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Brain resting-state functional connectivity (rsFC) has been widely analyzed

in substance use disorders (SUDs), including methamphetamine (MA)

dependence. Most of these studies utilized Pearson correlation analysis

to assess rsFC, which cannot determine whether two brain regions are

connected by direct or indirect pathways. Moreover, few studies have

reported the application of rsFC-based graph theory in MA dependence.

We evaluated alterations in Tikhonov regularization-based rsFC and rsFC-

based topological attributes in 46 MA-dependent patients, as well as the

correlations between topological attributes and clinical variables. Moreover,

the topological attributes selected by least absolute shrinkage and selection

operator (LASSO) were used to construct a support vector machine (SVM)-

based classifier for MA dependence. The MA group presented a subnetwork

with increased rsFC, indicating overactivation of the reward circuit that makes

patients very sensitive to drug-related visual cues, and a subnetwork with

decreased rsFC suggesting aberrant synchronized spontaneous activity in

subregions within the orbitofrontal cortex (OFC) system. The MA group

demonstrated a significantly decreased area under the curve (AUC) for

the clustering coefficient (Cp) (Pperm < 0.001), shortest path length (Lp)

(Pperm = 0.007), modularity (Pperm = 0.006), and small-worldness (σ,

Pperm = 0.004), as well as an increased AUC for global efficiency (E.glob)

(Pperm = 0.009), network strength (Sp) (Pperm = 0.009), and small-worldness

(ω, Pperm < 0.001), implying a shift toward random networks. MA-related

increased nodal efficiency (E.nodal) and altered betweenness centrality were

also discovered in several brain regions. The AUC for ω was significantly

positively associated with psychiatric symptoms. An SVM classifier trained

by 36 features selected by LASSO from all topological attributes achieved

excellent performance, cross-validated prediction area under the receiver
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operating characteristics curve, accuracy, sensitivity, specificity, and kappa of

99.03 ± 1.79, 94.00 ± 5.78, 93.46 ± 8.82, 94.52 ± 8.11, and 87.99 ± 11.57%,

respectively (Pperm < 0.001), indicating that rsFC-based topological attributes

can provide promising features for constructing a high-efficacy classifier for

MA dependence.
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Introduction

According to the World Drug Report 20211 and Annual
Report on Drug Control in China in 2021,2 approximately
3.59 million people worldwide use drugs each year, and
methamphetamine (MA) is the most abused drug in China
and one of the most abused across the world. Long-term use
of MA causes molecular alterations in the dopamine system,
contributing to nerve terminal impairment in the central
nervous system and leading to damaged motor skills, rapid
cognitive decline, increased anxiety, psychotic disorders, violent
behavior, hallucinations, delusions, and depression (Rusyniak,
2013).

In recent years, functional connectivity (FC) has gained
visibility as a salient tool for assessing functional brain
organization and as an important biomarker for neurological
disorders (Pervaiz et al., 2020). The resting-state-based
functional connectome has been extensively applied to help
reveal neurological mechanisms, as well as applied for diagnosis
and prediction of treatment outcomes, in patients with
substance use disorders (SUDs), such as cannabis (Ramaekers
et al., 2022), heroin (Sun et al., 2018), cocaine (Yip et al., 2019),
and MA dependence (Kohno et al., 2016; Ipser et al., 2018;
Malina et al., 2021). Kohno et al. (2016) analyzed resting-
state FC (rsFC) between brain networks and reported that
acute exposure to MA increased connectivity between both
the thalamus and cerebellum to sensorimotor areas and the
middle temporal gyrus and decreased connectivity between
the sensorimotor and middle temporal gyrus networks. In
terms of chronic MA dependence, Ipser et al. (2018) found an
increased correlation between anterior and posterior default
mode networks (DMN), which became less apparent with
increasing duration of abstinence from MA. By combining
18F-fallypride positron emission tomography with rsFC studies
in MA-dependent patients, Kohno et al. (2016) concluded that
ventral striatal D2-type receptor signaling may affect the system-
level activity within the mesocorticolimbic system, providing

1 https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html

2 http://www.nncc626.com/2022-06/23/c_1211659746.htm

a functional link that may help explain high impulsivity in
patients.

To date, there is no single widely accepted standard for
estimating FC. A full (Pearson) correlation analysis between
brain regions of interest (ROIs) or voxels is the most commonly
used method to analyze FC; however, this approach cannot
distinguish whether two brain regions are connected through
direct or indirect pathways (Pervaiz et al., 2020). To alleviate
this drawback, Pervaiz et al. (2020) defined partial correlations
as the correlations between the time series of two network nodes
after adjusting for the time series of all other network nodes.
This method, however, becomes problematic when there are
not considerably more timepoints than nodes. The Tikhonov
regularization, one of the approaches based on regularization,
also referred to as L2 ridge regression involving a regularization
term 0 = αI, was implemented to address these problems.
As an efficient and stable method, Tikhonov regularization
has been shown to increase predictive power compared to
simple partial correlations and hence outperformed other
connectivity estimation techniques in terms of both qualitative
and quantitative evaluation (Pervaiz et al., 2020).

