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Cerebral vasospasm is a frequently encountered clinical problem, especially in

patients with traumatic brain injury and subarachnoid hemorrhage. Continued

cerebral vasospasm can cause cerebral ischemia, even infarction and delayed

ischemic neurologic deficits. It significantly affects the course of the disease

and the outcome of the patient. However, the underlying mechanism

of cerebral vasospasm is still unclear. Recently, increasing studies focus

on the pathogenic mechanism of microparticles. It has been found that

microparticles have a non-negligible role in promoting vasospasm. This

research aims to summarize the dynamics of microparticles in vivo and

identify a causal role of microparticles in the occurrence and development

of cerebral vasospasm. We found that these various microparticles showed

dynamic characteristics in body fluids and directly or indirectly affect the

cerebral vasospasm or prompt it. Due to the different materials carried

by microparticles from different cells, there are also differences in the

mechanisms that lead to abnormal vasomotor. We suggest that microparticle

scavengers might be a promising therapeutic target against microparticles

associated complications.

KEYWORDS

microparticle, cerebral vasospasm, endothelial microparticle, subarachnoid
hemorrhage, traumatic brain injury

Introduction

Cerebral vasospasm (CVS) is a common secondary injury in patients with
subarachnoid hemorrhage (SAH) and traumatic brain injury (TBI). Vasospasm occurs in
67% of aneurysmal SAH patients and is symptomatic in 30–40% (Baggott and Aagaard-
Kienitz, 2014). Among children with TBI, CVS takes up a high proportion (45.5%) of
events affecting the middle cerebral artery (O’Brien et al., 2010). CVS may contribute to
delayed ischemic neurologic deficits (DIND) and cerebral infarcts that seriously affect
patient outcomes. Nevertheless, the mechanism behind CVS is still confusing.
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Cerebral vasospasm is the narrowing of the arteries caused
by a persistent contraction of the intracranial blood vessels and
consequent changes in hemodynamics, which is mainly due to
multiple pathological factors. The diagnosis of CVS is mainly
based on the clinical symptoms, signs, and radiographic results
(mainly angiography). But there may be a mismatch between
radiographic findings and clinical outcomes. Asymptomatic
vasospasm means that patients showed no neurological
deficits, but vasoconstriction was found on radiography
(Aldakkan et al., 2017). Similarly, when neurological
deficits and radiographic findings occur simultaneously, it
is defined as symptomatic vasospasm (also called DIND)
(Francoeur and Mayer, 2016). Among these radiological
examinations, digital subtraction angiography is considered
the gold standard for diagnosing CVS. Nevertheless, cerebral
infarctions caused by tiny vasospasms cannot be detected
on radiological examinations. Regarding the mechanism
of CVS, previous studies mainly focused on inflammation,
smooth muscle contraction, thrombosis, hemostasis and
spreading depolarization (Perrein et al., 2015; Geraghty and
Testai, 2017). The treatment methods based on these theories
are not satisfactory (Daou et al., 2019; Neifert et al., 2021).
Therapeutic modalities that simply antagonize vasospasm, such
as endothelin blockers and calcium channel blockers, did not
improve neurological outcomes. These “unexpected results”
suggest that the problem is not so simple and we need a new
paradigm to explore the mechanisms of cerebral vasospasm.

Logsdon et al. (2015) concluded that a vasoconstrictor
released by damaged pericytes, intracranial pressure spike,
and intracranial hemorrhage caused by trauma can induce
CVS. They emphasized the important role of vasculature and
the neurovascular unit in CVS following TBI. Quintin et al.
(2022) proposed that there might be link between the glial-
lymphatic system disruption and CVS based on existing studies.
Although there is no direct evidence, it provides the direction
of subsequent research. There are some reported cases of
CVS occurring after surgical resection of intracranial tumor
(Bougaci and Paquis, 2017; Agarwal and Dutta Satyarthee,
2019). This is a rare but challenging complication with very poor
outcomes and multiple pathogenetic mechanisms contribute
to this (Alotaibi and Lanzino, 2013). Reversible cerebral
vasoconstriction syndrome (RCVS) is a complex neurovascular
disorder and the cerebral vascular tone dysfunction and blood-
brain barrier impairment are thought to be involved in RCVS.
Previous studies enrich the theoretical basis of CVS, but still
cannot fully explain CVS.

