGA prototype

SpiNNaker 2 is the second generation of SpiNNaker chip,

a digital neuromorphic system developed by Technische

Universität Dresden and University of Manchester

(Mayr et al., 2019).
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FIGURE 3

SpiNNaker 2 FPGA prototype: (A) Architecture of SpiNNaker 2 processing element, (B) Down-scaled SpiNNaker 2 architecture with 16

processing elements on 4 QPEs, host interface (fpga_if) and block SRAM (bsram), (C) Board photo (Xilinx Virtex UltraScale+ FPGA VCU118

evaluation board).

TABLE 1 Large E-prop variables and memory consumption, memory is

calculated for time step=100, Nin = 80, Nrec = 20 and Nout = 12.

Variable FP32 KByte

Input X[N in][time_step] 8,000 31.25

E-prop

ǫina [N
in][Nrec] 1,600 6.25

ǫinv [N
in][Nrec] 1,600 6.25

ein[N in][Nrec] 1,600 6.25

ēin[N in][Nrec] 1,600 6.25

ǫreca [Nrec][Nrec] 400 1.56

ǫrecv [Nrec][Nrec] 400 1.56

erec[Nrec][Nrec] 400 1.56

ērec[Nrec][Nrec] 400 1.56

λ[Nrec] 20 0.08

Weights and gradients

W in[N in][Nrec] 1,600 6.25

Wrec[Nrec][Nrec] 400 1.56

Wout[Nrec][Nout] 240 0.94

1W in[N in][Nrec] 1,600 6.25

1Wrec[Nrec][Nrec] 400 1.56

1Wout[Nrec][Nout] 240 0.94

ADAM optimization

min[N in][Nrec] 1,600 6.25

vin[N in][Nrec] 1,600 6.25

mrec[Nrec][Nrec] 400 1.56

vrec[Nrec][Nrec] 400 1.56

mout[Nrec][Nout] 240 0.94

vout[Nrec][Nout] 240 0.94

Sum 24,980 97.57

FP32 denotes how many 32-bit memory locations it occupies.

The final SpiNNaker 2 chip will contain 152 ARM Cortex-

M4F cores or processing elements (PEs) which support single-

precision floating-point operation. The simplified block diagram

of a PE is shown in Figure 3A. Each PE contains 128 KB SRAM,

from which typically 32 KB is used for instruction and 96 KB

for data memory. Four PEs form a Quad PE (QPE) and they

have direct access to the memory of other PEs in the same QPE

with only a few clock cycles latency. The PEs can communicate

via the Network-on-Chip (NoC) and each QPE contains one

router. The communication unit (Comms) uses NoC packets

to send spikes to other PEs. Furthermore, it supports a direct

memory access (DMA) module to transfer a block of data from

one PE to another PE (it could be in another QPE). Each PE

further contains an array of 64 multiply-accumulate (MAC)

units to speed up 8-bit or 16-bit integer operations for matrix

multiplication or 2D convolution operations (not used in this

work). See Höppner et al. (2021) for further details on the chip

and PE architecture and Yan et al. (2019) and Yan et al. (2021)

for applications of specific hardware features.

In our work, we use a SpiNNaker 2 FPGA prototype (Huang

et al., 2022), the architecture is shown in Figure 3B and the

board picture in Figure 3C. In Figure 3B, the fpga_if is

the Ethernet based interface between host PC and PEs. The

prototype contains four QPEs (hence 16 PEs) and a block SRAM

(bsram) of 64 MB. The latter has been foreseen as a substitute

for the missing DRAM in this setup, but is not used in this

work. We use the Comms unit to send spikes to all PEs via

the Network-on-Chip (NoC), the timer interrupt to call main

function every 10 ms (one time step), the timer register for clock

profiling, and the DMA to transfer data between PEs at the last

time step, and the fpga_if to debug code and read or write

from/to internal PEsmemory. On the FPGA, the PEs are clocked

at 65 MHz.

The main advantage of SpiNNaker 2 over SpiNNaker 1

(Painkras et al., 2013; Furber et al., 2014) for training neural

networks is that SpiNNaker 2 supports single-precision floating-

point arithmetic operations in the hardware, while SpiNNaker

1 supports only fixed-point operations. In addition, there is

more flexibility in the communication, such as more flexible
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chip-to-chip packets and a high-bandwidth network-on-chip

for core-to-core data transmission. Finally, SpiNNaker 2 has a

higher performance per chip with 152 instead of 18 core that

can run faster up to 300 MHz while being more energy-efficient.

2.3.2. Implementation of E-prop on a single
processing element

As discussed in Section 2.2, after the preprocessing step,

every one second audio signal is converted to 100 time steps

frequency data. Correspondingly for real-time implementation,

every time step can be processed in 10ms time intervals. In other

words, every 10 ms a time step is processed.

