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Coimbra, Coimbra, Portugal

Introduction: Functional MRI (fMRI) is commonly used for understanding

brain organization and connectivity abnormalities in neurological conditions,

and in particular in multiple sclerosis (MS). However, head motion degrades

fMRI data quality and influences all image-derived metrics. Persistent

controversies regarding the best correction strategy motivates a systematic

comparison, including methods such as scrubbing and volume interpolation,

to find optimal correction models, particularly in studies with clinical

populations prone to characterize by high motion. Moreover, strategies for

correction of motion effects gain more relevance in task-based designs, which

are less explored compared to resting-state, have usually lower sample sizes,

and may have a crucial role in describing the functioning of the brain and

highlighting specific connectivity changes.

Methods: We acquired fMRI data from 17 early MS patients and 14 matched

healthy controls (HC) during performance of a visual task, characterized

motion in both groups, and quantitatively compared the most used and

easy to implement methods for correction of motion effects. We compared

task-activation metrics obtained from: (i) models containing 6 or 24 motion

parameters (MPs) as nuisance regressors; (ii) models containing nuisance

regressors for 6 or 24 MPs and motion outliers (scrubbing) detected with

Framewise Displacement or Derivative or root mean square VARiance over

voxelS; and (iii) models with 6 or 24 MPs and motion outliers corrected

through volume interpolation. To our knowledge, volume interpolation has

not been systematically compared with scrubbing, nor investigated in task

fMRI clinical studies in MS.

Results: No differences in motion were found between groups, suggesting

that recently diagnosed MS patients may not present problematic motion.

In general, models with 6 MPs perform better than models with 24 MPs,
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suggesting the 6 MPs as the best trade-off between correction of motion

effects and preservation of valuable information. Parsimonious models with

6 MPs and volume interpolation were the best combination for correcting

motion in both groups, surpassing the scrubbing methods. A joint analysis

regardless of the group further highlighted the value of volume interpolation.

Discussion: Volume interpolation of motion outliers is an easy to implement

technique, which may be an alternative to other methods and may improve

the accuracy of fMRI analyses, crucially in clinical studies in MS and other

neurological populations.

KEYWORDS

head motion, correction of motion effects, task-fMRI, multiple sclerosis,
neuroimaging

Introduction

Resting-state functional MRI (rs-fMRI) has evolved to
become one of the most common brain imaging modalities
and has been crucial for understanding fundamental properties
of brain organization and connectivity abnormalities associated
with diverse clinical conditions (Filippi et al., 2019). Particularly,
multiple sclerosis (MS) is a disconnection disease that is due to
structural damage but also functional connectivity alterations,
which has been extensively investigated with fMRI during rest
(Sbardella et al., 2015; Shu et al., 2016; Eijlers et al., 2019;
Meijer et al., 2020). However, task-designs target brain regions
and networks that show distinct properties than in resting-
state (Di et al., 2013; Schoonheim et al., 2015). Thus, task-
fMRI may have a key role in describing the functioning of the
brain, in highlighting specific connectivity changes, and thus in
understanding this disease better. However, the blood oxygen-
level-dependent (BOLD) signal measured with fMRI is highly
susceptible to various sources of noise, such as head motion.

Motion artifacts degrade data quality and influence all
image-derived metrics such as task activation and connectivity
estimates (Zeng et al., 2014; Liu, 2016). On the one
hand, rs-fMRI studies have demonstrated that head motion
can introduce systematic bias to connectivity estimates by
creating spurious but spatially structured patterns in functional
connectivity (Power et al., 2014; Parkes et al., 2018; Maknojia
et al., 2019). On the other hand, in task paradigms, which
yield higher frequencies of brain signal changes that are closer
to motion artifacts, head motion can be more challenging to
deal with. For instance, when motion correlates/synchronizes
with the experimental tasks it leads to false brain activations
or a lower signal-to-noise ratio that can make it harder
to detect a true activation of interest. If not properly
accounted for, head motion will bias the statistical results,
reducing the sensitivity and specificity for detecting task-
specific BOLD responses (Seto et al., 2001; Power et al., 2014;
Caballero-Gaudes and Reynolds, 2017).

To obtain a “clean” signal with neuronal and biological
validity is then important to mitigate the effects of head
motion. This is crucial in studies with developmental or clinical
populations, especially those that tend to move more, where
diagnosis and monitoring need to be the most accurate as
possible (Griffanti et al., 2016; Saccà et al., 2021). Previous
studies have shown that group differences in head motion
between control and patient groups cause group differences in
the resting-state network with rs-fMRI (Song et al., 2012; Lee
et al., 2014; Maknojia et al., 2019; Saccà et al., 2019). Therefore,
the presence of a neurological disease influences head motion
and the optimal approach for correction of motion effects
should be investigated in each specific context. In the particular
context of MS, it has been reported that early diagnosed
MS patients and patients with higher disability levels tend to
move to a greater extent in the MRI scanner than control
subjects (Boonstra et al., 2017; Saccà et al., 2018, 2019). A task-
based fMRI study has found a linear increase in motion as
task difficulty increased that was larger among MS patients
with lower cognitive ability (Wylie et al., 2014). Furthermore,
activation in the sensory-motor cortex during performance of a
complex bilateral finger tapping task was also found to be greater
in control subjects compared to relatively healthy MS patients,
as a consequence of head motion in MS (Lowe et al., 2006).
However, the effects of head motion in task-fMRI studies of MS,
especially in early stages where head motion can be less evident
but still present, and considering other task designs, were not
systematically explored.