Microparticles (MPs, also called microvesicles) with
multiple biological effects may link these pathological changes
in tandem and there is the latest evidence supporting the
direct involvement of MPs in CVS (Wang et al., 2022). Their
results demonstrate that brain-derived microparticles (BDMPs)
constrict blood vessels depending on their structure. Thus, MPs
may serve as both markers and mediators of CVS.

Cellular MPs were first reported by Wolf (1967) as
dust produced by platelets. Afterward, the cognition of MPs
experienced an iterative process. The essence of MPs is their
cell-derived membranous structures that range from 100 to
1,000 nm in diameter (van Niel et al., 2018). Flow cytometry
is currently the most widely used technology for MPs research
due to its advantages in determining typing, and a few
are electron microscopy, mass spectrometry and nanoparticle
tracking analysis (NTA). MPs are composed of a phospholipid
bilayer and internal genetic material, bioactive molecules and
organelles and are considered as an additional mechanism for
intercellular communication, allowing cells to exchange these
materials (Figure 1A). MPs can also be prepared in vitro
and used in research (Aleman et al., 2011; Figures 1B,C).
Some studies have indicated that circulating MPs contribute
to coagulation, apoptosis, oxidative stress, inflammation, and
immune regulation (Voukalis et al., 2019). Almost all cell types
of the central nervous system (CNS) have been shown to release
MPs, which could be important for certain pathophysiological
processes (Schindler et al., 2014; Andjus et al., 2020). MPs
could cause increased vascular tone, which is observed in many
diseases (Tual-Chalot et al., 2012; Han C. et al., 2020). It is
therefore meaningful to explain how MPs affect CVS, which
could help further research into this condition. In this review,
we explore CVS from the perspective of MPs and put forward
promising treatment strategies. Research relevant to our topic
includes epidemiology of CVS, characterization and dynamics
of various MPs following SAH and TBI and their possible
mechanisms. Although both belong to extracellular vesicles,
exosomes are different from MPs in diameter and biogenesis
mechanisms (Xu et al., 2016; Hessvik and Llorente, 2018). Since
few studies are focusing on exosome-related vasospasm, it will
not be discussed too much in this review.

Changes in microparticles levels
associated with traumatic brain injury
and subarachnoid hemorrhage

The increase of MPs in plasma has been reported very early
after TBI (Jacoby et al., 2001). MPs from different cell sources
can be identified by their specific markers (Table 1). A study
including 16 patients with severe TBI found that endothelial-,
platelet-, and leukocyte-derived MPs (EMPs, PMPs, and LMPs)
were elevated 72 h after injury by flow cytometry. The peak
level of endothelial microparticles (EMPs) was ∼7 times
higher than the control (Nekludov et al., 2014). However, the
relationship between elevated MPs and pathological changes
in TBI is not clear. Tian first reported that MPs expressing
neuronal or glial cell markers (brain-derived microparticles,
BDMPs) were released from injured brain tissue and reached
the peak concentration in plasma 3 h after TBI and induced
a hypercoagulable state (Tian et al., 2015). Moreover, they
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FIGURE 1

Schematic and representative Transmission electron microscopy (TEM) images of the MPs. (A) Schematic diagram of MPs structure including
phospholipid bilayer, internal genetic material, bioactive molecules organelles, and exposed phosphatidylserine. (B,C) TEM of representative
platelet-derived MPs (PMPs) and monocyte-derived MPs produced by the stimulated parent cell. Scale bar is 200 nm. (D) TEM image of brain
derived MPs (BDMPs) from freeze-thawing injury. Scale bar is 200 nm. (E) TEM image of mitochondria (∗)-embedded BDMPs detected in plasma
samples from TBI mice. Scale bar is 500 nm.