First, we implemented E-prop on a single PE with the C

programming language and using only internal memory of the

PE. We reserved 24 KB for stack and debugging, so 72 KB are

free for variables usage. The large variables and their memory

consumption is shown in Table 1. The storage for ALIF neurons,

hyperparameters and output neurons is not shown in this table,

because they consume only a small portion of memory. The

input matrix is the preprocessed audio data, cf. Section 2.2.

The E-prop algorithm needs storage for the input membrane

potential eligibility vector ǫinv (Equation 12), the input adaptive

threshold eligibility vector ǫina (Equation 11), the recurrent

membrane potential eligibility vector ǫrecv (Equation 13), and

the recurrent adaptive threshold eligibility vector ǫreca (Equation

11). Also it needs storage for the input eligibility trace ein and

recurrent eligibility trace erec for the current time step and to

apply the decay (the low pass filter) to the previous time step

(ēin and ērec) (Equation 9). We need storage for input, recurrent,

and output weights (Win,Wrec and Wout), and gradients of

these weights (1Win,1Wrec and1Wout). ADAMoptimization

needs storage for first and second moment vectors (m and v) for

all weights (Kingma and Ba, 2017).

The procedure for implementing the E-prop learning rule on

SpiNNaker 2 is as follows. Before starting training, the dataset is

preprocessed once using the MFCC algorithm. The dataset size

is about 4 GB and it is stored in the host PC connected to the

SpiNNaker 2 prototype. The host PC reads the dataset and writes

it to the internal memory of SpiNNaker by using the Ethernet

connection and NoC packets. As shown in Table 1, each input

data for one sample requires 31.25 KB memory. To reduce the

required memory, only 10 time steps of input data are moved

to the PE SRAM; once the data has been processed, new data

is transferred. To decrease the waiting time for the input data,

we used a ping-pong buffer. The host PC writes 5 time steps to

the ping buffer and 5 time steps to the pong buffer and triggers

SpiNNaker 2 to start operation. After the data in each buffer is

used, the host writes the new input data.

After reading one time step from the input buffer, the

SpiNNaker 2 core computes the part of the membrane voltage

that needs input data (Equation 1). Before updating the neuron

Input: X, parameters W, τm, β, τa

1 gradients ← 0

2 for 1 ≤ i ≤ Nepoch do

3 z0, v0 ← 0

4 for 1 ≤ j ≤ Niteration do

5 for 1 ≤ k ≤ Ntime_step do

6 send_input()

7 synapse_preprocess()

8 neuron_update()

9 eprop()

10 synapse_process_spike()

11 weight_update()

Algorithm 1. One core E-prop implementation.

model, it computes the parts of Equations (10), (12)–(14) that

need previous time step information.

Then, according to the ALIF neuron model (Equations

1–5), the membrane potentials of all neurons are calculated.

If the neuron membrane potential value is above the

adaptive threshold, the neurons send spikes. For the one PE

implementation there are only internal spikes.

Then, the E-prop parameters such as eligibility vector for

input ǫina , eligibility vector for recurrent layer ǫreca , eligibility

traces for input ein, and eligibility traces for recurrent layer erec

of current time step are calculated according to Equations (9–

13). After computing eligibility traces in the current time step,

the low-pass filter in Equation (10) is applied to them, because

we need ētji for gradients computation (Equation 7). After that,

the parts of Equations (1), (10), (12), and (14) that need the

current time step information are computed.

The processes described above are repeated for all time steps.

After processing all time steps, the average of the output is

computed, and sparse softmax cross entropy is applied to the

output and the target output (Equation 16) to compute the loss

function (Equation 15). Then it computes the learning signal

(Equation 8), and the gradients of input, recurrent (Equation

7), and output weights (Equation 17). Finally, by using ADAM

optimization, the weights are updated. This is the process for one

iteration (one sample of the dataset) and it is repeated for all

iterations to generate the loss and accuracy result for one epoch.

The pseudo code for the E-prop implementation is shown in

Algorithm 1. A summary of functions and their descriptions are

provided in Table 2.

We used TensorFlow 1.14 with an NVIDIA Tesla V100

SXM2 32 GB GPU for simulation. For the validation of the C

code in the SpiNNaker 2 prototype, we used the same initial

weights, which were randomly generated in TensorFlow. We

also used a single-precision floating-point format (float32) for

variables in TensorFlow and C. We compared the results of
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TABLE 2 E-prop algorithm functions and what they do.

Function Description

send_inputs Read input data from ping-pong buffer

synapse_preprocess Compute previous time step part of equations

neuron_update Update ALIF neurons state

E-prop Compute eligibility traces and gradients of

weight w.r.t loss function

synapse_process_spike Compute current time step part of equations

weight_update Compute gradients, apply ADAM

optimization and update weights

each step in C and TensorFlow to debug and validate our

implementation.

2.3.3. Parallelization approaches

In machine learning, mini-batch size is usually between 32

and 100, so common machine learning frameworks such as

TensorFlow and PyTorch can execute input data independently

in parallel on multiple CPU or GPU cores to accelerate the

training (Abadi et al., 2016; Li et al., 2020a). But in online

learning the mini-batch size is one. This means we only have

access to one input, so this method is not applicable here.