There is a plethora of methods described in the literature to
correct head motion effects, which can be due to gradual head
shifts and sudden movements of the head known as motion
outliers. There are methods directly correcting the images for
motion artifacts, either prospectively (Zaitsev et al., 2017; Huang
et al., 2018; Maziero et al., 2020) or retrospectively (Glover
and Pauly, 1992; Graedel et al., 2017; Rettenmeier et al., 2022).
However, these are technically complex. The most common
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approach to compensate for the effects of head shifts is at
the signal modeling level, after realigning all fMRI volumes to
a reference volume (Power et al., 2015). The position of the
head in space is described at each volume relatively to the
reference volume using rigid body transformations by 6 motion
parameters (MPs): translational displacements along X, Y, and Z
axes; and rotational displacements of pitch, yaw, and roll. Then,
these 6 MPs can be included as nuisance regressors in a General
Linear Model (GLM) analysis of the fMRI data to account for
the variance of the BOLD signal explained by the head shifts.
However, because residual BOLD variance associated with head
shifts can still be present, additional MP-derived regressors have
been suggested, namely the temporal derivatives of the MPs
(Power et al., 2013) and the quadratic terms, resulting in a
total set of 12 MPs and 24 MPs, respectively (Turner et al.,
1996; Satterthwaite et al., 2013). Additionally, motion outliers
are more problematic and generate the most critical BOLD
signal changes (Power et al., 2013). These can be identified
as spikes in the data time courses and cause large variations
in image intensity. Such spikes are not accurately estimated
using rigid body transformations, and thus the realignment step
or the regression of the MPs fails to account for them. As
a solution, several metrics have been proposed for describing
subject motion and the detection of motion outliers, the most
common being the Root Mean Squared head position change
(RMS movement), the Framewise Displacement (FD), and the
Derivative or root mean square VARiance over voxelS (DVARS),
with the latter being a particular form of the RMS. Power
et al. (2013) compared the FD and DVARS metrics in terms
of movement characterization and found that these provide
very similar results, however, it was unclear whether one index
captures data quality better than the other. In any case, when
these summary statistics are above a certain threshold for a
particular volume (e.g., values of 0.5 for FD and 0.5% 1BOLD
for DVARS), this volume is considered essentially unusable.
Nonetheless, motion outliers can still be corrected through
different ways, with the most common being censoring and
scrubbing. Censoring is simply removing the outlier volumes
from the data, which might result in biased samples (Parkes
et al., 2018). Scrubbing follows a model-driven strategy, whereby
the volumes affected by extreme motion are identified and
additional scan nulling regressors (with 1 s at the volumes where
motion spikes are detected and 0 s elsewhere) are regressed
out from the fMRI either directly in the GLM as covariates or
nuisance regressors, or via multiple regression where the output
residuals constitute the signal free of noise (Siegel et al., 2014).
Alternatively, volumes associated with motion outliers can be
interpolated based on non-corrupted volumes (Mazaika et al.,
2009; Tierney et al., 2016; Caballero-Gaudes and Reynolds, 2017;
Mckechanie et al., 2019; Rudas et al., 2020).

Other approaches including realignment/tissue-based
regression with 24 MPs, principal component analysis (PCA) or
independent component analysis (ICA) methods (aCompCor
and ICA-AROMA, respectively), global signal regression, and

censoring of motion-contaminated volumes as described in
Mascali et al. (2021) were compared for task-based functional
connectivity. In Ciric et al. (2017) the same denoising pipelines
plus spike regression (de-spiking) and scrubbing have been
compared in a resting state framework, suggesting that different
strategies may be appropriate depending on the context.
The same methods were evaluated with data from clinical
populations in Parkes et al. (2018). Despite all the worthy
efforts, there is still no consensus regarding the optimal number
of MP-related regressors to consider for tackling head shifts, nor
the most appropriate additional approach to mitigate motion
outliers (Zaitsev et al., 2015). Also, the volume interpolation
method was not addressed in these previous studies and
comparisons of the same approach but with different motion
detection metrics (e.g., FD vs. DVARS) were not reported.

These issues raise the importance of these processing steps
in functional connectivity studies where one wants to study
functionally connected networks in task-based fMRI, due to the
stimulation or cognitive processing irrespective of head motion.
Thus, it is crucial to investigate the interaction effect of the
disease and experimental design with strategies for correction
of motion effects, to provide robust measures that might help
to understand the pathophysiology of the disease and also serve
as a tool for disease assessment of progression, ideally in a real-
world clinical scenario. Taking this into consideration, we aim to
characterize head motion and compare the most used correction
strategies in clinical context using fMRI data collected from
early diagnosed MS patients and healthy control subjects, during
the performance of one visual passive task and one (more
demanding) visual perceptual decision-making task. We started
by computing head motion metrics for the two groups to study
if there were relevant differences between groups. Next, we
compared the most used strategies to correct the effects of head
motion and tested if the group has influence on the choice of the
correction method. The strategies we compared are models with
6 and 24 MPs to deal with head gradual movements, and models
with 6 or 24 MPs plus methods for tackling motion outliers to
investigate if these can provide a better correction than models
with only 6 and 24 MPs. We compared scrubbing methods with
two different motion outliers’ detection metrics, FD and DVARS,
and volume interpolation. The best approach was determined
based on the quality of the data analyses, given by activation and
variance-explained metrics.