As rsFC analyses focus only on relationships between brain
regions, graph theory offers a powerful mathematical framework
for modeling the human brain as a complex network or
graph whose topological architectures can be quantitatively
characterized (Xia and He, 2017). This technique has been
applied to analyze human brain structural and functional
networks in the context of SUDs (Sjoerds et al., 2017; Sun
et al., 2017; Pandria et al., 2018). However, few studies
have reported the application of rsFC-based graph theory
in the context of MA dependence. By comparing 17 MA-
dependent individuals with normal controls, Mansoory et al.
(2017) reported disrupted global topological graph properties
under several network sparsity thresholds (up to 9 out of 41
thresholds). To avoid issues caused by evaluating topological
features dependent on an arbitrarily chosen threshold, some
studies integrated the curve of the graph indices over a range
of thresholds, i.e., the area under the curve (AUC) for each
topological attribute, before conducting statistical analysis of
network topology attributes. The integrated AUC metric has
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been used in previous brain network studies and is sensitive
for detecting topological alterations in brain disorders (Zhang
J. et al., 2011; Zhu et al., 2016; Vriend et al., 2018). In the present
study, we hypothesized that MA dependence disrupts rsFC
and rsFC-based topological organization of intrinsic functional
brain networks. To verify our hypothesis, we collected Tikhonov
regularization-based rsFC data from MA-dependent patients
and healthy control (HC) subjects and analyzed the AUC for
topological attributes of their resting-state functional networks
using graph theoretical approaches. Between-group differences
and relationships with clinical variables were investigated with
univariate methods.

An important emerging trend in the analysis of SUDs brain
imaging data is the application of supervised machine-learning
techniques on complex, high-dimensional datasets to make
predictions at the individual level with high accuracy, making
them potential clinically actionable diagnostic/prognostic tools
(Barenholtz et al., 2020). To date, the most commonly used
machine-learning algorithm in the classification of SUDs [e.g.,
cannabinoid (Celik et al., 2020), nicotine (Wetherill et al.,
2019), cocaine (Mete et al., 2016), and heroin (Zhang Y.
et al., 2011) dependence] is the support vector machine (SVM)
(Noble, 2006), which can help achieve a good separation of
a sample into two groups by determining the hyperplane
separating the multidimensional (multivariate) feature spaces
of the two classes. Yan et al. (2021) constructed an SVM
with rsFC network topological attributes from MA-dependent
patients and achieved a classification accuracy of 73.2%.
Li et al. (2019) trained an SVM on arterial spin labeling
(ASL) data, a variant form of functional magnetic resonance
imaging (fMRI), to classify MA-dependent subjects with an
accuracy of 89%. By exploiting AUC data from rsFC network
topological metrics derived from Tikhonov regularization-based
rsFC data, the present study also aimed to develop an SVM
that could improve the classification efficacy of MA-dependent
individuals.

Materials and methods

Participants

Forty-six right-handed, male MA-dependent patients were
recruited from the voluntary detoxification ward of Key
Laboratory of Addiction Research of Zhejiang Province, which
unit has now been incorporated into Ningbo Kangning Hospital
since 2020. Forty-six age- and education-matched, right-
handed, healthy male subjects were recruited as HCs from local
communities. All patients were diagnosed by one expertized
psychiatrist. Two expertized psychiatrists interviewed all
subjects and collected their clinical data.

The inclusion criteria for MA dependence were (a) meeting
the Diagnostic and Statistical Manual of Mental Disorders,

Fourth edition, Text revision (DSM-IV-TR) criteria for current
MA dependence. All patients received an MRI scan within 4–
7 days after the last use of MA. (b) Patients had no current
or history of dependence on other drugs of abuse (except
nicotine). The exclusion criteria included (a) having a history
of psychiatric illness, neurological disorder, or major chronic
medical illnesses before MA use and (b) having metallic or
electronic devices or implants.

The same inclusion and exclusion criteria were applied for
the HCs but without a history of drug abuse or dependence,
other than nicotine.

The psychiatric symptoms of MA-dependent patients were
rated using the Hamilton Anxiety Rating Scale (HAMA)
(Hamilton, 1969) and Brief Psychiatric Rating Scale (BPRS)
(Overall and Gorham, 1962). The BPRS covers five factors:
anxiety-depression, lack of vitality, activity, hostility-suspicion,
and thinking disorder.

This study was approved by the Institutional Review Board
of Ningbo Medical Center Lihuili Hospital, Ningbo University,
Zhejiang, China. Written informed consent was obtained from
all subjects or their relatives.

Magnetic resonance imaging data
acquisition

All MRI data were acquired using a 3.0-T clinical MR
image unit (Discovery MR750, GE Healthcare, Milwaukee, WI,
USA) with an eight−channel head coil. Conventional axial
T2−weighted images had previously been obtained to rule
out cerebral infarction or other evident lesions. The structural
MRI data were collected using a sagittal T1-weighted three-
dimensional sequence [repetition time (TR), 7.4 ms; echo time
(TE), 3.2 ms; inversion time, 450 ms; flip angle, 12◦; field of
view, 25.6 mm × 25.6 mm; matrix, 256 × 256; and voxel
size = 1 mm × 1 mm × 1 mm].