TABLE 1 Microparticles marker associated with CVS.

Study type Year of
publication

Biomarker of MPs Putative role of MPs Source of MPs

Clinical research Sanborn et al., 2012 CD235a (erythrocyte); CD66b (neutrophil);
CD142 (tissue factor); CD146 (endothelial) vWF

Thrombosis; endothelial
dysfunction

Peripheral blood

Clinical research Lackner et al., 2010 CD31 (endothelial); CD41 (platelet) Cerebral vasospasm Peripheral blood

Clinical research Przybycien-Szymanska
et al., 2016

Haptoglobin; fibrinogen α and γ chain, synaptic
nuclear envelope protein 2, et al.

Cerebral vasospasm; immune and
metabolic processes;
cerebrovascular disease states

CSF

Basic research Bohman et al., 2016 Not given Cerebral vasospasm Peripheral blood

prepared BDMPs (Figure 1D) by freezing and thawing the brain
and simulated its procoagulant effect. Another study observed
the presence of glial fibrillary acidic protein (GFAP) and
its breakdown product (GFAP BDP) and UCH-L1 (neuronal
cell body biomarker ubiquitin C-terminal hydrolase-L1) in
higher concentrations in microvesicles and exosomes from
the cerebrospinal fluid (CSF) of patients with TBI compared
to control CSF (Karnati et al., 2019). This means that MPs
released by the damaged brain tissue enter the CSF. The role
of these MPs in CSF seems confused. But as the research
progresses, we found that MPs bear numbers of bioactive
effects and they can be disseminated, exchanged, and transferred
via MPs–cell interactions. The activation effect of BDMPs on
microglia/macrophages has been observed in vitro and may
relate to TBI-induced neuroinflammation (Rong et al., 2018).
Interestingly, a subset of BDMPs released during the acute
phase of TBI contains mitochondria (mtMPs, Figure 1E),

which synergize with platelets to facilitate vascular leakage by
disrupting the endothelial barrier (Zhao et al., 2016). In addition
to being in plasma, MPs can also appear in CSF following TBI,
which seems to be associated with poor prognosis and might
contribute to poor clinical outcomes (Morel et al., 2008). But
the study needs more data to support this conclusion. The
mechanism of BDMPs in secondary brain injury after TBI is
receiving more attention.

Elevated MPs have also been found in SAH patients.
Many subtypes of MPs have been reported in the
plasma of SAH patients by flow cytometry, including
CD105 + and CD62e + (endothelial cell), CD41 + (platelet),
CD45 + (leukocyte), CD235a + (erythrocyte), CD66b +
(neutrophil), CD145 + (tissue factor, TF), and
CD146 + (endothelial cell) (Lackner et al., 2010; Sanborn et al.,
2012). A clinical study found that tissue factor-associated MPs
and endothelial-associated MPs identified by flow cytometry
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are elevated in peripheral blood following SAH, and could
predict radiographic infarction 14 days after SAH (Sanborn
et al., 2012). In their study, MPs showed a potential link to
thrombosis, inflammation, and vasospasm after SAH. But, the
causal link between MPs and infarction remains uncertain due
to the confounding factors in the study. Although studies have
confirmed that MPs in CSF elevated, there is still a lack of
information on the types of MPs and their temporal dynamics
(Przybycien-Szymanska et al., 2016). To further illustrate their
biological activities, CSF MPs should be classified not only by
their cells of origin but also by their production, structures, and
functions.