Our main aim in this section is to implement a relatively large

model at edge scale (120 recurrent neurons) on the multi-core

SpiNNaker 2 system. The algorithm should work in real-time. If

one uses only a single core, the available compute clock cycles

per 10 ms time step are only sufficient to process networks with

up to 76 recurrent neurons, so that the 120 neuron model could

not run in real-time. We talk about memory usage in more

detail in the Supplementary material. To solve this problem, one

should distribute the computation in two or more cores. There

are two main approaches to scale up the design and parallelize

the online learning rule: neuron-based and synapse-based. The

block diagram of these two approaches is shown in Figure 4.

In the first approach one can distribute neurons among

multiple cores and each core is responsible for computing

the parameters of specific neurons. For example, core 1 deals

with input neurons and computes the gradient of the loss

function with respect to the input weights and updates input

weights, but core 1 needs the learning signals for computing

gradients and should wait for it. Core 1 sends the result of input

current to core 2 which is responsible for the recurrent neurons.

This core uses this information, computes the current and

membrane potential, and generates spikes, also it is responsible

for computing recurrent gradients and updating recurrent

weights. Just like core 1, core 2 also needs learning signals for

computing gradients. Finally, core 3 needs spike information

to compute the error and generate output. Learning signals are

also computed in core 3. Core 1 and 2 need this information

to compute gradients. In this method core 2 executes more

computation than core 1, and core 1 executes more computation

than core 3, because in typical neural networks the number of

recurrent neurons is larger than the number of input neurons

and the number of input neurons is larger than the number of

output neurons.

In the second approach one can distribute synapses among

multiple cores and each core is responsible for computing a

specific part of the synapse computation. The main difference

between this method and the first method is that, in the

previous method, one neuron and its synaptic connections

are implemented in one core but in this method synaptic

connections for one neuron are divided between several cores.

In other words, all computations are divided equally between

cores, and each core is responsible for a part of the computation

of a neuron, not all of them.

For the E-prop learning rule, it turns out that most of the

calculation related to computing gradients and updating weights

can be executed locally, so that at each time step only spikes

need to be sent between cores. Instead, the transmission of

error signals is performed only at the last time step (time step

number 100). This enables a seamless scaling to many cores

while maintaining a real-time operation during the 100 steps.

Except for input neurons and some parameters related to

output neurons, other parameters have a dimension equal to

the recurrent neurons. In E-prop, the computations related to

the recurrent dimension are independent and one can divide

parameters from this dimension among several cores. In this

method, one core is the main core and it is responsible for

collecting the error result of other cores in last time step,

calculating the final error, and sending it to other cores. So other

cores can compute parts of the gradients and update parts of

the weights.

In the neuron-distribution method (first method) data

movement and extra memory usage at the end of the last time

step, is O(Nrec). One needs extra memory to store data coming

from other cores. Each core is programmedwith a different code.

Implementing a larger network needs to compute how many

cores one requires for input, recurrent, and output neurons. So

also one should consider how to implement each neuron again.

In the second level of parallelization one could benefit from the

second approach and implement a mixture of neuron-synapse-

distributions. Also in thismethod each core is idle for a long time

before data coming from other cores is available.

In the synapse-distribution method (second method), data

movement and extra memory usage at the end of the last

time step is O(Nout). It means this method is more memory

efficient. All cores run programs with the same code. So

code maintenance in the synapse-distribution method is easier.

Also implementing a larger network and using more cores is

easier, because computation is distributed equally between cores.

In our work, we implement the second approach. A similar

approach was used in Liu et al. (2018) for non-spiking deep

neural networks.
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A

B

FIGURE 4

Illustration of parallelization approaches based on connection matrices of the RSNN. (A) Divide neurons: In this approach each core is

responsible for a specific neuron type and all the synapses. Here some cores do more computation than the other cores. The blue arrows in the

top row show that there are large data movements between cores. (B) Divide synapses: In this approach post-synaptic connections are divided

between cores and each core is responsible for all pre-synaptic connections and part of post-synaptic connections. Here we can divide

computation symmetrically between cores.

As E-prop is the RTRL approximation, we do not

have weight transposition in the gradient computation path.

This means that almost all of the computations related to

weights and gradients can be done locally. The synapse-based

approach can be applied to the E-prop and other similar

learning rule algorithms, for scaling the model in size. In

some learning rules such as BPTT, if one uses a synapse-

based approach, there would be a large data movement for

transferring gradients.

2.3.4. Implementation of E-prop on multiple
processing elements

In this section, we describe the difference between the

one-PE and the multi-PE implementation in the SpiNNaker

2 prototype. In the multi-PE implementation, the host PC

sends input data to all PEs. When there is a spike, it

is sent to all neurons in other PEs. For this purpose

we use the SpiNNaker Comms unit in multicast (MC)

mode. This unit is specially designed to send spikes to

other cores. We used a synchronization flag to make sure

all spikes from other PEs are taken into account before

continuing processing.