Resting-state fMRI (RS-fMRI) data were acquired for 6 min
and 40 s using a T2∗-weighted gradient-echo planar imaging
(EPI) sequence (TR = 2,000 ms; TE = 30 ms; field of
view = 24 mm × 24 mm; matrix size = 64 × 64; voxel
size = 3.75 mm × 3.75 mm × 4 mm; flip angle = 90◦; 38
transverse slices; and 200 phases). All subjects were placed in the
supine position with foam padding between their head and the
head coil to minimize head motion and instructed to keep their
eyes closed and not fall asleep.

Preprocessing of
resting-state-functional magnetic
resonance imaging data

The RS-fMRI data were preprocessed using Data Processing
Assistant for Resting-State fMRI (DPARSF) toolbox, a

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1014539
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1014539 November 12, 2022 Time: 15:8 # 4

Li et al. 10.3389/fnins.2022.1014539

convenient plug-in software within DPABI (v6.1_220101)
software (Yan et al., 2016). For RS-fMRI data preprocessing,
the first four volumes were discarded to avoid signal instability.
Slice timing was conducted to compensate for systematic
slice-dependent time shifts, and realignment to the first volume
was performed to correct for head movement artifacts. The
realigned images were spatially transformed to a standard
Montreal Neurological Institute template using Advanced
Normalization Tools (ANTs) (Avants et al., 2009) (v2.1.0)
and resampled to a voxel size of 2 mm × 2 mm × 2 mm.
Then, the cerebrospinal fluid signal, white matter signal and
24 head motion parameters were regressed out to produce
a residual blood oxygen level-dependent (BOLD) signal.
Afterward, the images were smoothed with a 6-mm full-
width at half-maximum (FWHM) kernel and bandpass
filtered (0.01–0.08 Hz) to reduce the low-frequency drift
and physiological high-frequency noise, including the breath
and heartbeats. The RS-fMRI data for each subject were
checked for head motion. In accordance with the criteria
that the translation and rotation of head motion in any
direction were not more than 2 mm or 2◦, no subjects were
disqualified.

Graph construction and calculation of
topological attributes

In brain rsFC networks, graphs are composed of nodes, i.e.,
brain regions and edges between pairs of nodes. All the graphs
in this study were undirected and weighted.

In the present study, a brainnetome atlas was utilized
to parcellate the brain into 246 ROIs (105 cortical regions
and 18 subcortical regions per hemisphere) as network nodes
(Fan et al., 2016). DPABINet, a module within DPABI, was
used to quantify the Tikhonov regularization-based correlation,
i.e., edge, between the averaged time series of the BOLD
signals for each pair of nodes, and then a 246 × 246
connectivity matrix was generated, which was subsequently
converted to a normal distribution using Fisher’s r-to-
z transformation. To exclude possible effects of spurious
correlations between network nodes, a sparsity threshold
(i.e., the ratio of the number of existing edges divided
by the maximum possible number of edges in a network)
was applied to individual connectivity matrices to retain
only high correlations. As there is currently no definitive
way to select a single threshold, each connectivity matrix
was empirically thresholded using a wide range of sparsity
thresholds [0.05, 0.4] (interval = 0.01) to generate sparse and
weighted networks.

A number of topological attributes of the rsFC
networks were calculated for each subject under every

sparsity threshold using the brainGraph package3 in R
(v4.1.0) for Linux (R Core Team, 2018). The global-level
attributes included clustering coefficient (Cp), shortest
path length (Lp), network strength (Sp), local efficiency
(E.loc), global efficiency (E.glob), modularity and small-
worldness [i.e., σ (Humphries and Gurney, 2008) and
ω (Telesford et al., 2011)], and the local-level attributes
included nodal efficiency (E.nodal) and betweenness centrality
(btwn.cent). A network was regarded as a small world when
σ > 1 and when ω was within the range [−0.5 to 0.5].
Furthermore, we calculated the AUC for each topological
attribute, which provides a summarized scalar for topological
characterization of brain networks independent of single
threshold selection.

Statistical analysis

Comparative analyses
All comparisons in the present study were performed using

general linear models (GLMs) with permutation tests. The
statistical significance level was set at Pperm < 0.05. A network-
based statistic (NBS) method was employed to determine
intergroup differences in connectionwise connectivity strength
(Zalesky et al., 2010). First, a GLM was specified for each
element of the 246 × 246 connectivity matrix. A 246 × 246
matrix of t-statistics associated with the contrast of interest was
thresholded by an initial P value threshold (P < 0.001). A graph
was then created from this matrix, and the largest connected
component was recorded. Next, the data were permuted
5,000 times according to the Freedman–Lane procedure in
which each subject was randomly assigned to one of the
subject groups. The same GLM was again specified at every
matrix entry, a t-statistic matrix was calculated for the
permuted dataset, and the associated P values were thresholded
(P < 0.001). Finally, the largest connected component
was recorded for the resultant graph, which was repeated
for each permutation. The null distribution of the largest
connected component sizes was used to calculate a Pperm value
associated with the connected components of the observed
data.

In terms of detecting intergroup differences in the AUC
of topological attributes, the AUC data were permuted. The
same GLM was tested on the permuted data, and the maximum
statistic was recorded, building a null distribution. This
procedure was repeated 10,000 times for global-level measures
and 5,000 times for local-level measures. The null distribution
of the maximum statistics and the observed statistics was
compared to estimate a Pperm value for each attribute.