Microparticles linked to subarachnoid
hemorrhage-related cerebral
vasospasm

Microparticles provide transport for multiple types of
“molecular cargo” from nucleic acids to lipids and proteins.
Przybycien-Szymanska et al. (2016) isolated MPs from CSF
for mass spectroscopy studies and revealed marked differential
protein expression among CVS patients. Some proteins such
as hemoglobin subunit were upregulated in patients who
developed post-SAH CVS, which are vasoconstrictor factors.
This was the first evidence of differential protein expression
in MPs derived from the CSF of CVS patients. Future studies
can exploit the advantages of proteomics techniques in finding
markers of MP. Saugstad et al. (2017) found some unique
RNA contents of MPs in SAH patients compared with other
CNS diseases, and these respective RNAs may provide insight
into which MPs are uniquely associated with SAH vasospasm.
MicroRNAs (miRNAs) can affect the metabolism of cerebral
vascular endothelial cells through various mechanisms and
finally cause CVS (Gareev et al., 2020).

Microparticles linked to traumatic brain
injury-related cerebral vasospasm

The latest research found that BDMPs injection decreased
cerebral blood flow, which is proven to cross the vascular
endothelium and contract smooth muscle cells strongly.
Furthermore, they could constrict isolated arteries and increase
smooth muscle cytoplasmic calcium, which is partially blocked
by nimodipine (Wang et al., 2022). This study is the most
direct evidence that MPs constrict smooth muscle cells and
is very convincing. However, whether this vasoconstriction
is endothelium-dependent has not been explored, after all,
the endothelium plays a pivotal role in the vascular activity.
Endothelin-1 is a key player mediating a strong vasocontractile
effect and was increased in the CSF of TBI patients (Michinaga
et al., 2020). A previous study demonstrated that elevated serum

MPs in a piglet model of TBI led to impaired hypotensive
cerebrovasodilation via overexpression of tissue plasminogen
activator, endothelin-1, and extracellular signal-regulated
kinase–mitogen-activated protein kinase (ERK-MAPK)
(Bohman et al., 2016). This is another direct evidence that MPs
promote CVS in conjunction with endothelin-1. It suggests
that the effect of MPs in promoting cerebral vasoconstriction
may be indirect by promoting endothelial cells to produce
vasoconstrictive substances. However, clinical studies found
the protective effect of endothelin antagonists is limited, which
suggests that the role of endothelin accounts for a small part
of the pathological mechanism. Therefore, it is not difficult
to understand that the traditional antispasmodic therapy has
little effect because the MPs act on the upstream pathway of
vasospasm.

Specific cell-derived microparticles

Endothelial microparticles
The relationship between MPs, endothelial activity and

modified vascular tone was elucidated in other studies
(Boulanger et al., 2001; Tual-Chalot et al., 2010). Vasomotor
function maintenance requires endothelium integrity.
Damage to the endothelium may cause abnormal blood
vessel contraction. Especially for EMPs, highly increased
concentrations were interpreted as indicative of cerebral
vascular damage (Mondello et al., 2018). The characteristics of
released EMPs appear to change with the functional status of the
pathological endothelium. EMPs were shown to be increased
in congenital heart diseases and could contribute to endothelial
dysfunction via P38 MAPK-dependent pathways (Lin et al.,
2017). Thus, these EMPs may represent novel biomarkers
of endothelial injury and dysfunction. One study suggested
that apoptosis in the endothelium of major cerebral arteries
may be involved in CVS after SAH, and caspase inhibitors
reduced angiographic vasospasm (Zhou et al., 2004). Lackner
et al. (2010) studied plasma samples from 20 SAH patients
and found that EMPs levels were significantly higher than
in healthy controls, and the changing trend of EMPs was
consistent with the occurrence of CVS, suggesting it could
be used as a predictive factor. Another study also found that
EMPs can reflect ischemic events (Jung et al., 2009). However,
the underlying mechanism remains unclear among these
researches. Increasing evidence suggests that MPs are not
simply a consequence of disease; rather, they might be the
initiating factor of a variety of pathological and physiological
changes (Chironi et al., 2009; Leroyer et al., 2010; Zhao et al.,
2017).