After all time steps are processed, the output should be

calculated. Each PE calculated a fraction of output (Equation

14). To compute the final output, total loss (Equation 15),

and accuracy, this data is transmitted to PE0. PE0 uses the

SpiNNaker 2 DMA controller for this task. All PEs wait in this

step for a synchronization flag. They wait for the output error,

i.e., the difference between estimated output and ground truth

output. They need it for calculating the learning signal [Equation

(8)] and to calculate the gradients of weights (Equation 7). PE0

computes the output error and then transmits it to other PEs.

Also PE0 sends a synchronization flag to other PEs, so they know

that it is time to resume computation.

If one wants to update the weights in each time step instead

of only in the last time step, this process should be repeated

in every time step and, as it will be shown in Section 3.2.2,

the number of MAC operations would increase approximately

two-fold. For a summary of the multi-PE algorithm, look at

Algorithm 2. The sync() function is used for the synchronization

between PEs.
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1 for 1 ≤ i ≤ Nepoch do

2 for 1 ≤ j ≤ Niteration do

3 for 1 ≤ k ≤ Ntime_step do

4 send_input()

5 synapse_preprocess()

6 neuron_update()

7 sync()

8 eprop()

9 synapse_process_spike()

10 sync()

11 weight_update()

Algorithm 2. Multi-core E-prop implementation.

3. Results

In this part, we show the results of the E-prop

implementation on the SpiNNaker 2 prototype. First, in Section

3.1, we searched for optimum network hyperparameters. Then,

in Section 3.2, we compared the simulation result in TensorFlow

to the SpiNNaker 2 prototype implementation in terms of

accuracy, and we performed a clock profiling and analyzed

how much time was spent in each function. In Section 4.1,

we compared the memory footprint of E-prop and BPTT. In

Supplementary material, we developed and fit simple models

to predict the number of clock cycles for every function in the

algorithm to see how they scale up when increasing the network

size. There, we performed some experiments to compute the

number of clock cycles with respect to network parameters. We

found that if we know the clock speed of processor (150 MHz to

300 MHz for SpiNNaker 2 chip and 65 MHz for the prototype),

we can compute how many clock cycles are available in the 10

ms interval and by comparing the result, one could check if the

algorithm could run online.

3.1. Network study

In this section, we explored the optimum values for network

hyperparameters. First we searched for the appropriate number

of input and recurrent neurons, and then we changed the

network parameters to find the optimal network for better

accuracy of the validation dataset. To prevent an overfitting on

the training dataset, we applied L2 regularization. In principle, it

is also possible to apply firing rate regularization to limit spike

generation frequency. However, we found that this parameter

increases the network complexity and also reduces the final

accuracy. Hence, we did not use firing rate regularization.

For the optimization process, we tried Stochastic Gradient

Descent (SGD), Momentum, RMSProp, and ADAM

TABLE 3 E�ect of delta order in input and database size.

Delta order Nin Train dataset

0 40 x 1 1.9 GByte

1 40 x 2 3.9 GByte

2 40 x 3 5.9 GByte

optimization. We would rather choose SGD, as it does not

require extra memory matrices for storing the mean and/or

the second momentum of gradients. However, SGD and

Momentum could not optimize the network at all and RMSprop

achieves 1% less accuracy compared to the ADAM optimizer.

So we decided to use the ADAM optimizer.

In MFCC, one can change the number of mel frequencies

by changing the delta order. As it is shown in Table 3, this

parameter affects the number of input neurons and the dataset

size. Nin is the number of input neurons.

Accordingly, it is desirable to use a smaller delta order for

the purpose of decreasing the model complexity and reducing

the dataset size. In our simulation we also consider this hyper

parameter. The simulation result for different model parameters

is shown in Table 4. Nadt is the number of ALIF neurons. In the

following simulation, L2 regularization is 10e-5.

We decided to use Nin = 40x2 and Nadt = 120. Furthermore,

we found that by reducing the L2 regularization to 0.05e-5, we

obtained a better result. With these parameters we achieved

91.2 ± 0.16% accuracy on the test set in less than 22 epochs on

average in 10 runs.

3.2. SpiNNaker 2 implementation

In this section, we compared the epoch-accuracy diagram

in test and validation sets between our implementation in

SpiNNaker 2 and TensorFlow software simulations. Also we

did a clock profiling in hardware and performed a detailed

memory comparison between E-prop and BPTT. In the

Supplementary material, we performed a hardware architecture

exploration for implementing E-prop on SpiNNaker 2. More

specifically, we considered the use of the SRAM from neighbor

PEs to increase the memory per PE, and derived models

to predict the number of clock cycles when scaling up the

network size.

