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A thorny problem in machine learning is how to extract useful clues related

to delayed feedback signals from the clutter of input activity, known as the

temporal credit-assignment problem. The aggregate-label learning algorithms

make an explicit representation of this problem by training spiking neurons to

assign the aggregate feedback signal to potentially e�ective clues. However,

earlier aggregate-label learning algorithms su�ered from ine�ciencies due to

the large amount of computation, while recent algorithms that have solved

this problem may fail to learn due to the inability to find adjustment points.

Therefore, we propose a membrane voltage slope guided algorithm (VSG)

to further cope with this limitation. Direct dependence on the membrane

voltage when finding the key point of weight adjustment makes VSG avoid

intensive calculation, but more importantly, the membrane voltage that always

exists makes it impossible to lose the adjustment point. Experimental results

show that the proposed algorithm can correlate delayed feedback signals

with the e�ective clues embedded in background spiking activity, and also

achieves excellent performance on real medical classification datasets and

speech classification datasets. The superior performancemakes it ameaningful

reference for aggregate-label learning on spiking neural networks.

KEYWORDS

spiking neural networks, spiking neurons, aggregate-label learning, temporal credit-
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1. Introduction

The birth and development of artificial intelligence are deeply inspired by the

sophisticated biological brain, such as the striking deep learning represented by the

artificial neural network (ANNs), which has attracted considerable attention in the past

decade (LeCun et al., 2015). ANNs highly abstract biological neurons, and obtains the

analog outputs by the weighted sum of the analog inputs through activation function.

This conversion process is somewhat consistent with the biological spiking process,

and the analog inputs and outputs are also regarded as equivalent to the firing rates of

biological neurons (Rueckauer et al., 2017). However, ANNs still lack biological realism

compared to physiological neural networks that utilize binary spikes for information

transfer (Bengio et al., 2015).

Then, spiking neural networks (SNNs) offer a new computing paradigm with

theoretical advantages in computational efficiency and power consumption due to the

adoption of the binary spiking mechanism. However, these advantages have not been

fully exploited, and the results are far from achieving the desired impact. One of the
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major reasons is the lack of efficient learning algorithms, so

research on SNN algorithms remains attractive. Nevertheless,

many valuable works have emerged. Among them, depending

on the presence of additional teaching signals, existing

SNN algorithms can be roughly divided into supervised

and unsupervised.

Neurophysiological studies have shown that the long-

term potentiation (LTP) and depression (LTD) of synaptic

transmission are ubiquitous phenomena existing in almost

every excitatory synapse in the mammalian brain (Malenka

and Bear, 2004). Spike-timing dependent plasticity (STDP) rule

(Bi and Poo, 1998), which combines these two phenomena,

becomes a feasible unsupervised learning rule benefiting by its

definite biological basis. Then STDP intrigues the research of

local learning rules that imitate the neuroscience mechanisms

(Masquelier et al., 2007; Diehl and Matthew, 2015; Tavanaei

and Maida, 2017a). For example, STDP rules have been

applied to an SNN architecture that simulates visual function

to promote neurons show the selectivity of orientation and

disparity (Barbier et al., 2021), to shallow convolutional SNNs

to realize near-real-time processing of events collected from

neuromorphic vision sensors (She and Mukhopadhyay, 2021),

and to weight-quantized SNNs to complete online learning (Hu

et al., 2021), etc. In addition, variants of STDP have also been

embedded into Inception-like SNNs for highly parallel feature

extraction (Meng et al., 2021) or ensemble convolutional SNNs

for object recognition (Fu and Dong, 2021). This biologically

inspired learning do not require regulatory signals and is easy

to execute, making it attractive to hardware implementation of

emerging memory devices (Burr et al., 2016; Zhou et al., 2022).

However, such local learning rules are more suitable for small-

scale pattern recognition tasks, and it is difficult for them to

be directly applied in complex tasks due to the lack of global

information related to convergence for large models (Mozafari

et al., 2018).