Red cell-derived microparticles
Erythrocytes regulate vasomotion through modulating

oxygen delivery and the scavenging and generation of nitric
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oxide (NO), which depend on the intracellular hemoglobin
(Hb) (Helms et al., 2018). The structure of red cell-derived
microparticles (RMPs) is very similar to that of erythrocytes,
so it can be inferred that RMPs also have this effect. Indeed,
RMPs are potent NO scavengers. The amount of Hb retained
in RMPs is ∼20% of the circulating RBCs, and they can
scavenge NO (Westerman and Porter, 2016). And Donadee
et al. (2011) confirmed similar phenomena. The RMPs reaction
with NO is ∼1,000-fold faster than with RBC-encapsulated
Hb and is only 2.5–3-fold slower than with cell-free Hb (Said
et al., 2017). Plenty of red blood cells (RBCs) entering the
CSF is the main pathological manifestation of SAH (Chen
et al., 2020). Cell-free Hb released by erythrocytes into the
CSF is suggested to cause CVS after SAH (Hugelshofer et al.,
2019). However, a question that cannot be ignored is whether
lots of RMPs are produced in the subarachnoid space after
SAH. Przybycien-Szymanska enriched MPs in CSF from SAH
patients with CVS and found that three hemoglobin subunits
were upregulated in MPs via mass spectroscopy (Przybycien-
Szymanska et al., 2016). Many RMPs that may exist in the CSF
of SAH patients could be closely related to the occurrence of
vasoconstriction, but additional confirmation is needed. RMPs
are elevated in circulating blood, while their contribution to
CVS is still not clear. Furthermore, there may be multiple
mechanisms by which RMPs promote vasospasm. A recent
study reported that circulating RMPs could exert significant
tension on blood vessels by increasing endothelial oxidative
stress in a myeloproliferative neoplasm model (Poisson et al.,
2020). However, it is still ambiguous whether RMPs are involved
in cerebrovascular vasospasm through oxidative stress. Unlike
TBI, RMPs may affect more the SAH-related CVS induced by
blood vessel rupture. Because RMPs are abundantly present in
the injury sites and body fluids, they should be taken seriously
in terms of secondary CVS.

Platelet-derived microparticles
Currently, the most concern about the pathophysiological

effects of platelet-derived microparticles (PMPs) is related to
inflammation, immunity, cardiovascular diseases, hemostasis,
and thrombosis (Melki et al., 2017; Lopez et al., 2018). PMPs
account for the largest proportion of all MPs in circulation
(60–90%) (Ed Nignpense et al., 2019). Their lifespan is shorter,
with a half-life of 30 min in mice and 10 min in rabbits
(Zaldivia et al., 2017). However, the lifespan of PMPs in
humans is unclear. There is also limited research on whether
elevated PMPs in circulation are involved in the occurrence
of CVS after TBI and SAH and other brain injuries. But the
regulating effect of PMPs on vascular tone has been gradually
discovered. One study reported that platelets could act as a
cellular source of thromboxane A2 with the participation of
endothelial cells and induce contractions in the rabbit aorta
(Pfister, 1979). It is feasible to speculate that PMPs might
similarly modulate the vascular tone. Conversely, PMPs were

shown to possess endothelial-repairing capability after arterial
injury by enhancing the vasoregenerative capacity of early
outgrowth cells (Mause et al., 2010). Therefore, PMPs may
exert potential endothelial repair and neuroprotective functions
in patients with brain injury (Hayon et al., 2012a,b). These
beneficial and unfavorable properties of PMPs increase the
complexity and make it challenging for us to understand their
effects.

Leukocyte-derived microparticles
According to parental cell markers, leukocyte-derived