3 https://github.com/cwatson/brainGraph
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The topological attributes with significant intergroup
differences were examined for Pearson’s partial correlations with
clinical parameters (duration of MA use, age at first MA use,
HAMA score, and BPRS and its five factor scores) controlling
for age, education, and Fagerstrőm test for nicotine dependence
(FTND) score. The correlations were adjusted for multiple
comparisons using Bonferroni correction.

Support vector machine-based
classification

Least absolute shrinkage and selection operator (Zhang
et al., 2021), a regularization and variable selection algorithm
implemented in the glmnet package4 in R, was used to
select an optimal subset of features from all global and
nodal topological attributes with 10 repeats of fivefold cross-
validation. The features selected were used to construct a
linear SVM using the caret package5 in R. The procedure is
similar to that detailed in our previous work (Li et al., 2019).
In brief, a fivefold cross-validation framework was applied
to evaluate the performance of the classifier. Before every
cross-validation, the training dataset was scaled to between
0 and 1, and the acquired parameters were used to scale
the test dataset. As the fivefold split is random, we repeated
the fivefold cross-validation 100 times. The only parameter,
C, which controls the trade-off between the margin width
and the misclassification penalty, was set to the default value
(C = 1).

Accuracy, sensitivity, specificity, and kappa were calculated
to quantify the cross-validated predictive performance of these
classifiers. Specifically, accuracy is related to the proportion
of subjects who were correctly classified into the MA-
dependence or HC groups, and sensitivity and specificity
are related to the proportion of individuals in the MA-
dependence and HC groups correctly classified. Kappa is
similar to accuracy, except that it is normalized at the
baseline of random chance on the dataset. The performance
of the classifier was also assessed using receiver operating
characteristic (ROC) curves from the results of the cross-
validation data (Li et al., 2019). The area under the
ROC curve (AUC) represents the classification power of a
classifier, with larger AUC values indicating better classification
power.

A one-tailed permutation test was utilized to evaluate
the probability of obtaining cross-validation accuracy values
higher than those achieved by chance. All subjects were
randomly relabeled, and fivefold cross-validation classification
was performed. This procedure was repeated 5,000 times, and
the number of times the accuracy for the permuted labels was

4 https://cloud.r-project.org/package=glmnet

5 https://github.com/topepo/caret/

higher than that derived for the real labels was recorded. A Pperm

value for the classification was then calculated by dividing this
number by 5,000.

Results

Demographics and clinical data

The subject demographic features are displayed in Table 1.
The subjects in the MA group had similar ages (34.43 ± 7.19),
years of education (13.2 ± 4.2), and FTND scores (6.01 ± 2.78)
to those in the HC group (age, 34.37 ± 10.31; education,
13.5 ± 3.7 years; and FTND, 5.98 ± 2.57). With respect
to the MA group, the mean duration of self-reported MA
use was 51.80 ± 36.99 months. The daily dosage of MA
use was 0.45 ± 0.53 g. The age of the first MA use was
29.72 ± 7.20 years. The time between last MA use and MRI scan
was 5.67 ± 1.08 days.

Network-based statistic analyses

In the MA group, when compared with the HC group,
the NBS analysis revealed one subnetwork with 10 nodes
and 10 edges with an increased correlation (Pperm = 0.002)

TABLE 1 Subject demographics.

MA-
dependent
patients

HCs T P

Number 46 46

Age (years) 34.43 ± 7.19 34.37 ± 10.31 0.035 0.972

Education (years) 13.2 ± 4.2 13.5 ± 3.7 −0.331 0.742

Duration of MA use
(months)

51.80 ± 36.99 – – –

Daily dose of MA
use (grams)

0.45 ± 0.53 – – –

Age of the first MA
use (years)

29.72 ± 7.20 – – –

Time between last
use and MRI scan
(days)

5.67 ± 1.08 – – –

HAMA 22.39 ± 8.57 – – –

BPRS 39.11 ± 11.08 – – –

Anxiety-depression 12.8 ± 3.22 – – –

Lack of vitality 7.41 ± 2.9 – – –

Activity 6.5 ± 2.45 – – –

Hostility-suspicion 6.28 ± 3.01 – – –

Thinking disorder 6.09 ± 2.85 – – –

FTND 6.01 ± 2.78 5.98 ± 2.57 0.530 0.597

MA, methamphetamine; HC, healthy control; HAMA, Hamilton Anxiety Rating Scale;
BPRS, Brief Psychiatric Rating Scale; FTND, Fagerstrõm test for nicotine dependence.
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and another subnetwork with 12 nodes and 14 edges with
a decreased correlation (Pperm < 0.001; Figure 1). For the
1st subnetwork, most increased connectivity existed between
the orbitofrontal gyri (OFG) and inferior temporal cortices.
Each decreased connectivity in the 2nd subnetwork had at
least one node in the OFG, and half of these connections
were present between subregions within the OFG. Based on
the seven networks defined by Yeo et al. (2011), the brain
regions that comprised the two subnetworks could generally be
categorized into the following two groups of networks: À the
frontoparietal (FP) network, limbic network, visual network,
ventral attention (VA) network, and subcortical gray matter
(SCGM) network; Á the DMN, FP network, limbic network, and
SCGM network.