On the other hand, there is also documented evidence

supporting the existence of instruction-based learning in the

central nervous system (Knudsen, 1994; Thach, 1996). Over

the years, a growing number of supervised learning algorithms

of SNN have been proposed (Ponulak and Kasiński, 2010;

Florian, 2012; Mohemmed et al., 2012; Xu et al., 2013b;

Memmesheimer et al., 2014; Zhang et al., 2018a,b, 2019; Luo

et al., 2022), and some of them obtained comparable accuracies

to that of ANNs in large-scale applications. SpikeProp (Bohte

et al., 2000) is a classical supervised learning method of

SNNs, which is derived from the gradient descent algorithm

of ANNs. While the application of this algorithm is limited

by the fact that each neuron can only fire once, so the multi-

spike version of it are proposed to improve performance

(Ghosh-Dastidar and Adeli, 2009; Xu et al., 2013a). As for the

critical dilemma of non-differentiable discrete spikes in SNNs,

Spikeprop uses a linear assumption of membrane potential

at these time instants to bypass it. The other way proposed

in SLAYER (Shrestha and Orchard, 2018) to handle it is to

replace the derivatives of these non-differentiable moments

with approximate functions, SuperSpike (Zenke and Ganguli,

2018) algorithm uses the surrogate gradients, and DSR (Meng

et al., 2022) uses gradients of sub-differentiable mappings. These

algorithms and some others (Wu et al., 2018c, 2019) almost all

follow the idea of back-propagation through time (BPTT), which

makes full use of information on both time and space scales, but

it also means quite a bit of computing and storage requirements.

Beyond these, there are some situations where the guidance

signals are ambiguous. For example, animal survival behavior

to identify whether small clues in the environment represent

danger or opportunity involves detecting relationships between

multiple clues and ambiguous long-delayed feedback signals.

Multi-Spike Tempotron (MST) (Gütig, 2016), an aggregate-

label learning algorithm, is proposed to train a detector to

automatically respond wherever a valid clue appears, given only

the number of desired spikes. It uses the distance between the

true threshold and the a critical threshold (under which a specific

number of spikes can be fired) as the error signal for weight

adjustment, enabling it to obtain robust and powerful learning

capabilities. Then TDP1 (Yu et al., 2018) is proposed to simplify

the iteration calculation in MST and improve the learning

efficiency. However, they are still computationally expensive

due to the need to calculate the critical threshold. Therefore,

MPD-AL (Zhang et al., 2019) directly adjusts the weight from

the membrane voltage, which greatly reduces the computing

requirements. However, the disadvantage of this method is that

there is a possibility that the tunable point cannot be found.

Inspired by MPD-AL, we propose an voltage slope-guided

algorithm (VSG). When the number of spikes emitted by the

output neuron is not equal to its desired spike number, an

appropriate point is selected to adjust the weight according to

the slope of the membrane voltage, so that the neuron can emit

more spikes or remove redundant spikes. The proposed method

avoids the dilemma of failing to find the adjustment points, and

does not need iterative calculation to find the critical threshold.

The comparative experiments with MPD-AL, MST, and TDP1

verify its superiority, and the classification results on realistic

datasets further proves its practical performance.

The rest of the article is organized as follows: In Section

2, we introduce the proposed algorithm and compare it with

several other algorithms. In Section 3, we conduct a series of

experiments to verify the performance of the algorithm. Finally,

the algorithm is analyzed and discussed in Section 4.

2. Neuron model and learning
algorithm

In this section, the neuron model employed will be first

introduced, followed by the proposed VSG algorithm, and
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FIGURE 1

Schematic of neuronal structure and membrane voltage

dynamics. The postsynaptic neuron integrates spikes from

a�erent neurons over time, and each incoming spike

contributes to the membrane voltage together with the

corresponding synaptic weights. When the membrane voltage

of the postsynaptic neuron crosses the firing threshold ϑ , it

emits a spike and the voltage is reset.

finally this algorithm will be compared with its counterparts,

highlighting their differences.

2.1. Neuron model

The leaky integrate-and-fire neuron model (Maass and

Bishop, 1999; Gütig, 2016) is one of themost widely used spiking

neuronmodels, benefiting from its computational simplicity and

modest biological reliability. So we also adopt it in this article.