microparticles (LMPs) can be classified based on whether
they originate from neutrophils, monocytes/macrophages, or
lymphocytes. Although current research mainly focuses on
T lymphocyte-derived MPs (TMPs) and they are sparse,
their effects on vascular function are complicated. There
are conflicting conclusions about the effect of TMP on
vascular tone. Safiedeen et al. (2017) found that TMPs caused
vasodilation disorders by influencing endoplasmic reticulum
stress and mitochondrial function. Coincidentally, MPs derived
from human lymphoid T-cell line cultured in vitro induced
vascular hyporeactivity by upregulating pro-inflammatory
proteins (Tesse et al., 2008). TMPs decrease NO production
and increase oxidative stress in endothelial cells. Meziani
et al. (2006) pointed out that MPs originated most probably
from leukocytes were responsible for the cyclo-oxygenase-2
vasoconstrictor component that contributes to preeclampsia.
TMPs induce endothelial dysfunction in both conductance and
resistance arteries by altering the NO and prostacyclin pathways,
and these effects are independent of phosphoinositide 3-kinase
and ERK1/2 (Angelillo-Scherrer, 2012). These contradictory
results may be caused by the heterogeneity of TMPs, but
this makes TMPs research more meaningful. Different from
the above mechanisms, another study demonstrated that
monocyte/macrophage-derived MPs additionally induced brain
endothelial cells to undergo vesiculation and produce EMPs (He
et al., 2017). This suggests that MPs may have the characteristics
of cascade amplification, which makes it difficult to understand
how they affect cerebral artery tone. Indeed, this conclusion
was also verified in another study (Zhao et al., 2020). However,
the role of peripheral inflammatory cells in the CNS is still
controversial and we should elucidate that how these LMPs
emerged. The question that LMP in cerebrospinal fluid is
secreted by infiltrating peripheral inflammatory cells or by newly
activated microglia in the brain will help us understand the role
of the LMPs in CVS.

Brain tissue (neuronal and glial) derived
microparticles

Brain-derived microparticles can be distinguished based
on surface markers and cargo corresponding to their parent
cell. After acute brain injury, neurons, microglia, astrocytes,
and oligodendrocytes released MPs involved in pathological
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processes and can be used as biomarkers (Ollen-Bittle et al.,
2022). The current study focused on the effects of other types of
BDMPs on neurons including changes in their morphology and
synaptic plasticity (Pistono et al., 2020). In addition, glial cell-
derived MP may contribute to neuroinflammation (Ruhela et al.,
2021). The effect of BDMPs on vascular tone has not received
enough attention and direct evidence is sparse. So far, the results
of Wang et al. (2022) directly demonstrated the contractile
effects of BDMPs on smooth muscle cells and cerebral vessels.
This result opens new perspectives for future research.

Microparticles induced cerebral
vasospasm via other pathological
processes

Several groups reported that multiple pathological changes
including neuroinflammation (Zheng and Wong, 2017),
coagulopathy (Amin-Hanjani et al., 2004; Han X. et al., 2020),
oxidative stress (Karaoglan et al., 2008), and damaged vascular
endothelium (Peeyush Kumar et al., 2019) after brain injury
could be involved in CVS occurrence and development.
Interestingly, MPs can be found in all these pathological
processes. A study found that BDMPs activate microglia
leading to the release of pro-inflammatory mediators such
as IL-1β, TNF-α et al. (Rong et al., 2018). Another study
confirmed that activated microglia-derived MPs independently
initiate inflammatory responses and contribute to progressive
neuroinflammatory response in the injured brain after TBI
(Kumar et al., 2017). These increased levels of inflammatory
mediators may be involved in cerebral vasospasm (Eisenhut,
2014). This suggests that MPs may mediate CVS through
inflammatory pathways indirectly. But direct evidence is
needed to confirm this. In addition, MPs have been suggested
to contribute to CVS through other mechanisms such as
procoagulant (Boettinger and Lackner, 2015). These secondary
pathological changes are connected to MPs at one end and CVS
at the other end.