Graph theory analysis

Compared with the HC group, the MA group demonstrated
significantly decreased AUC for Cp (Pperm < 0.001), Lp
(Pperm = 0.007), modularity (Pperm = 0.006), and small-
worldness (σ, Pperm = 0.004), as well as increased AUC for
E.glob (Pperm = 0.009), Sp (Pperm = 0.009), and small-worldness
(ω, Pperm < 0.001), of the rsFC network (Figure 2). It should
be noted that the closer ω is to 0, the more a network is
considered small world. In the present study, the ω at every
network sparsity threshold for each subject was smaller than
zero, and the increased AUC for ω is suggestive of impaired
small-worldness.

In the MA group, significantly increased E.nodal was
detected in the right parahippocampal gyrus (PhG_R_6_6,
Pperm = 0.011), right amygdala (Amyg_R_2_1, Pperm = 0.024;
Amyg_R_2_2, Pperm = 0.003), and right caudal hippocampus
(Hipp_R_2_2, Pperm = 0.003; Figure 2). With respect to
btwn.cent values, the MA group manifested higher levels in
the left dorsal granular insula (INS_L_6_5, Pperm = 0.007) and
lower levels in the medial part of the left mOFG (OrG_L_6_3,
Pperm = 0.022; Figure 2).

ω was the only topological attribute that presented
significant associations with clinical variables: anxiety (r = 0.484,
Pcorrected = 0.006), BPRS scores (r = 0.617, Pcorrected < 0.001),
lack of vitality scores (r = 0.581, Pcorrected < 0.001), activity
scores (r = 0.693, Pcorrected < 0.001), and hostility-suspicion
scores (r = 0.548, Pcorrected = 0.001; Figure 3).

Support vector machine-based
classification

From all 499 global and local topological attributes,
36 features were selected by LASSO, including small-
worldness ω, E.nodal for 15 brain regions (INS_L_6_6,
OrG_L_6_3, Tha_R_8_8, SPL_L_5_1, OrG_R_6_3, IPL_R_6_1,

MTG_R_4_2, Hipp_R_2_2, BG_L_6_6, LOcC_R_2_2,
Tha_L_8_3, PhG_R_6_6, Hipp_L_2_1, ITG_R_7_5, and
Amyg_R_2_2) and btwn.cent for 20 brain regions (CG_R_7_1,
SFG_R_7_5, IFG_L_6_1, OrG_L_6_4, INS_L_6_6, STG_L_6_5,
OrG_L_6_3, STG_L_6_1, Amyg_R_2_1, pSTS_L_2_1,
LOcC_R_4_1, IPL_R_6_4, BG_L_6_6, BG_R_6_6, SFG_L_7_2,
Tha_L_8_3, IFG_L_6_4, STG_L_6_3, Hipp_R_2_2,
and INS_L_6_5).

An SVM trained by the selected features exhibited excellent
performance, with a cross-validated prediction area under the
ROC curve, accuracy, sensitivity, specificity, and kappa of
99.03 ± 1.79, 94.00 ± 5.78, 93.46 ± 8.82, 94.52 ± 8.11, and
87.99 ± 11.57%, respectively (Pperm < 0.001) (for the detailed
weights of the 36 features in the SVM model, see Table 2
and Figure 4A; for the ROC for cross-validated prediction
performance of classifiers trained on topological attributes
selected using LASSO, see Figure 4B).

Discussion

To our knowledge, this is the first study to analyze rsFC
using Tikhonov regularization, and investigate altered AUC
of rsFC-based topological attributes in SUDs. In the present
study, NBS analysis on Tikhonov regularization-based rsFC data
revealed a subnetwork with increased FC and a subnetwork with
decreased FC in MA-dependent patients. The brain regions that
comprised the two subnetworks originated from the FP, limbic,
visual, VA, and SCGM networks, and most of these brain regions
were located in the OFG. By using graph theory on these data,
the MA-dependent patients presented altered AUC of global
topological attributes, i.e., decreased small-worldness (σ, ω), Cp,
Lp, and modularity and increased E.glob and Sp. ω was the only
topological attribute that presented significant correlation with
HAMA/BPRS scores in the MA group. Moreover, aberrant local
topological attributes, i.e., three regions with increased AUC of
E.nodal, one region with increased AUC of btwn.cent and one
region with decreased AUC of btwn.cent were also discovered
in the patients. An SVM trained with features selected by
LASSO from AUC of all topological attributes achieved excellent
classification of MA-dependent patients with a cross-validated
accuracy of 94.00 ± 5.78%.

Intergroup differences in resting-state
functional connectivity

Confirmed by diffusion tractography imaging (Hsu et al.,
2020), the orbitofrontal cortex (OFC) receives visual inputs
directly from the inferior temporal cortex (ITC) and then
projects back to the ITC (Rolls, 2000). The responses of the
visual neurons in the OFC encode the reward value of visual
stimuli. As most increased FC values in the MA-dependent
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FIGURE 1

Results from network-based analyses of resting-state functional connectivity (rsFC) differences between methamphetamine (MA)-dependent
patients and healthy controls (HCs). Red lines/balls: edges/nodes with increased rsFC; blue lines/balls: edges/nodes with decreased rsFC.

patients existed between the OFC and ITC in this study, it
suggests enhanced transmission of information between the two
structures and may indicate overactivation of the reward circuit,
making patients very sensitive to drug-related visual cues.