3.2.1. Comparison of SpiNNaker 2
implementation and TensorFlow

During training E-prop in TensorFlow, the mini batch size

was 100 and we initialized the learning rate to 0.01. But for

online training the batch size is 1, and also the learning rate

should be selected again. We tried different learning rates such

as 0.01, 0.0003, and 0.001 for more than 4 epochs on the
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TABLE 4 Comparison of model parameters on accuracy.

Network params Trainable

params

Train

acc. (%)

Best valid

acc. (%)

Test

acc. (%)Nin Nrec

40x1 40 4K 85.78 83.22 82.34

40x1 120 21K 90.68 86.84 86.76

40x2 40 5K 91.81 88.69 88.51

40x2 80 14K 94.65 89.73 90.67

40x2 88 16K 94.84 90.02 90.48

40x2 120 25K 95.90 90.76 91.07

40x3 40 7K 93.13 88.86 88.7

40x3 80 17K 93.89 90 90.71

40x3 120 30K 97.2 91.1 91.61

40x3 160 47K 97.96 91.56 91.68

40x3 360 180K 99.01 91.85 92.4

SpiNNaker 2 prototype and we observed that training with

the 0.001 learning rate converges faster. So we performed the

experiment with the 0.001 learning rate.

For training on the SpiNNaker 2 prototype, one epoch of

training for the GSC dataset (60,000 iterations) takes about 20

h. So 30 epochs take more than 24 days. Also it takes 4 h to

achieve accuracy of the validation and test sets. In GPU with

a batch size of 100, the whole process (30-epochs) takes about

2 h. With a batch size of one, the whole process takes 17 days

(Estimated after running some iterations). In Figure 5, the train

and validation set accuracy for the TensorFlow simulation and

the SpiNNaker 2 implementation is shown. The TensorFlow

results are shown for 10 runs, while the SpiNNaker 2 result

is given only for a single run due to the long training time.

In TensorFlow, the average test accuracy is 91.2%. In the

SpiNNaker 2 prototype, the best valid accuracy is in epoch 22

and the test accuracy for this epoch is 91.12%. It seems that the

training convergence in SpiNNaker 2 is a little faster (especially

in the first epochs) than TensorFlow, due to using a smaller mini

batch size.

We note that the very long training time on SpiNNaker 2 is

due to the implementation being optimized for online learning

(batch size one) with real-time input (each 1 s audio sample is

processed by a SRNN in 1 s wall clock time). To increase the

training speed in SpiNNaker 2, one can use a larger mini batch

size and always 12 PEs are responsible for one batch. Then for

implementing a 100 mini batch, 1200 PEs are needed.

3.2.2. Clock profiling

In this section, we performed clock profiling to find out

where there is a bottleneck in terms of clock usage and what

should be improved on the hardware side in the future. We

measured the number of clock cycles needed by each function.

The function descriptions were shown in Table 2. We used

the internal timer register counter to measure and calculate

the clock cycles per function. In Figure 6, the clock cycle

profiling for the algorithm run in SpiNNaker 2 is shown. Every

100 time steps, the weight_update() function is run once to

update weights and other functions run every time step. So

one PE needs about 200 K clock cycles to process the data

from one time step and it should be done within the 10 ms

time interval.

As it is clear, if the weights were updated in every time step,

the number of clock cycles would be doubled roughly. As it is

shown in this figure, about 70% of clock cycles per time step

is spent in the E-prop function to calculate gradients of loss

function with respect to weights. Also we analyzed the E-prop

function further. Moreover, 80% of the E-prop function is used

for matrix multiplication and 20% for matrix addition. Matrix

multiplication is used to compute eligibility traces of the E-prop

algorithm. To improve hardware performance, a wise choice

would be to use matrix-by-matrix multiplication hardware

accelerator that support floating-point data type, to perform

this task faster. It is worth mentioning that in SpiNNaker 2

there is a 16 × 4 MAC array per PE, which, however, only

supports fixed-point data types and hence is not appropriate in

our case.

3.2.3. Power and energy consumption

In Table 5, power and energy results for GPU and SpiNNaker

2 are shown. For a batch size of 100, the GPU needs 1 h and 58

min and consumes 657kJ energy (see Supplementary Section S3

for details). In our experiments, we used an FPGA prototype

of SpiNNaker 2 which consumes significantly more power

than the final SpiNNaker 2 chip does. Hence, it would not

be meaningful to provide FPGA power results. Instead, we

provide a coarse approximation based on measurements of a

prototype chip in Höppner et al. (2021) which reported an
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FIGURE 5

Comparison of train and validation set accuracy result for TensorFlow simulation and SpiNNaker 2 implementation. The TensorFlow results are

shown for 10 runs, the dark blue line shows the average and the light blue cloud shows the standard deviation of 10 runs. The SpiNNaker 2 result

is for one run.

FIGURE 6

Clock profiling in SpiNNaker 2 FPGA prototype for one PE that runs in parallel with 11 other PEs simultaneously to execute the whole model.