Materials and methods

Participants

All participants gave written informed consent to participate
in the study after a full verbal and written explanation of the
study. The study was approved by the ethics committees of the
Faculty of Medicine of the University of Coimbra (reference
CE-047/2018) and of the Centro Hospitalar e Universitário
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de Coimbra (CHUC) (reference CHUC-048-19), and the
study was carried in accordance with the Code of Ethics of
the World Medical Association (Declaration of Helsinki) for
experiments involving humans. Patients were recruited and
clinically assessed at the Neurology Department of the and
met the criteria for MS diagnosis according to McDonald
Criteria (Thompson et al., 2018). This study included 17 patients
recently diagnosed with Relapsing Remitting MS (RRMS) and
14 healthy control (HC) subjects. Patients also underwent
neuropsychological evaluation with the Brief International
Cognitive Assessment for MS (BICAMS) (Langdon et al., 2012).
Demographic data are presented in Table 1.

Experimental protocol

The experimental protocol, illustrated in Figure 1, consisted
of three functional runs: one run of a passive visual task, which
was a functional localizer of the human middle temporal area
[hMT+/V5, a low-level visual area well-known to respond to
simple motion patterns (Peelen et al., 2006; Van Kemenade
et al., 2014; Duarte et al., 2017)], and two runs of a decision-
making visual task of biological motion (BM) perception
(Duarte et al., 2022).

The localizer run consisted of 10 blocks of 18 s, with each
block comprising three periods: the first was a fixation period
with a red cross positioned at the center of the screen for 6 s.
During the second period, a pattern of stationary white dots
on a black background was shown for 6 s, followed by the
third (and final) period during which the dots were moving
towards and away from a central fixation cross at a constant
speed (5 deg/sec) for 6 s.

Biological motion stimuli were built based on human
motion capture data collected at 60 Hz, comprising 12
point-lights placed at the main joints of a male walker.
Each BM perception run consisted of 12 blocks of 40 s:
4 or 5 blocks (depending on the starting block) of the
point-light walker facing rightwards or leftwards (global
biological motion), 4 or 5 blocks showing only the point-
light located at the right ankle and moving rightwards
of leftwards (local biological motion), and 3 blocks of
point lights randomly positioned across the y axis, while
maintaining their true trajectory across the x axis (scrambled
motion). A total of 9 global, 9 local, and 6 random blocks
were presented during the two BM perception runs. After
each stimulus presentation, the participants reported the
direction of motion of the dots (left or right) by pressing
one of two buttons.

Functional MRI data acquisition

Imaging was performed at the Portuguese Brain Imaging
Network facilities (Coimbra, Portugal) on a 3T Siemens
MAGNETOM Prisma Fit MRI scanner (Siemens, Erlangen,

Germany) using a 64-channel RF receive coil. fMRI data
were acquired using a 2D simultaneous multi-slice (SMS)
gradient-echo echoplanar imaging (GE-EPI) sequence
(6 × SMS and 2 × in-plane GRAPPA accelerations), with
the following parameters: TR/TE = 1000/37 ms, voxel
size = 2.0 × 2.0 × 2.0 mm3, 72 axial slices (whole-brain
coverage), FOV = 200 × 200 mm2, FA = 68◦, and phase
encoding in the anterior-posterior direction. A short EPI
acquisition (10 volumes) with reversed phase encoding
direction (posterior-anterior) was also performed prior to
each fMRI run, for image geometric distortion correction.
A 3D anatomical T1-weighted MP2RAGE (TR = 5000 ms,
TE = 3.11 ms; 192 interleaved slices with isotropic voxel size of
1 mm3) was also collected for subsequent image registration.

For each participant, 192 fMRI volumes were acquired
during the functional localizer run, yielding 3.20 min of
duration. The two BM runs comprised 507 volumes each,
summing approximately 8.37 min in total.

Functional MRI data preprocessing

Functional MRI data were preprocessed using custom
scripts in MATLAB R©, using the SPM12 software with CAT12
and PhysIO toolboxes (Kasper et al., 2017), and FMRIB Software
Library (FSL). The preprocessing pipeline included: (1) slice
timing correction; (2) realignment of all fMRI volumes relative
to the first volume; (3) correction of geometric distortions
caused by magnetic field inhomogeneity, with FSL tool TOPUP
(Andersson et al., 2003); (4) bias field correction; (5) image
registration (functional to structural); (6) segmentation of the
T1 structural image (with CAT12 toolbox) to extract WM and
ventricular CSF masks; (7) estimation of nuisance regressors
(with PhysIO toolbox) such as cardiac and respiratory signals,
WM and ventricular CSF average BOLD fluctuations and head
motion (6 and 24 MPs and motion spikes); (8) Regression of
noise fluctuations. Then the “clean images” from the regression
were brain masked and the preprocessing was completed with
spatial smoothing with a 3 mm full-width-at-half-maximum
(FWHM) isotropic Gaussian kernel and high-pass temporal
filtering with a cut-off period of 24 and 80 s for the localizer and
BM tasks, respectively.