The postsynaptic neuron receives spikes transmitted from

its N presynaptic neurons through synapses, which induce

postsynaptic potentials (PSPs) on the postsynaptic neuron,

resulting in changes in its membrane voltage V(t), as shown

in Figure 1. Thus, the membrane voltage of the postsynaptic

neuron gradually rises from the resting state Vrest = 0. When

the membrane voltage crosses the threshold ϑ , the neuron fires

a spike, and the membrane voltage quickly resets to the resting

potential, then it enters a refractory period. This process can be

expressed as:

V(t) = Vrest +

N
∑

i=1

wi

∑

t
j
i<t

K(t − t
j
i)−

∑

t
j
s<t

η

(

t − t
j
s

)

, (1)

where wi is the weight of the synapse established with the i-

th afferent neuron, and t
j
i denotes the time of the j-th spike

from the afferent neuron. t
j
s denotes the time of j-th spike

emitted by this postsynaptic neuron. K(·) and η(·) characterize

the normalized PSP kernel and refractory period, respectively,

which are defined as

K(x)=V0

[

exp

(

−
x

τm

)

− exp

(

−
x

τs

)]

, x > 0, (2)

and

η(x) = ϑ · exp

(

−
x

τm

)

, x > 0, (3)

where τm and τs are the membrane time constant and the

synaptic time constant, which together control the shape of the

PSP. V0 is a coefficient that normalizes the PSP. These two

kernels only make sense when x > 0, since a spike only takes

effect at the time after its occurrence.

2.2. Voltage slope guided learning

Unlike algorithms that generate an exact desired spike train,

VSG aims to generate a desired number of spikes in response

to an input pattern. When the actual spike count No is more

or less than the desired count Nd, the network parameters are

adjusted:

1. No < Nd : When the actual spikes are insufficient, the

network parameters are strengthened so that more spikes

can be delivered. Thus, the time instant with the largest

membrane voltage slope (except the existing spike times) is

selected as the critical time t∗. The membrane voltage V(t∗)

at this moment has the strongest upward trend. Adjusting

the membrane voltage at this point will be more efficient

compared to other locations.

2. No > Nd : When more spikes are fired than the expectation,

the redundant spikes should be removed by weakening the

network parameters. Therefore, the critical moment t∗ will

be selected from the existing spike times. On the contrary,

among these moments, the point with the weakest upward

trend of membrane voltage crossing the threshold is chosen.

Because it can be removed with less effort than other spikes.

As shown in Figure 3A (left), the red arrows and green arrows,

respectively, represent the critical points if more or less spikes

need to be emitted in the case that there are already five

output spikes.

For these two cases, we construct error function based on

the distance between the critical membrane voltage V(t∗) and

its target membrane voltage Vtar . In the case of No < Nd, it is

obvious that the target voltage should be equal to the threshold

in order to emit more spikes. While in the case of No > Nd, the

critical membrane voltage should be lowered in order to remove
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the spike, so the target voltage can be set as the resting potential

Vrest :

E =
1

2

(

V
(

t∗
)

− Vtar
)2

, (4)

where

Vtar =

{

ϑ , No < Nd,

Vrest , No > Nd.
(5)

Then the gradient descentmethod is applied to obtain the weight

updating rule:

1ωi = −η
dE

dwi
= −η

(

V
(

t∗
)

− Vtar
) dV(t∗)

dwi
, (6)

η is the learning rate which define the update magnitude of the

synaptic weights. In fact, ±η · dV/dw can also be used directly

to enhance/weaken weights during the experiment without

considering the error function, which has a learning efficiency

similar to Equation (6), as shown in Figure 6B.

Without loss of generality, suppose that there is a fully

connected network with L (L ≥ 2) layers. For a neuron s in

layer L (the output layer), if the output spike count is not equal

to its desired number, all synaptic weights that contribute to its

firing will be adjusted. Assuming that the critical spike time of

the neuron is t∗, and the corresponding membrane voltage is

V(t∗). Then according to Equation (6), all we need to do is to

calculate dV/dw:

2.2.1. Output layer

According to Equation (1), V(t∗) is not only affected by the

input spikes from the previous layer, but also by the previous

spikes t
f
s < t∗ (f = 1, 2, ..., F) excited by the neuron itself,

therefore,

dV(t∗)

dwL
is

=
∂V(t∗)

∂wL
is

+

F
∑

f=1

∂V(t∗)

∂t
f
s

∂t
f
s

∂wL
is

, (7)

where wL
is is the synaptic weight between i-th neuron in the layer

L− 1 and s-th neuron in the layer L.