As a functionally heterogeneous structure, the OFC can be
divided into multiple regions distinguished by cytoarchitecture
with strong fiber connections between subregions (Hsu et al.,
2020). This structure has been proven to play a critical role in
compulsive drug-seeking and drug relapse (Schoenbaum and
Shaham, 2008). A number of MRI and metabolic studies have
reported altered structure (Daumann et al., 2011; Nakama et al.,
2011; Li et al., 2017) and hypofunctionality (Volkow et al.,
2001; Paulus et al., 2002, 2003; Sekine et al., 2003; London
et al., 2004; Li et al., 2019) of the OFC in MA-dependent
patients. However, very few studies have explored FC patterns
within the OFC in patients with SUDs. The NBS analysis
in this study revealed that in the MA-dependent subjects, all
associations with decreased connectivity had one node in the
OFG, and half of these connections were with subregions
within the OFC. Similarly, by using voxel-mirrored homotopic
connectivity (VMHC), an index to measure the strength of the
functional connection between a voxel/ROI and its counterpart
in the opposite hemisphere, researchers have found significantly
reduced VMHC between the bilateral medial OFCs (mOFCs)
in patients with internet gaming disorder (Chen et al., 2020) or
codeine cough syrup-dependence (Qiu et al., 2017). Ieong and
Yuan (2017), by using functional near-infrared spectroscopy
in heroin users, also reported weaker functional connections

between these structures. These results confirmed the key
role of the OFC in the development of MA dependence and
indicate widespread MA-related impairment in synchronized
spontaneous activity of subregions within the OFC system,
which are thought to be implicated in the core characteristics
of SUDs, such as biased associations between stimuli and
reward responses and deficits in properly inhibiting drug intake
and aversive/withdrawal reactions to potentially dangerous
situations (Goldstein et al., 2005). However, in addition to a
decreased connection between the bilateral lateral OFC, Ma
et al. (2010) found stronger rsFC between the left OFC (left
lOFC) and right mOFC and between the bilateral mOFC in
heroin users. These discrepant results may have stemmed from
different data processing methods and different drugs used and
require further investigation to uncover the neuromechanisms
underlying the altered rsFC circuits within the OFC system.

In this study, connectivity between the right subgenual
anterior cingulate gyrus (sgACC, CG_R_7_7) and the
right medial OFG (right mORG, ORG_R_6_3, BA 11) was
significantly attenuated in MA-dependent patients. Both of
these structures have been verified to play important roles in
regulating emotion (Rudebeck et al., 2014). Ramirez-Mahaluf
et al. (2018), by applying graph analysis methods to rsFC
data, identified a brain network that included the sgACC and
mOFG and is associated with sadness processing. Moreover, the
stronger the rsFC between these two structures is, the better
the clinical response to accelerated intermittent theta burst
stimulation (a repetitive transcranial magnetic stimulation
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FIGURE 2

Beeswarm and violin plots of global/local topological attributes with evident inter-group differences. Red: healthy controls (HCs); green:
methamphetamine (MA)-dependent group.

FIGURE 3

Scatter plots of correlations between ω and Hamilton Anxiety Rating Scale (HAMA) and Brief Psychiatric Rating Scale (BPRS) scores in the
methamphetamine (MA)-dependent patients.
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TABLE 2 The weights (absolute values) of the 36 features in the
support vector machine (SVM) model selected by least absolute
shrinkage and selection operator (LASSO).

Topological
attributes

Brain region Weight

btwn.cent STG_L_6_3 0.421360994

btwn.cent OrG_L_6_4 0.342771471

btwn.cent CG_R_7_1 0.335849235

E.nodal IFG_L_6_1 0.327454015

E.nodal LOcC_R_2_2 0.312574091

E.nodal PhG_R_6_6 0.311454086

E.nodal SPL_L_5_1 0.310386064

btwn.cent pSTS_L_2_1 0.294406751

btwn.cent IFG_L_6_4 0.294347901

E.nodal MTG_R_4_2 0.287266929

E.nodal ITG_R_7_5 0.272386256

btwn.cent SFG_R_7_5 0.243216991

E.nodal OrG_R_6_3 0.239476562

btwn.cent STG_L_6_5 0.233816459

E.nodal Amyg_R_2_2 0.229682465

btwn.cent INS_L_6_5 0.22587306

btwn.cent SFG_L_7_2 0.209940876

E.nodal BG_L_6_6 0.205896391

btwn.cent INS_L_6_6 0.200320952

btwn.cent IPL_R_6_4 0.187731758

btwn.cent Tha_L_8_3 0.175864611

btwn.cent OrG_L_6_3 0.172619151

E.nodal Hipp_R_2_2 0.165738702

btwn.cent Amyg_R_2_1 0.162644422

ω 0.158284882

E.nodal INS_L_6_6 0.153673004

E.nodal OrG_L_6_3 0.152450515

E.nodal Hipp_L_2_1 0.14171235

E.nodal Tha_L_8_3 0.134457447

E.nodal Tha_R_8_8 0.115415487

E.nodal IPL_R_6_1 0.100856487

btwn.cent STG_L_6_1 0.048967981

btwn.cent BG_L_6_6 0.033907512

btwn.cent LOcC_R_4_1 0.03328945

btwn.cent Hipp_R_2_2 0.015441907

btwn.cent BG_R_6_6 0.004633169

btwn.cent, betweenness centrality; E.nodal, nodal efficiency.