Motion quantification

We characterized and compared head motion in both
groups. For this characterization we individually computed
the typical framewise displacement (FD), meanFD, the FD
without considering the time series’ volumes affected by motion
outliers, meanFD’, the FD considering only the time points
where motion spikes were detected, meanFD”, the number
of spikes, and the amount of variance of the average BOLD
signal explained by motion, computed through the R2

adj(
BOLD
Motion )

formula (see below).
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TABLE 1 Demographic data of the participants.

Group N Age Gender Handedness EDSS Disease duration (months) Phenotype

MS 17 32.18± 8.05 6F 11R 2.05± 0.52 27.71± 23.26 RRMS

HC 14 30.75± 8.61 4F 8R – – –

“F” stands for female, “R” stands for right. EDSS, expanded disability status scale.

FIGURE 1

(A) Schematic representation of the functional localizer task. The duration of each period is indicated in seconds. Adapted from Huk and Heeger
(2002). (B) Schematic representation of the biological motion (BM) task. The duration of each period is indicated in seconds.

Framewise displacement is a scalar quantity to express
instantaneous head motion and it is computed through the time
series of the 6 MPs obtained during the realignment step (Power
et al., 2013). The FD is expressed by:

FDi =
∣∣4dix∣∣ + ∣∣4diy∣∣ + ∣∣4diz∣∣ + |4αi| (1)

+ |4βi| + |4γi| ,

where4dix = d(i−1)x − dix, and similarly for the other motion
parameters, dix, diy, diz, αix, βix,γix.

The FD was obtained with PhysIO toolbox. We computed
the FD without considering the motion spikes and the FD
considering only the spikes to understand how much the spikes
would contribute to degradation of the BOLD signal due to
intense movements. The number of spikes was given by the
number of points detected by FD with motion above 0.5 mm.

Derivative or root mean square VARiance over voxelS is
a measure computed from the BOLD signal itself and does
not depend on the MPs. It represents how much the intensity
of a volume changes in comparison to the previous one
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(Power et al., 2013). The DVARS metric is given by:

DVARS (4I)i =
√
〈[4Ix(

−→x )]
2
〉 =

√
〈

[
Ii (
−→
x) − Ii−1(

−→
x)
]2
〉,

(2)
where Ii (

−→
x) is the image intensity at locus (

−→
x) on frame i and

angle brackets denote the spatial average over the whole brain.
The DVARS was computed with FSL tool fsl_motion_outliers,
and motion outliers were identified by thresholding the DVARS
at the 75th percentile plus 1.5 times the inter-quartile range.

We also computed the R2
adj(

BOLD
Motion ) measure as an additional

metric to quantify motion between groups, which was estimated
by the coefficient of determination adjusted for the degrees of
freedom, defined according to Montgomery et al. (2012):

R2
adj(

BOLD
Motion

) = 1−
N − 1

N − P − 1

∑N
i = 1 ε2

i∑N
i = 1 (bi − b)

2 (3)

where b is the average BOLD signal, N is the number of
volumes, and P the number of motion regressors; ε denotes
the residual of the model under analysis, which is described by
ε = b− βX, where β is the matrix containing the MPs, and β the
associated weights estimated using a GLM framework. For each
method (combination of MPs with scrubbing/interpolation)
we computed the percentage of variation of the BOLD signal
without correction for motion effects explained by the motion
regressors. The higher the value of R2

adj, the more variance of the
BOLD signal is explained by motion, so the better is the method
in capturing and correcting for head motion effects on the data.

Here, we tested 6 and 24 MPs because they represent
the two extreme approaches complexity-wise (Maknojia et al.,
2019). The 6 MPs were obtained during realignment and
the 24 MPs which correspond to squares of the 6 MPs and
temporal derivatives were obtained with PhysIO toolbox. Then
we compared the different correction methods between groups
based on quality metrics (described below). The goal is to
identify which strategy, among the combination of 6 MPs or
24 MPs with scrubbing with FD, scrubbing with DVARS or
volume interpolation is better to mitigate the effects of motion.
Models with only 6 and 24 MPs were designed to understand
which set of MPs is better for dealing with gradual movements.
To correct the impact of gradual head motion, 6 MPs and 24
MPs are regressed out from the BOLD signal in the regression
step of the preprocessing pipeline. The scrubbing method was
implemented by identifying the motion spikes, through FD and
DVARS with the thresholds mentioned above, with 1’s and 0’s
elsewhere in the design matrix. Then these regressors are also
regressed out from the BOLD signal in the regression step of the
preprocessing pipeline. Volume interpolation was implemented
with ArtRepair toolbox as the final step of the preprocessing
where the affected volumes were firstly identified by FD with
a threshold of 0.5 mm and then interpolated based on non-
corrupted volumes. Finally, a signal free of motion-related noise
is ready to be integrated in a General Linear Model (GLM)

framework to obtain the statistical maps where the quality
metrics will be computed to compare the different correction
approaches.