From Equation (1), the first term of Equation (7) can be

expressed as

∂V(tx)

∂wL
is

=
∑

t
j
i<tx

K
(

tx − t
j
i

)

,
(8)

where tx ∈
{

t1s , t
2
s , · · · , t

F
s , t
∗
}

, t
j
i is the j-th spike of the i-th

neuron in layer L − 1. While for the second term of Equation

(7), we have

∂V(t∗)

∂t
f
s

= −
ϑ

τm
exp

(

−
t∗ − t

f
s

τm

)

, (9)

and

∂t
f
s

∂wL
is

=
∂t

f
s

∂V(t
f
s )

∂V(t
f
s )

∂wL
is

, (10)

where ∂V(t
f
s )/∂w

L
is can be calculated by Equation (8). Suppose

nl is the number of neurons in the l-th layer. Then following

the linear hypothesis for the voltage crossing threshold in Bohte

et al. (2002) and Yu et al. (2018), we get

∂t
f
s

∂V(t
f
s )
= −

(

∂V(t
f
s )

∂t
f
s

)−1

= −

(

∂V(t)

∂t

∣

∣

∣

∣

t=t
f−
s

)−1

, (11)

where

∂V(t)

∂t
=

nL
∑

i=1

wL
is

∑

t
j
i<t

κ(t − t
j
i)+

∑

t
f
s<t

η(t − t
f
s )

τm
, (12)

κ(t − t
j
i) =

∂K(t − t
j
i)

∂t
=

V0

τs
exp

(

−
t − t

j
i

τs

)

−
V0

τm
exp

(

−
t − t

j
i

τm

)

.

(13)

2.2.2. Hidden layers

Suppose wl
ij is the synaptic weight between i-th neuron in

the layer l− 1 and j-th neuron in the layer l. It has an impact on

the spike time tm,l
j , i.e., them-th (m = 1, 2, · · · ) spike time of the

neuron j in layer l, and then affect the spike time of neurons in

all the subsequent layers through tm,l
j . Therefore, the derivative

of V(t∗) with respect to wl
ih
(1 ≤ l ≤ L− 1) is

dV(t∗)

dwl
ij

=
∑

tm,l
j <t∗

∂V(t∗)

∂tm,l
j

∂tm,l
j

∂wl
ij

, (14)

where ∂tm,l
j /∂wl

ij can be calculated just like Equation (10).

∂V(t∗)/∂tm,l
j , the key term for error propagation between layers,

is denoted as δ
m,l
j .

For 1 ≤ l < L− 1,

δ
m,l
j ,

∂V(t∗)

∂tm,l
j

=

nl+1
∑

k=1

∑

t
f ,l+1

k

∂V(t∗)

∂t
f ,l+1
k

∂t
f ,l+1
k

∂tm,l
j

=

nl+1
∑

k=1

∑

t
f ,l+1

k

δ
f ,l+1
k
·
∂t

f ,l+1
k

∂tm,l
j

, tm,l
j < t

f ,l+1
k

< t∗.

(15)

And for l = L− 1,

δ
m,l
j =

∂V(t∗)

∂tm,l
j

+
∑

tm,l
j <t

f ,L
s <t∗

∂V(t∗)

∂t
f ,L
s

∂t
f ,L
s

∂tm,l
j

. (16)
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FIGURE 2

The feedforward propagation of spikes and backpropagation of

errors. The neuron j in the l-th layer emits two spikes t1,l
j

and t2,l
j
,

they a�ect the generation of spikes in the next layer after them

(purple and green curved arrows). The neuron k in the layer l+ 1

also emits two spikes denoted as t1,l+1
k

and t2,l+1
k

. In the feedback

process, a spike generated by neuron k transmit the error signal

δ to input spikes that contribute to it (pink and yellow curved

arrows).

Noted that the error backpropagation is performed based

on spikes, and Equation (15) involves complex spike time

relationships when δ propagate back between adjacent layers. As

shown in Figure 2, the spike t2,lj has an effect on the later spike

t2,l+1
k

emitted by the downstream neuron (green arrow), but has

no effect on the earlier spike t1,l+1
k

. Therefore, when the error

signal δ1,l+1
k

corresponds to the spike t1,l+1
k

is backpropagated,

it will only transmit to the earlier spike t1,lj that contribute to it

(yellow arrow).