The weight_update runs every 100 time steps and all other functions run in every time step.

efficiency for the CoreMark benchmark of 21.59 µW/MHz at

100 MHz and 0.5 V for one SpiNNaker 2 core. We estimate

that each of the 12 cores used in the E-prop implementation

consumes the same power as for the CoreMark where the PE

is active all the time, yielding a total power consumption of

26 mW. To run the training in real-time for 30 epochs with

70,375 1-s GSC audio files each, it takes 586 h and 27 min.

Hence, we estimate an energy of 54.7 kJ for training the model

on SpiNNaker 2 which is about 12 times more efficient than

the GPU. In both cases, the power of the host CPU is not

considered. We remark that this is only a rough approximation

and that the actual energy consumption on the SpiNNaker 2 chip

may deviate.

4. Discussion

4.1. Memory analysis of E-prop and BPTT

In this section, we are interested in quantifying the memory

benefit of using E-prop instead of BPTT for our SpiNNaker

2 implementation. For BPTT we can divide the gradients

computation in two paths, forward and backward. In the

forward path, the state variable in every time step is computed

and it is stored. In the backward path the algorithms start from

last time step and come back to first time step to compute

gradients. In every time step it uses state variables in the forward

path and also gradients of next time steps. For online learning
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TABLE 5 Power and energy consumption: For NVIDIA Tesla V100

SXM2 32 GB GPU the batch size is 100 and the average power usage

during training is calculated.

Measurement NVIDIA SpiNNaker 2 (estimation)

Batch size 100 1

Power [W] 91.3 0.026

Time [h:m] 1:58 586:27

Energy [kJ] 646.4 54.7

For SpiNNaker 2, we assume a real-time operation with a 100 MHz clock frequency. See

text for details on the estimation.

TABLE 6 Memory comparison between E-prop and BPTT.

Algorithm Memory consumption

E-prop 2Nout + Nin + 6Nrec + 7(Nin × Nrec)+ 7(Nrec × Nrec)+

4(Nrec × Nout)

BPTT E-prop+ Ntime_steps × (Nout + Nin + 3× Nrec)

algorithms like E-prop, there is only one forward path. In the

forward path, the state variable and gradients information are

computed at the same time step.

In the literature, the memory usage of BPTT is mentioned

as O(NT), where N is the number of neurons. It seems that

only the memory utilization for storing the hidden state variable

of the forward path is considered and the memory usage for

computing gradients in the backward path is not considered. But

in online learning algorithms the overall memory consumption

is calculated. So for a fair comparison between BPTT and the

others, one should consider both forward and backward paths.

In this case the correct memory consumption for BPTT is

O(N2 + NT).

For a fair memory comparison between E-prop and BPTT,

we considered an optimized implementation of both algorithms

and assumed that all variables have a single-precision floating-

point format. Then we counted the variables that are needed for

all time steps. The result is shown in Table 6.

By using information in Table 6, we plotted the diagrams in

Figure 7. For a model with 80 input, 20 recurrent, 12 output

neurons, and 100 time steps, E-prop consumes 56 KB and

BPTT consumes 119 KB of internal memory. So E-prop can

be implemented in one PE’s memory but BPTT needs two PE’s

memory. For 120 recurrent neurons, BPTT needs about 180 KB

more memory than E-prop. As it is clear from Table 6, the BPTT

memory usage increases linearly by increasing the number of

time steps but E-prop does not depend on the time steps. The

number of time steps limits applications and model complexity

of BPTT at edge devices.

According to Tables 4, 7, E-prop with 360 neurons could

achieve almost the same accuracy as BPTT with 256 neurons.

Now the question is, whether E-prop with more neurons needs

more memory or BPTT with less neurons to achieve the

same accuracy.

By using equations in Table 6, it is clear that E-prop with

360 neurons needs 4.3 MB and BPTT with 256 neurons needs

2.7 MB memory. But BPTT needs more memory as the number

of time steps increases. To find out the number of time steps

where BPTT needs more memory than E-prop, we assume 256

neurons for BPTT and 360 neurons for E-prop and vary the time

steps. The result is shown in Figure 7B. When the number of

time steps is 600, then both BPTT and E-prop need almost the

same memory. But as we increase the number of time steps to

more than 600, BPTT needs more memory.

As shown in this section, we cannot generally state that

online learning algorithms like E-prop are more memory

efficient than BPTT. Instead, we should consider the number

of time steps and also the accuracy. For a small number of

time steps, BPTT is a better choice as we could achieve a better

accuracy by using a smaller network and the same memory, but

when the number of time steps increases, E-prop becomes a

better choice, because we could implement a larger network with

same memory usage.