Statistical analysis

The GLM framework was used to map the regions involved
in our tasks. It is basically a linear regression represented by:

b = Xβ + ε (4)

with b the time series from one voxel, X the design matrix,
β the model parameters, ε, the normally distributed error (or
residuals) with zero mean (Pernet, 2014). Onsets and durations
of each experimental condition were included in the model of
the BOLD signal as regressors of interest representative of our
tasks. For the localizer task we ended up with two regressors
representing periods showing static points and moving points
whereas for the BM tasks three regressors representing periods
showing global biological motion, local biological motion, and
scrambled motion were added to the model. These regressors
were built based on unit boxcar functions with ones during
the respective periods, and zeros elsewhere and convolved with
a canonical, double gamma hemodynamic response function
(HRF). The HRF-convolved regressors were then included in
a GLM that was subsequently fitted to the fMRI data. After
the fitting, the β weights are estimated, which represent the
relevance of each regressor in explaining the variance of the
data. Here, we set out to study brain regions that are activated
when visual motion is present. Thus, the areas associated
with these conditions were localized according to the contrasts
[motion − static] and balanced [global BM motion + local
BM motion + scrambled motion − baseline] for the localizer
and BM runs, respectively. We used family wise error (FWE)
correction for multiple comparisons based on Random Field
Theory (RFT), and we only considered activations as significant
those with a threshold of p < 0.05, with a cluster-level threshold
of p< 0.05. One GLM was estimated for each participant and for
each run, thus each participant ended up with 9 statistical maps
per run: (i) map in which the only preprocessing step related
to motion effects was realignment of the volumes to the first
volume of the temporal series. These maps act as control to see
how much motion-related noise was corrected with the different
correction methods; (ii) map with 6 MPs; (iii) map with 24 MPs;
(iv) map with 6 MPs and scrubbing with FD; (v) map with
6 MPs and scrubbing with DVARS; (vi) map with 6 MPs and
volume interpolation; (vii) map with 24 MPs and scrubbing with
FD; (viii) map with 24 MPs and scrubbing with DVARS; (ix)
map with 24 MPs and volume interpolation. From the resulting
activation maps, the quality metrics were extracted.

Quality metrics
The maximum (Z-max) and mean (Z-mean) Z-score values

were extracted from each statistical map in each subject. Z-max
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is the highest Z-score value detected in the activation maps—
region/cluster with the highest activation, Z-mean is the average
Z-score value of all significant clusters in the activation map.
These two measures are correlated but may not always follow
the same tendency, i.e., a participant with a higher Z-max, when
compared to others, may not have the higher Z-mean. The Z
values indicate the sensitivity of the model in detecting brain
regions that are associated with our tasks. The higher the values
of Z, the higher is the accuracy of the correction method (Bosch,
2000). We decided to average the Z-score values of the three runs
(one run of localizer task and two runs of BM task) because the
Z-score values were very similar across the runs and the regions
that activate in each one are the same, as expected, because
participants performed visual motion tasks in both.

Comparisons
To statistically compare the amount of head motion between

groups, a repeated measures design, a two-way ANOVA with
one between subjects’ factor Group and one within subjects’
factor Run was applied separately to measures of FD, number
of spikes, and R2

adj
( BOLD
Motion

)
(dependent variables). To evaluate

the performance of the correction methods tested here, models
of analysis of variance with repeated measures for the quality
metrics, Z-max and Z-mean, were used. To compare the
strategies mostly used to correct the gradual head shifts, a
two-way mixed MANOVA (one between-subjects and one
within-subjects factor) was performed. Similarly, to compare
the strategies for correcting motion outliers’ effects and to
study if scrubbing or volume interpolation methods are worth
adding to the models with only 6 or 24 MPs for correction
of gradual shifts, a three-way mixed MANOVA (one between-
subjects and two within-subjects factors) was performed. The
between-subjects factor in the two comparisons is Group, which
has two nominal unrelated or independent categories: Multiple
Sclerosis (MS) and control (HC) participants. For the first
comparison, the within-subjects’ factor is the MPs (number
of motion parameters), with two levels (6 MPs and 24 MPs)
and for the second comparison, the within-subjects’ factors are
the MPs and motion outliers’ Correction Method, with three
levels (INTERP, FD, and DVARS). For both comparisons, the
dependent variables are the quality metrics, Z-max and Z-mean.
We included age as covariate for all statistical tests.

A workflow to facilitate the comprehension of the
methodology applied is presented in Figure 2.

Results

Motion characterization

Motion characterization, evidencing FD measurements,
R2

adj(
BOLD
Motion ) and the number of spikes for both groups, is

represented in Figure 3. The two-way interaction for these

metrics were not statistically significant: p[R2
adj(

BOLD
6MPs )] = 0.547;

p[R2
adj(

BOLD
24MPs )] = 0.823; p[R2

adj(
BOLD

6MPs + INTERP )] 0.812;
p[R2

adj(
BOLD

24MPs + INTERP )] = 0.82304; p[R2
adj(

BOLD
6MPs + FD )] = 0.812;

p[R2
adj(

BOLD
24MPs + FD )] = 0.82304; p[R2

adj(
BOLD

6MPs + DVARS )] = 0.768;
p[R2

adj(
BOLD

24MPs + DVARS )] = 0.768; p (meanFD) = 0.773; p
(meanFD’) = 0.452; p (meanFD”) = 0.452; p (#Spikes) 0.764.

Comparison of correction methods

The quality metrics of the models, group mean Z-max and
Z-mean, for models with only MPs regressors for correction
of gradual shifts are shown in Table 2. In Table 3 we present
the metrics for the models with the combination of MPs for
correction of gradual shifts and motion outliers’ correction
methods.