From Equation (1), the first term of Equation (16), i.e., the

derivative of the membrane voltage with respect to the input

spike coming from its presynaptic neuron is calculated as below

∂V(t∗)

∂tm,L−1
j

= −wL
js · κ

(

t∗ − tm,L−1
j

)

, (17)

and ∂V(t∗)/∂t
f ,L
s can be calculated by Equation (9). And for

1 ≤ l ≤ L− 1,

∂t
f ,l+1
k

∂tm,l
j

=
∂t

f ,l+1
k

∂V(t
f ,l+1
k

)

∂V(t
f ,l+1
k

)

∂tm,l
j

=





∂V(t
f ,l+1
k

)

∂t
f ,l+1
k





−1

wl+1
jk

κ

(

t
f ,l+1
k
− tm,l

j

)

.

(18)

Thereupon, the whole learning process of the VSG is

summarized in Algorithm 1.

Input: T: time duration; 1t: time step; Nd:

desired spike number; η: learning rate;

S: input spike pattern; ϑ: firing

threshold; Vrest: resting potential; µ:

mean of the Gaussian distribution; σ:

standard deviation of the Gaussian

distribution;

1 Initialize: synaptic weights w ∼ N(µ, σ ), actual

spike number No = 0;

2 while Na 6= Nd do

3 to = ∅, No = 0;

4 for t = 0 :1t :T do

5 calculate membrane voltage V(t) in

response to the input pattern S by

Equation (1) and ∂V(t)/∂t by Equation (12);

6 if V(t) ≥ θ then

7 to ← to ∪ {t} ;

8 No ← No + 1;

9 V(t)← Vrest;

10 if No 6= Nd then

11 if No < Nd then

12 t∗ = argmax
t 6∈to

{∂V(t)/∂t}, Vtar = ϑ;

13 else

14 t∗ = argmin
t∈to

{∂V(t)/∂t}, Vtar = Vrest;

15 calculate gradient dV(t∗)/dw by Equation

(14);

16 1w = −η
(

V(t∗)− Vtar

)

· dV(t∗)/dw;

17 w← w +1w;

18 return w;

Algorithm 1. Learning algorithm of the VSG.

2.3. Comparison with other
aggregate-label learning algorithms

Existing aggregate-label learning works can be divided into

threshold-driven methods, such as MST, TDP1, and membrane

voltage-driven methods, such as MPD-AL. The threshold-

driven method searches for a critical threshold ϑ∗ that can

increase/decrease the number of spikes by one, then the distance

between the critical threshold and the actual firing threshold ϑ

is used as the error to update the synaptic weights. However,

ϑ∗ cannot be solved analytically, it can only be obtained by

performing dichotomy in the interval where it may appear. Such

a search process must be executed for each update iteration,

which is quite time-consuming. As for the membrane voltage-

driven method MPD-AL, when more spikes are needed, the

time of the maximum peak of membrane voltage (below the
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FIGURE 3

The comparison of learning between VSG and MPD-AL. (A) The

membrane potential traces before learning. t∗ indicates the key

time point selected when a spike needs to be added. (B)

Learning curves depicting the spike-timing dependence of the

contribution of di�erent synapses to V(t∗). (C) The membrane

potential traces after learning (with one spike added). (D) The

amount of weight change before and after learning. For the

convenience of observation, each presynaptic neuron sends

only one spike, and the synapses in (B,C) are arranged in the

order of their corresponding spike time.

threshold) is taken as the critical time for enhancing the weights,

and when fewer spikes are needed, the last spike time is used as

the critical time to weaken the weights, as shown in Figure 3A

(right).

Inspired byMPD-AL, we choose the point with the strongest

rising trend of membrane voltage at non-spike time and the

weakest rising trend of membrane voltage at spike time as the

key point for enhancement and weakening, respectively. As

shown in Figure 3, taking the addition of a spike as an example,

the two algorithms have different choices for t∗, resulting in

different learning curves (Figure 3B), thus adding a new spike

in different places (Figure 3C).

Neither VSG nor MPD-AL require the complicated process

of finding ϑ∗, which makes them more efficient than threshold-

driven algorithms. However, when a new spike is required,

MPD-AL needs to find all local maxima of the membrane

voltage below the threshold and then select the largest one. But

sometimes such a point does not exist, especially when there are

already many spikes, as shown in Figure 4. In this case, MPD-AL

can no longer add spikes and the learning stalls. While VSG does

not have this problem, because the point with the largest slope

must exist, and it is likely to be raised to the threshold quickly,

since a large slope means a large upward trend. Similarly, among

the firing spike, the point with the lowest slope means that it

has less power to cross the threshold, and when a spike needs

to be removed, it takes less effort to eliminate it. We will verify

the rationality of this selection of adjustment point through

experiments in the next section.