4.2. Related work on memory e�cient
online learning

In Marschall et al. (2020) a comprehensive overview

on algorithms that approximate the RTRL influence matrix

(derivative of hidden state variables with respect to network

parameters) by a lower dimension matrix is provided.The

Kronecker-Factored RTRL (KF-RTRL) algorithm (Mujika et al.,

2018) benefits from the Kronecker product decomposition to

approximate the gradients. The Unbiased Online Recurrent

Optimization (UORO) algorithm (Tallec and Ollivier, 2018)

made a rough estimate of the influence matrix by the outer

product of two vectors. For this purpose, they used a rank-one

unbiased approximation tomatrixM. The Kernel RNNLearning

(KeRNL) algorithm (Roth et al., 2018) is inspired by the

node perturbation method (Werfel et al., 2003) to approximate

matrixM. Random-Feedback Online Learning (RFLO; Murray)

(Murray, 2019) made two approximations: first they remove the

nonlocal term from the gradient, and second they use random

feedback weights to carry errors back to the network. Sparse

n-Approximations (SnAp) (Menick et al., 2020) claimed that

sparsely connecting a large number of neurons is better than

densely connecting a smaller number in terms of calculation. To

achieve this goal, they enforced sparsity on matrixM.

In addition to these, over the last few years online

learning algorithms for neuromorphic systems were developed

as well. These biologically plausible algorithms are used for

training spiking neural networks (SNNs). E-prop (Bellec et al.,

2020a) followed a similar approach like RFLO. They start
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FIGURE 7

Memory comparison between E-prop and BPTT: (A) By changing the number of recurrent neurons. (B) By changing the number of time steps

and comparing the memory for BPTT (256 neurons) and E-prop (360 neurons).

TABLE 7 Comparison of SNN and RNN for Google Speech Commands dataset with respect to memory and accuracy.

Paper Architecture, training
Hidden

units

Model

size
Memory

Accuracy

(%)

This work ALIF, E-prop 120 25 K 680 KB 91.2

Yin et al. (2021) ALIF, BPTT 256 167 K 2.7 MB 92.1

Pellegrini et al. (2021) NLIF, 3 layer Conv2D - 130 K 5.9 MB 94.5

Salaj et al. (2021) LSNN (SFA), BPTT 2,048 4 M 120 MB 91.2

Zhang et al. (2018) CNN + DS-CNNx4 + FC, BP - 38 K 692 KB 94.4

Kusupati et al. (2018) FastGRNN, BPTT 100 1.4 K 760 KB 92.10

de Andrade et al. (2018) Conv2Dx2 + Bi-LSTMx2, BPTT 64 x 4 202 K 41.5 MB 95.6

The model size represents the number of trainable parameters. The memory includes all parameters and temporary variables for training the model with 100 time steps at batch size 1.

with BPTT, removed the terms related to future time steps

and used local information to compute gradients. Zenke and

Neftci (2021), motivated by approaches in RNN, provide a

framework for neuromorphic online learning algorithms. They

divide the Jacobian matrix in implicit and explicit parts and

showed that the explicit term is a dense matrix while the

implicit term is a sparse matrix. So they removed the explicit

term. SuperSpike (Zenke and Ganguli, 2018) used a nonlinear

Hebbian three-factor rule to update synaptic weight. Deep

Continuous Local Learning (DECOLLE) (Kaiser et al., 2020),

which is based on SuperSpike, utilizes layer-wise local readouts

to compute gradients locally. Online spatio-temporal learning

(OSTL) (Bohnstingl et al., 2022) divided the gradient flows

into three parts, spatial, temporal and mixed trace, and they

ignore the last part. They proclaimed that deep SRNN could be

trained online.

Also, recently some related work has been done on

neuromorphic hardware. In Frenkel and Indiveri (2022) they

introduced the ReckOn chip with simplified E-prop. For this

purpose they applied space and time locality and sparsity

in weight updates to E-prop. In Perrett et al. (2022), they

implemented E-prop on the first generation of SpiNNaker. The

authors used three cores, one for input neurons, one for hidden

neurons (LIF and ALIF), and one for readout neurons. They

trained an SNN network without recurrent connections for

wave-form matching and temporal credit assignment tasks. In

comparison, we provide a parallel implementation on 12 PEs

and use a recurrent hidden layer.

4.3. Overview of SRNN algorithms on
GSC dataset

In this section, we compare our result with other spiking

algorithms that used a GSC dataset. Yin et al. (2021) used GSC,

with ALIF neurons. They used amultivariate Gaussian surrogate

gradient with BPTT to train SRNN. Pellegrini et al. (2021)

used non-leaky-integrate-and-fire (NLIF) neurons with a 3-layer

convolution neural network (CNN). Salaj et al. (2021) used spike

frequency adaptation (SFA) neurons and applied BPTT to train

the network.
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For a more complete comparison, we also consider a non-

spiking algorithm. In Kusupati et al. (2018), FastGRNN ismainly

designed to train the neural network in GPU and deploy it in

microcontrollers with 32 KB RAM. For this reason it contains

three stages: learning low-rank representation, learning sparsity

structure, and optimization with fixed-point parameter support.