protocol) in patients with depression (Baeken et al., 2017). As
there is a high prevalence of comorbid anxiety/depression and
MA dependence (National Institutes on Drug Abuse, 2020),
this disrupted connectivity was presumed to be a brain imaging
biomarker for mood disturbance in MA-dependent individuals.
London et al. (2004), by using [18F]fluorodeoxyglucose positron
emission tomography, revealed MA-related significantly
lowered glucose metabolism in the sgACC, which may underlie
this weakened connectivity.

By using task-fMRI-based FC analysis, Ross et al. (2013)
proved the critical role of connectivity between the lOFC and
hippocampus in both working memory and long-term memory
when separate representations of overlapping stimuli need to
be disambiguated, which is important for social interaction, i.e.,
enabling us to distinguish between changing contexts and social
situations and then to act appropriately. The same connectivity
under resting-state conditions, i.e., rsFC between the lateral part
of the left OFG (left lOFG, OrG_L_6_6) and the hippocampus
(Hipp_R_2_1), was weakened in MA-dependent patients in
the current study. Related to these results, MA-induced long-
lasting impairments in working memory have been reported
in male rats (Braren et al., 2014). Several studies have also
yielded a correlation between impaired working memory and
MA dependence in both current and abstinent chronic MA users
(Guerin et al., 2019). We postulate that this altered connectivity
may indicate impaired working memory in patients, which
needs further research by analyzing the correlation between this
rsFC and measures of working memory.

Intergroup differences in global
topological organization in the
resting-state functional connectivity
network

A healthy human brain is a typical model of a small-world
network. The characteristics of small-world networks, i.e., high
Cp and short Lp with optimized balance between functional
segregation and integration, make it possible to maintain
efficient and specialized modular information processing and
rapid global information transmission in the network (Rubinov
and Sporns, 2010). In the present study, although the nature of
small-world architecture was conserved in the MA group, the
aberrant AUC for σ and ω in this group indicated impaired
small-worldness that, together with decreased Cp (a measure
of network functional segregation), Lp (a measure of network
integration), and Sp (a measure of network density or the
total “wiring cost” of the network) and increased E.glob imply
an MA-related shift toward random networks (Jiang et al.,
2013; Zhu et al., 2016; Park et al., 2017). The shift in brain
functional network configuration toward a random network
organization has been exhibited for internet gaming addiction
(Park et al., 2017), heroin dependence (Jiang et al., 2013), and
other neuropsychiatric disorders, such as schizophrenia (Zhu
et al., 2016), depression (Long et al., 2015), and Alzheimer’s
disease (AD) (Stam et al., 2009). These kinds of topological
alterations suggest less functional segregation, which also lead to
a less optimized functional organization, in the MA-dependent
brain.

In addition, the MA group in this study demonstrated lower
modularity, a global topological attribute measuring the division
of a network into separate modules (Rubinov and Sporns,
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FIGURE 4

(A) The brain regions with topological attributes selected by Lasso for the construction of an SVM classifier for MA dependence. The size/color
of each ball indicates the weight of every brain region with topological attributes. (B) Receiver operating characteristics curves for
cross-validated prediction performance of classifiers trained on topological attributes selected using least absolute shrinkage and selection
operator (LASSO) and general linear models (GLMs), respectively.

2010). A module is characterized as having denser connections
between nodes within the module but sparser connections
with nodes outside the module. Reduced network organization,
implied by lower modularity and Cp in MA-dependent brains,
suggested poor functional network segregation. Consistent with
these results, single-cell whole-brain imaging-based functional
networks from male mice administered cocaine/MA/nicotine
for 1 week (Kimbrough et al., 2021), as well as white
matter structural networks in synthetic cannabinoid users
(Celik et al., 2020), have also presented decreased modularity.
By using simple computer simulations on the dynamics of
modularization in a minimal substrate, Lipson et al. (2002)
suggested that modularity can spontaneously arise under
changing environments, i.e., higher modularity results in higher
adaptability of their behavior to acquire rewards and to avoid
punishments (Hu, 2016). As impairments in this ability are one
of the main symptoms of addiction, we presume that decreased
modularity in MA dependence is closely related to the failure to
adapt to environmental changes, which then results in aberrant
reward function and behavior.

Intergroup differences in local
topological attributes in the
resting-state functional connectivity
network

In the patients in this study, the brain regions with
significantly increased E.nodal included the right amygdala

and hippocampus, and a similar pattern was also discovered
in patients with major depressive disorder (Ye et al., 2016).
The hippocampus and amygdala are core parts of the affective
processing network. Specifically, the amygdala manifests greater
activity that lasts longer when depressed patients process
negative stimuli, and the hippocampus shows enhanced activity
in the recall of negative, not positive, stimuli after encoding in
the amygdala (Ye et al., 2016). Therefore, it is plausible that
these results provide biomarkers for comorbid depression and
MA dependence from the perspective of the local topology.