The two-way interaction of the two-way mixed MANOVA
was non-significant p (Z-max) = 0.077; p (Z-mean) = 0.932.
Subsequently, the main effect of MPs was significant (p< 0.001),
with pairwise comparisons showing higher Z-scores for maps
with 6 MPs, suggesting that using 6 MPs is better than using 24
MPs regardless of the group. Figure 4 shows mean activation
maps of models containing 6 and 24 MPs for each group.

The three-way interaction from the three-way mixed
MANOVA was non-significant, p (Z-max) = 0.535; p (Z-
mean) = 0.052. The interaction Method and Group was
significant, p (Z-max) = 0.045; p (Z-mean) = 0.435. As this
interaction was significant, we computed simple main effects
through a one-way MANOVA with one within subjects’ factor,
Method, for each group. Pairwise comparisons showed the
following order of outliers’ correction method performance for
each group: in MS patients INTERP > DVARS > FD, p (Z-
max) < 0.001 and p (Z-mean) < 0.001, although between
DVARS and FD there are no significant differences, p (Z-
max) = 0.281 and p (Z-mean) = 0.211; and in HC subjects
INTERP > FD > DVARS, p (Z-max) < 0.001 and p (Z-
mean) < 0.001, although between DVARS and FD only Z-max is
marginally different, p (Z-max) = 0.045 and p (Z-mean) = 0.418.
These results show that volume interpolation exhibits the best
performance in both groups.

Figure 5 illustrates mean BOLD signal inside the Z-max
cluster, located in the visual region hMT+, before and after
correction of motion effects and mean FD time courses for one
example participant of each group.

Discussion

There is a lack of consensus regarding which is the best
approach to mitigate the effects of head motion in task-
fMRI data. Reaching a consensus on the best strategy is even
more important in the clinical context to produce reliable
interpretations and foster applications in neurology. In this
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FIGURE 2

Workflow describing the methodology applied. Dashed outline and full outline boxes represent measures (outputs) and processes, respectively.
Blue and yellow colors are related to motion quantification/characterization analysis and comparison of correction methods, respectively.

study we compared different strategies to compensate for head
motion in fMRI data in a group of MS patients and a group of
HC performing two visual tasks. We found that the combination
of 6 MPs with volume interpolation of motion outliers was the
best correction approach in both groups.

Characterization of head motion

We started by characterizing head motion in the two groups
to study if the presence of disease affects motion occurrence.
This comparison revealed that no significant differences in head
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FIGURE 3

Motion quantification. Violin plots of motion metrics for both groups. R2 describes the amount of BOLD signal variation (without motion
correction) explained by each set of regressors describing motion. Higher values of R2 means better performance of the method. meanFD is the
mean framewise displacement, meanFD’ is the mean FD without considering motion outliers, meanFD” is the mean FD considering only the
motion outliers. Higher values indicate more movement. #Spikes is the number of motion spikes. Red and blue represent the groups of MS
patients and HC, respectively. The dots and vertical lines in each group represent the mean ± standard deviation of the values of the three runs.
Both distributions are quite similar, evidencing no differences in motion metrics between groups, as supported by the ANOVA.

TABLE 2 Metrics to assess the quality of the models using motion
correction of gradual head shifts with 6 MPs and 24 MPs.

Correction Group Z-max Z-mean

6 MPs MS 8.59± 0.53 4.79± 0.49

HC 8.34± 0.68 4.64± 0.38

24 MPs MS 8.31± 0.62 4.64± 0.45

HC 7.96± 0.89 4.49± 0.35

Values are presented as mean± standard deviation in each group of participants.

motion were found between MS patients and HC, i.e., early
diagnosed patients do not seem to move more than the HC
participants. While previous studies found clear evidence of
greater motion in patients with MS than in HC subjects (Wylie
et al., 2014; Saccà et al., 2018), our results may be due to the
fact that the participants in this study are in early stages of
the disease, have lower levels of EDSS and therefore do not
show significant physical disabilities. Furthermore, in this study
patients with MS are cognitively preserved, while others have
investigated patients with cognitive impairment and suggested
that healthy individuals and cognitively preserved patients with
MS may perform the cognitive task with enough efficiency that
cerebral resources remain available for remaining still (Wylie
et al., 2014). These authors have also shown a linear increase
in movement of patients with MS and HC (to a less extent)
as task difficulty increased. In this case, it might happen that

TABLE 3 Metrics to assess the quality of the models using a
combination of 6 MPs or 24 MPs with each method to correct the
motion outliers’ effects.