On the other hand, VSG seems to be a little more

computationally expensive compared to MPD-AL, because it

requires additional computation of the time derivative (slope)

of membrane voltage. But this calculation can be integrated

into the calculation of membrane voltage, since they use exactly

the same intermediate variables (Equations 12 and 1). In this

way, as shown in Figure 6A, it takes almost no more time for

VSG to calculate the membrane voltage than MPD-AL, with

a total time increase of <0.01 s for 1,000 calculations [the

average time for one trial is too small, and the device is Intel(R)

Core(TM) i5-8400 CPU @ 2.80, 2.81 GHz]. However, MPD-

AL spends about three times as long as VSG in finding the

adjustment point. Because it needs to find all the local peak of

membrane voltages and then perform the maximum operation,

while VSG only needs to perform the maximum operation on

the membrane voltage slope. Overall, the computational cost of

finding adjustment points for VSG is low.

3. Experimental results

Various experiments are carried out to examine the

performance of the proposed VSG learning algorithm. We first

investigate the learning efficiency of the VSG, and then apply it

to learn predictive clues. Several practical classification tasks are

performed thereafter to further evaluate its capability.

3.1. Learning of desired number of spikes

In this section, we first investigate the ability of a single

neuron to learn to deliver a fixed number of spikes through

training of VSG algorithm, and then verify the plausibility of

its way of finding adjustment points. Finally, it is compared

with several competitive aggregation-label learning algorithms

to further evaluate its learning efficiency.

In this first experiment, the learning neuron receives spikes

from 500 presynaptic neurons and are trained to deliver 10

spikes over a period of 500 ms. To observe the learning

under different input conditions, input spikes are generated by

the Poisson distribution at 4 and 20 Hz, respectively, while

the synaptic weights are initialized by the same Gaussian

distribution N(0.01, 0.01). Figures 5A,B depicts the membrane

voltage traces and synaptic weights of this output neuron before

(blue) and after (black) learning when the input spike is 4 Hz.

The sparse input caused the neuron not to fire initially, after

learning, many synaptic weights are enhanced so that the neuron

fires 10 spikes. Figures 5C,D shows the situation of neurons
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FIGURE 4

Pain point of MPD-AL. When the membrane voltage rapidly accumulates and frequently emits spikes, there may be no local maximum

membrane voltage below the threshold. In this case, MPD-AL cannot find t∗ if another spike is required (right). However, VSG can find the point

where the membrane voltage increases the fastest, namely its t∗ (left).

FIGURE 5

Membrane voltage traces and synaptic weights before (blue) and after learning (black). The learning neuron receives 4 Hz (A,B) and 20 Hz (C,D)

spikes from 500 presynaptic neurons, respectively, and are trained to emit 10 spikes in 500 ms.

before and after learning when the input spikes is 20 Hz. Before

learning, too dense input causes neurons to emit a lot of spikes,

and the VSG algorithm weakens the synaptic weights as a whole,

so that neurons only emit 10 spikes at the end.

Then we verify the rationality of the way the VSG finds

adjustment points. We choose different combinations of ways to

find adjustment points to test the efficiency of training neurons

to emit a specified number of spikes. The firing rate of input

is 4–10 Hz, which allows the initial spike count to be more

or less than the desired count. Other experimental conditions

remain unchanged. The average times over 20 trials for several

combinations at each desired spike count are reported. If the

neuron does not successfully trigger the corresponding number

of spikes until 2,000-th iterations, record the time it took to

run 2,000 iterations. As shown in Figure 6B, when the desired

number of spikes is small, it is more effective to add a new spike

at the maximum peak of the subthreshold membrane voltage.

But when the desired number of spikes is large, learning may fail

due to the inability to find an adjustable point, and the required

time will increase greatly, as shown by the combinations of a and
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FIGURE 6

The comparison of e�ciency between VSG and MPD-AL. (A) The total time to calculate the membrane voltage (dark blue) and find the

corresponding adjustment point (light blue) for 1,000 trials. (B) The average time required to learn the corresponding number of spikes over 20

trials (up to 2,000 iterations each). For cases where one spike needs to be added and removed, several combinations of methods for finding the

adjustment point are tested: (a) maximum peak of subthreshold membrane voltage + last spike (MPD-AL), (b) maximum peak of subthreshold

membrane voltage + spike with the lowest slope, (c) non-firing point with the largest slope + last spike, (d) non-firing point with the largest

slope + spike with the lowest slope (VSG). In addition, the VSG method without considering the error function (e) is also tested.

b. While the method of selecting the point with the largest slope

to add a new spike is stable, as shown by the combination of

c, d, and e. In addition, by comparing the combination a and

b (or c and d), it can be found that selecting the spike with

the lowest slope or the last spike as the removed spike makes

little difference. Therefore, in a nutshell, the way of VSG to find

the adjustment point strikes a good balance between efficiency

and stability.