The insular cortex is known to be involved in interoception,
decision making, anxiety, pain perception, cognition, mood,
threat recognition, and conscious urges (Ibrahim et al., 2019).
In MA users, the left insula has been reported to present volume
reduction (Hall et al., 2015), greater activation across risky
and safe decisions (Gowin et al., 2014), and decreased glucose
metabolism (Vuletic et al., 2018). Consistent with these findings,
our results, i.e., the left insula as the only structure with MA-
related increment of betweenness centrality and as important
features for constructing a high-efficacy classifier, supports the
perspective that left insular cortex is involved in key aspects
underlying MA-dependence.

It has been suggested that the mOFC is involved
in processing stimulus-reward associations and with the
reinforcement of behavior (Rolls, 2000). Moreover, in a task-
fMRI-based FC and rsFC study on alcohol use disorder that
enrolled 1890 subjects, the mOFG was suggested to be a
central/core structure in a neural network that may underlie the
onset of alcoholism (Jia et al., 2021). In this network, the authors
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identified two independent regulatory pathways between the
mOFC and the dorsal periaqueductal gray (dPAG) in the
brainstem contributing to alcohol abuse; in particular, excitatory
regulation during the resting state was related to impulsive
behavior, and inhibitory regulation upon receiving a non-
reward (relative punishment) was related to compulsive alcohol
use. In the present study, the left mOFC with a significant
reduction in betweenness centrality, which is a more sensitive
measure of the importance of a node connecting disparate parts
of a network, may indicate dysregulation of this core structure in
the substance dependence-related network and hence inevitably
lead to dependence on MA.

Support vector machine classifier

The only global topological attribute selected by LASSO to
train an SVM was small-worldness ω. The currently accepted
definition of a small-world network is that it has clustering
comparable to a regular lattice and Lp comparable to a random
network. σ is defined by comparing clustering and Lp to that
of a comparable random network, which means that networks
with very low clustering can also be, and indeed are, defined
as small world. To solve this defect, Telesford et al. (2011)
introduced, which is defined by comparing network clustering
to an equivalent lattice network and Lp to a random network;
ω has the following advantages: (a) it provides a more accurate
estimation of small-worldness; (b) it is less sensitive to the
size of a network and benefits from inherent scaling, which
provides a powerful tool for comparing and ranking small-
world properties in various systems. From the perspective of
machine learning, our results suggested that ω is a better
feature for the classification of MA dependence than the other
global topological attributes. Moreover, the evident positive
associations between the AUC for ω and HAMA/BPRS scores
in the MA group indicate that ω may be an ideal brain network
marker for the psychiatric symptoms of MA-dependent patients.

Most of the regions with local topological attributes selected
by LASSO were from the DMN, limbic, FP, visual, attention, and
SCCM networks, covering four addiction-related interacting
circuits (reward, motivation/drive, memory and learning, and
control), attention circuits and emotion circuits as proposed
by Volkow et al. (2003). The excellent classification accuracy
of the SVM in the present study indicates that topological
attributes derived from rsFC networks may be promising
features for constructing a high-efficacy classifier for MA-
dependent individuals.

Limitations

Several considerations should be taken into account with
respect to the interpretation of the present results. First,

the relatively small sample size made it difficult to further
analyze the differences in rsFC networks between subgroups
(e.g., between male and female patients, between patients
without psychosis and, those with psychosis). Moreover, a
potential overfitting problem for the classifier can hardly
be avoided without establishing an independent test dataset.
A larger sample size in future studies would help enhance the
generalizability of the present classifier. Second, datasets with
other SUDs are needed to tell whether the methods applied
in the present study could also be sensitive to discover altered
rsFC-based connectome, and could construct a high-efficacy
classifier using rsFC-based topological attributes, in patients
with other SUDs. Third, the low sampling rate (TR = 2 s)
in the present study cannot completely eliminate the effects
of physiological noise, such as cardiac and respiratory noise,
on BOLD signals, which can affect the calculation of rsFC,
especially within the DMN, even after the application of
bandpass filtering (Yoshikawa et al., 2020). In future studies,
a faster sampling rate or algorithm for removing physiological
noise should be applied to address this problem (Liao et al.,
2013; Yoshikawa et al., 2020). Fourth, as this is a cross-sectional
study and no correlations were found between the topological
attributes and duration of MA use/age at first MA use, it is
unclear whether the altered topological attributes were the result
of MA dependence or a pre-addiction condition, which could
be clarified by genetic and longitudinal imaging studies in the
future.

In conclusion, the present study demonstrates an abnormal
brain Tikhonov regularization-based rsFC connectome in MA-
dependent patients from the perspectives of FC and topology.
The MA-related alterations in brain rsFC networks present
a shift toward random networks. The rsFC-based topological
attributes may be promising features for constructing high-
efficacy machine-learning-based classifiers for MA-dependent
individuals, which needs verification from a larger sample size.
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