Metrics

Correction MPs Group Zmax Zmean

INTERP 6 MPs MS 8.61± 0.52 4.80± 0.49

HC 8.36± 0.72 4.67± 0.38

24 MPs MS 8.31± 0.62 4.90± 1.08

HC 7.96± 0.91 4.49± 0.34

FD 6 MPs MS 8.53± 0.52 4.77± 0.51

HC 8.28± 0.66 4.59± 0.36

24 MPs MS 8.25± 0.63 4.62± 0.46

HC 7.87± 0.88 4.45± 0.34

DVARS 6 MPs MS 8.55± 0.53 4.78± 0.49

HC 8.24± 0.67 4.58± 0.38

24 MPs MS 8.26± 0.64 4.64± 0.46

HC 7.81± 0.92 4.43± 0.33

Values are presented as mean ± standard deviation in each group of participants.
“INTERP” stands for volume interpolation models, “FD” are the models with scrubbing
using FD as the outliers’ detection metric, “DVARS” represents the models with scrubbing
using DVARS as the outliers’ detection metric.

our task is not demanding enough for these effects to stand
out. Regarding the metrics we used to compare motion between
groups, in addition to the well-known FD, we computed two
variations of FD to investigate if the overall motion observed
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FIGURE 4

Group mean activation maps, resulting from the contrast [motion–no motion] in all runs. On the left are represented activation maps resulting
from models with 6 MPs. On the right are represented the activation maps resulting from models with 24 MPs. Results are thresholded at a voxel
p-value < 0.05, FWE corrected for multiple comparisons. The color bar scale represents t-values. We can observe slightly higher extent of
significant activations (red arrow) in the maps with 6 MPs which is consistent with the results of the statistical analysis (higher z-values for 6 MPs
models).

in each participant was mainly due to gradual head shifts or
due the observation of motion outliers (abrupt motion spikes).
The violin plots of these metrics show that values of FD without
considering the points where motion outliers were detected are
very similar to the conventional FD (all time points) values,
supporting that in this cohort the abrupt movements of the
head were not very problematic in overwhelmingly influence
overall motion quantification. Nevertheless, it can be interesting
and useful to check these motion metrics before deciding which
correction approach should be put into practice.

Comparison of strategies for
correction of head motion effects

Next, we compared the most commonly used strategies to
correct the effects of head motion. In this comparison we aimed
to study: (1) if the group has influence on the performance of
the correction method; (2) if including temporal derivatives of
MPs would improve the correction of gradual movements; (3)
if models with only these MPs regressors would be enough to
compensate for all the head motion, even for the more abrupt
movements; (4) if not, which combination, between number of
MPs and scrubbing with FD, scrubbing with DVARS and volume
interpolation would correct better the effects of motion outliers.

The comparison between correction approaches
considering only 6 or 24 MPs revealed that higher Z-score
values are obtained when considering 6 MPs regardless the
group, which suggests that using 6 MPs is better than using
24 MPs. This recommends that task-specific brain regions are
detected with higher sensitivity and less biased by noise due to a

better correction when using 6 MPs relatively to using 24 MPs.
The activation maps resultant from the GLM analysis show that
maps with 6 MPs have slightly larger activations (more activated
voxels) than maps with 24 MPs, even with the R2

adj being higher
for the approaches with 24 MPs. The R2

adj indicates the amount
of variance of the average BOLD signal without correction
for motion effects that is explained by motion regressors. The
higher the values, the more motion contributions are removed.
However, too much variance might be removed with too
many motion parameters, including information not related
to motion, which seems to be the case as the approaches with
6 MPs have lower R2

adj values but higher Z-scores. This might
sound counterintuitive, as adding more parameters to a model
usually leads to overfitting. However, if the correlation between
the 24 MPs is high, the result might be an “overcorrection.”
Actually, these results are consistent with literature reporting
that adding temporal derivatives can result in loss of degrees
of freedom and therefore loss of valuable information (Power
et al., 2015; Yang et al., 2019). In the context of this visual
motion task, correcting head shifts with 6 MPs seems to be
enough to cover the effects of gradual movements.

The traditional and common analyses rely only on a set
of MPs as regressors to correct motion effects. However, to
answer the question if models with only MPs regressors would
be enough to compensate for all the head motion, even for
the more abrupt movements, a third analysis was performed
in which models with combinations of MPs and motion
outliers’ correction methods were considered. The Z-score
values are very similar between the models with only the MPs
regressors and the rest of the models combining MPs with
detection and correction of motion outliers. At a first glance
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FIGURE 5

(Left) Time courses of the BOLD signal, before motion correction and after motion correction with each approach, and mean FD for one
participant from the HC group. (Right) Time courses of the BOLD signal, before motion correction and after motion correction with each
approach, and mean FD for one participant from the MS group. Measurements of FD allow the identification of spikes in the data, e.g., close to
300 s (HC participant) and 350 s (MS participant).

this might mean that it’s not worth adding additional methods
to compensate for the effects of more abrupt movements.
However, actually because of that similarity and the fact that
there is no considerable decrease in Z-values, which would
suggest loss of valuable information, we consider that adding
methods such as scrubbing, or volume interpolation might
indeed crucial to eliminate residual noise and to compensate
for putative motion outliers’ effects. The R2

adj values indicated in
Figure 3 with an example of original and corrected time courses
for one participant of each group also suggest that adding
such methods help, indeed, to compensate for extra motion
contributions without loss of signal of interest. Several authors
have also reported the inadequacy of MP regressors to remove all
motion artifacts, arguing that even expansions including terms
from 3 time points (e.g., 36 MPs) leave much motion-related
variance in data and therefore other more attractive methods are
necessary to correct for motion effects (Power et al., 2014, 2015;
Patriat et al., 2017).