The training epoch in each state is 100 and overall it takes 300

epochs. For offline training, it is fine. Also note that for GSC-

12 they used a subset of the dataset (about half of the data) for

train and test sets. In de Andrade et al. (2018), a slightly more

complex network with a 10-channel Conv2D and filter size of (5

x 1), a 1-channel Conv2D with filter size of (5 x 1) followed by 2

bidirectional LSTM with 64 recurrent neurons and some dense

layer is used.

In Table 7, we compare these algorithms. Memory usage is

considered for batch size of one and for 100 time steps (1 s)

for the whole training process (forward and backward paths).

All algorithms mentioned in Table 7 except FastGRNN can be

trained in about 20 epochs.

For our work, Salaj et al. (2021) and Yin et al. (2021), we

computed the memory usage by using equations in Table 6. For

Pellegrini et al. (2021), as a rough estimate, we computed the

memory for three convolution layers, multiply it by two (as the

backward path needs storage for gradients which have the same

dimension as weights) and add storage for three input channels.

In Zhang et al. (2018), first they trained the model by using

a 32-bit floating point data format on a GPU for different

architectures such as depthwise separable CNN (DS-CNN),

CNN, and GRU. Then they quantized the deep neural network

(DNN, a standard feed-forward neural network) model and

applied inference on the ARM Cortex-M7 microcontroller

which occupied about 70 KB memory. For a fair comparison we

consider training DS-CNN model with a 32-bit floating point

data format. It needs at least 692 KB memory for training; the

memory calculation is described in Supplementary Section S2.

For Kusupati et al. (2018), we considered the equations in the

paper, in forward and backward paths to estimate the memory

usage. For de Andrade et al. (2018), they fed an input of size

80 x 125 to the network, where the number of time steps is

125. We used this information to compute the forward path

memory computation and as an approximation multiply it by

2 to consider forward and backward path memory usage. As it is

clear, compared to other spiking neural networks, E-prop needs

less memory and still can achieve an acceptable accuracy.

4.4. Memory e�cient online learning

We implemented E-prop, an online memory efficient

algorithm for training spiking recurrent neural networks on

SpiNNaker 2, a multi-core neuromorphic system. Training 30

epochs with a mini batch size of one takes about 24 days

in SpiNNaker 2, if the algorithm works in real-time. In a

real-world application, one could pre-train E-prop using a

GPU and store network parameters such as weights, learning

rates, and optimization variables (mean and second moment

in ADAM). These pre-trained parameters could be used as the

initial parameters at the edge and one could continue learning

on the device. As the algorithm runs real-time, it could learn new

data, when it arrives. For instance, the model could learn a new

keyword or adapt to a new speaker.

Moreover, we analyzed memory usage and computation of

the E-prop algorithm and back propagation through time. With

same computation, E-prop consumes less memory, at the cost

of losing accuracy. We showed that, if we train a larger network

by E-prop, we can achieve almost the same accuracy. But if the

number of time steps is 100, E-prop with a larger network needs

more memory than BPTT with a smaller network for the same

accuracy. If we increase the number of time steps, after 600 time

steps E-prop uses less memory. When online behavior of an

algorithm is not important for a small number of time steps,

BPTT is a better choice and for a larger number of time steps E-

prop is a better choice. In addition we discussed parallelization

strategies and implemented a 120 spiking recurrent neural

network on a multi-PE SpiNNaker 2 prototype. For this purpose

we used 12 PEs.

The next step would be to reduce the memory footprint

further by using quantization (Acharya et al., 2022) or mixed-

precision training (lower precision data format for some

variables) (Micikevicius et al., 2018; Kalamkar et al., 2019), low-

rank matrix representation (Kusupati et al., 2018) and also using

sparsity (Liu et al., 2018).

Deploying online learning in an actual hardware system is

not a straightforward task. Implementing an online learning

rule is just one part of it. Also the system needs to

know when to start learning. As we showed, about 70%

of computations are used for computing gradients and

updating weights. So it is not energy efficient to always

apply learning to new samples. In addition, if we train

our network with new data, after some iterations, the

network will forget what it learned previously (catastrophic

forgetting). So we need other methods to prevent this

(Saha et al., 2022).

In conclusion, in this paper we implemented E-prop, a

biologically plausible online learning rule, on 12 cores of

SpiNNaker 2, a digital multi-core neuromorphic system. We

showed that E-prop could be used in hardware for training

spiking recurrent neural networks, even with a batch size

of one. Moreover, we estimated the power and energy

usage in SpiNNaker 2 and compared it with GPU and we

showed that although SpiNNaker 2 that works in real-time

is 300 times slower than GPU, it is about 12 times more

energy efficient. For future work, we plan to extend the

model and use larger models on SpiNNaker 2. In the end, it

is worthwhile to mention that biologically plausible algorithms

need more research to become comparable to traditional ANNs
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in terms of achieving better accuracy and using less memory

at the same time. One possible approach could be to use more

complex neuron models with more parameters.
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