Microparticles-targeted therapy

As Przybycien-Szymanska pointed out, MPs may be the
thread that ties together the diverse theories regarding the
process of vasospasm (Przybycien-Szymanska and Ashley,
2015), suggesting they could be an initiating factor of secondary
injury. Their effects on CVS may be complicated and depend
on a direct and/or indirect pathway (Przybycien-Szymanska
and Ashley, 2015). Regrettably, there is still a lack of more
evidence and unequivocal mechanisms for the effects of MPs
on vasospasm following brain injury. Given the complexity of
CVS, treatments that only target a specific mechanism may not
yield satisfactory results. The presence of negatively charged

phosphatidylserine (PS) on the surface is a common feature
of all MPs and could serve as a target to block its effects.
Zhou demonstrated that lactadherin (milk fat globule epidermal
growth factor 8), an MP-scavenging protein, could significantly
improve coagulopathy caused by MPs in TBI mice by enhancing
PS-mediated phagocytosis (Zhou et al., 2018). This is the first
time that the scavenging effect of lactadherin on MPs has been
used to treat secondary damage caused by MPs, and it has shown
good results. Several molecules have been shown to participate
in the clearance of apoptotic cells, such as Del-1 (developmental
endothelial locus-1) (Hajishengallis and Chavakis, 2019), Gas-6
(growth arrest-specific gene 6) (Bellido-Martín and de Frutos,
2008), and annexin V. They could also be used to clear MPs.
Because MPs share a key structural element with apoptotic cells
(mainly surface exposure of anionic PS), they could be similarly
recognized by annexin V (Zhao et al., 2016). Importantly, these
proteins have been identified to exert significant protective
effects in other disease models and showed promise, although
they are not used to link MPs clearance (Liu et al., 2014;
Hajishengallis and Chavakis, 2019; Mui et al., 2021). Next, the
role of these proteins in alleviating MPs-induced CVS needs
to be validated. All of them are endogenous plasma proteins,
which can fundamentally reduce or even eliminate pathological
damage caused by MPs.

Conclusion

Cerebral vasospasm is a highly complex, poorly understood
event that exacerbates neurologic outcomes. Mechanisms
behind CVS are known to point to a variety of pathological
processes but treatments targeting these pathways have been less
effective. These “unexpected results” suggests that we need to
explore the mechanism of CVS from a new perspective. The
emergence of MPs provides us with a new clue to figure out CVS.

The common characterization of the MPs is their dynamic
properties in biological fluids, where they can interact with
cells in contact. And most MPs are thought to express
phosphatidylserine, which has a strong procoagulant effect. The
effects of the MPs from different origins varies greatly. EMPs is
more associated with abnormal vascular activity resulting from
endothelial injury. The effect of RMPs on vascular activity was
reflected in the regulation of vasodilator substances such as NO
(Said and Doctor, 2017). The roles of other blood-cell derived
MPs’ are complex involving multiple pathways, and they showed
both beneficial and deleterious effects.

Although increasing studies have shown that MPs may be
involved in CVS, we don’t know whether MPs are the most
important initiating factor. And are there any difference in the
MPs mechanism in CVS between TBI and SAH? The results of
our research are limited and we are not able to show detailed
mechanisms due to the early stage of this research. Further
studies are needed to confirm these hypotheses and investigate
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how MPs can cause CVS in conditions like TBI and SAH. MPs
contain a variety of biologically active substances such as matrix
metalloproteinases and reactive oxygen species, which make
their role as functional mediators more complex. It is difficult
to block these intricate processes with a single treatment for
inflammation, oxidative stress, or other targets. Additionally,
MPs could serve as therapeutic targets for secondary injuries.
Because of the differentiated structural and multidimensional
activities of MPs, there are still outstanding problems to be
solved in applying basic research to clinical translation. The
foremost problem is to characterize the subtypes of MPs and
biologically active substances. By the increasing biomolecules
identified on/in MPs, valuable clues will appear. The second
is to block interactions between MPs and target cells. Efficient
and accurate MPs scavenging protein needs to be paid attention
to. Another question of whether exosomes similar to MPs have
similar effects also deserves to be answered. Two ways might
make sense. First, proteomics technology may provide support
to identify pathogenic factors contained by MPs. Second, it may
be promising to develop the MPs scavenging proteins to prevent
CVS. This approach is worth trying and might work for all
excessive hazardous MPs because it depends on the presence of
PS rather than biomarkers.
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