This third analysis revealed that activation maps with
higher Z-scores ended up being those that result from models
with 6 MPs and volume interpolation in both groups. To
our knowledge there are no previous studies with a direct
comparison, in the same data, of scrubbing, which is a modeling
strategy, and volume interpolation, although the two approaches
are widely used. Tierney et al. (2016) have shown that cubic
spline interpolation of motion corrupted volumes improves
the quality of fMRI in healthy children that typically move in
the scanner. In our study, we tested volume interpolation in
a clinical context with a population prone to characterize for

high motion. The fact that volume interpolation outperformed
the scrubbing methods in both groups suggests that it is a
robust method independently of the presence of disease and can
be considered as an optimal method to improve future fMRI
analyses. Thus, it is important to discuss the impact of modeling
motion outliers and interpolation in the data. Modeling motion
outliers through scrubbing is a widely used technique to correct
sudden movements of the head, however, it creates temporal
discontinuities as it involves some effective data loss, in which
volumes to be regressed out do not contribute to the task-related
parameter estimates, reducing the available degrees of freedom
(Jones et al., 2021). Interpolation overcomes this problem and
avoids side effects in the high pass filtering step (Michielsen
et al., 2011). However, volume interpolation induces synthetic
data, and the duration of the censored segment, as well as the
type of interpolation (linear, Fourier, wavelets, or splines), may
produce different effects that further depend on the choice of
these parameters (Caballero-Gaudes and Reynolds, 2017). These
effects and the negative impacts of using interpolation must be
further investigated.

This analysis also allowed us to directly compare the
performance between motion outliers’ detection metrics, FD
and DVARS. Although the difference is not significant, FD
appears to perform better in the HC group while DVARS is
preferable in the MS group. Despite the easiness in producing
either measure, it is presently unclear whether one index
captures data quality better than the other (Power et al., 2013).
Yet, this outcome might indicate that the best approach is
dependent on the specific neurological disease, which reiterates
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the need of testing different correction methods in specific
populations such as MS.

Considering our results, we suggest that the optimal
method, which reflects the best compromise between
homogeneity of methodology between groups and performance,
is the combination of 6 MPs with outliers’ interpolation as it
surpasses the performance of the common scrubbing methods.
Moreover, this study represents a first step towards a more
standard procedure for correction of head motion effects in
fMRI studies in this context.

Limitations

One limitation might be the fact that we used activation
metrics to assess the quality of the correction approaches.
However, we already knew a priori which regions would be
involved in the processing of these tasks, since it is a network
that has already been well-studied (Sokolov et al., 2018; Duarte
et al., 2022) and the activation maps confirm the recruitment of
such regions. Furthermore, to have a better ground truth, one
would have to resort to simulated data or studies with more
invasive methods, such as intracranial electroencephalography
(iEEG), or combine techniques such as fMRI-iEEG to detect
with high precision (both spatial and temporal) the activation
of regions during task-performance.

Other possible drawback may be that this evaluation was
limited to a single dataset with a relatively limited sample size,
thus, these results should be seen as suggestive regarding the
recommendations for future studies. It will be important in
future studies to increase the size of the cohorts, namely by
including participants with higher amplitudes of motion to see
if these results hold and are generalizable Yet, to our knowledge
there are no fMRI studies with focus on neurological disorders
such as MS to identify the best approach for correcting head
motion. So, this work is a first and crucial step towards this
goal, especially because motion may be more present in this
population, and it may benefit more of correction methods.
Nonetheless, we recognize that MS can cause alterations in brain
activity, which could bias the results. Also, other pathologies
with different pathophysiology could lead to different results
showing a different correction method as optimal. For instance,
Parkes et al. (2018) evaluate different strategies to correct motion
effects in independent samples of people with schizophrenia
and obsessive-compulsive disorder and recommend volume
censoring as the method that performs best. However, Parkes
and colleagues did not compare volume interpolation with the
other strategies. Thus, validation of these results is needed in
future studies, namely in other healthy/patient cohorts alone
with more data and considering other task designs.

Apart from more traditional ways to deal with head motion,
there are other techniques that can be implemented. External
optical tracking systems that constantly measure the position

of the head or the use of dedicated sequences with navigator
echoes or active markers are examples. These methods act
directly on the k-space domain and correct motion effects
during data acquisition (Zaitsev et al., 2017; Huang et al., 2018;
Maziero et al., 2020; Rettenmeier et al., 2022). However, it
is important to consider the context in which these methods
are applied. Here, we focused our study on commonly and
easily applicable methods, since we wanted to employ them
in a clinical context. Nonetheless, the potential improvement
of modeling the BOLD response that can be achieved with a
combination of prospective and retrospective image correction
methods should be investigated in future studies.

Conclusion

In this study we characterized head motion in patients
with early MS and healthy controls and compared different
techniques to tackle head motion in task-based fMRI data
to reach a consensus on the best strategies to use. There
were no differences between groups in motion quantification
metrics, and data analysis of quality metrics have shown that
using 6 MPs and volume interpolation is the best correction
approach. Nevertheless, this work suggests that the presence of
a neurological disease might influence the optimal approach,
which should be investigated in each specific context. This
study is the first to systematically investigate the best approach
for correcting head motion in MS, through comparison of
commonly used and easy to implement approaches to correct
head motion effects such as motion regression, scrubbing, and
volume interpolation. Also, it is the first time that volume
interpolation was compared with other methods which ended
up showing its clinical value since it improved the accuracy of
fMRI analyses, which is crucial in clinical neuroscience studies
with patient populations.
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