Furthermore, we conduct experiments to compare the

learning efficiency of VSG and other aggregate-label algorithms.

To this end, we test the time required for each algorithm

to learn successfully when the desired output count ranges

from 10 to 80, with an interval of 10. The firing rate of

input is fixed at 4 Hz. Other experimental conditions are the

same as above. Figure 7A shows the number of times each

algorithm successfully delivered the desired number of spikes

over 20 trials. It can be found that when the desired count

is greater than or equal to 40, MPD-AL cannot successfully

learn every time, because sometimes it cannot find t∗. While

the other three algorithms can learn successfully, even when

the number of desired spikes is very large. Figure 7B shows

the time required to successfully fire the target number of

spikes. The time required for different algorithms almost

increases with the increase of the desired spike count, especially

MST. The time required for TDP1 is relatively less, but

also much more than the proposed algorithm. MPD-AL

can learn very quickly only when the required number of

spikes is small (≤30). When the desired spike count is

large, the average time it consumes increases significantly due

to several failed learning. In short, the learning efficiency

of the proposed algorithm is better than other aggregate-

label algorithms.

FIGURE 7

The comparison among VSG, MPD-AL, TDP1, and MST

algorithms in terms of learning e�ciency. (A) The number of

successes of learning within 2,000 iterations over 20 trials. (B)

The required learning time.

3.2. Detection of predictive clues

The task of detecting clues is to simulate the predictive

behavior of animals in response to small changes in the

environment as they survive in nature. For example, prey

may recognize danger by the sound of breaking twigs among

many natural noises and flee before predator attacks. Therefore,

detecting predictive clues are to identify effective clues hidden
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within distracting streams of unrelated sensory activity. In

addition, there is also a difficulty in how to correlate clues with

long-delayed feedback signals, which is called the “temporal-

credit assignment problem” (Gütig, 2016). In this section, wewill

demonstrate the ability of VSG to solve this task.

Similar to Gütig (2016) and Zhang et al. (2019), 10 short

(50 ms) spiking patterns with firing rate of 4 Hz are generated

from 500 afferents to simulate clues, where effective clues and

distracting clues are randomly set as required. These clues are

then randomly embedded into the background spiking pattern

(with duration Tb), as shown in Figure 8A, and the number

of occurrences of each cue follows a Poisson distribution with

mean Pm. The firing rate of the background pattern is 0∼4 Hz,

with an average of 2 Hz, simulating the complex variability of the

environment. The single neuron takes the long synthetic spike

patterns containing clues and backgrounds as input, and detects

effective clues through training, that is, it emits a specified

number of spikes at the position where the effective clues

appear, while remaining silent where other distracting clues and

background patterns appear. During training, a total of 100

training samples are generated for neurons learning, Tb and Pm

are set to 500 ms and 0.5, respectively. While in testing phase,

in order to make all clues fully exposed, they are set to 2,200 ms

and 0.8.

We set up different experiments to detect different kinds

of clues. Assuming that di spikes are expected to be fired in

response to the appearance of clue i, and the number of times

that clue i occurs in a certain sample is ci. Then for this sample,

the desired spike count of the learning neuron isNd =
∑10

1 cidi,

of which di = 0 for distracting clues. During the learning

process, if the actual spike count is not equal to Nd, the synaptic

weight is strengthened or weakened according to the VSG

algorithm. We first trained the neuron to detect a single kind of

clue, and the remaining nine kinds of clues are distractors. After

training, the neuron not only fires the correct number of spikes,

but also fires only where the effective clue appears, and remains

silent elsewhere. Further, no matter whether di corresponding

to this effective clue is 1 or 5, the neuron can learn successfully,

as shown in Figures 8B,C. Then, we train the neuron to detect

five different clues under the conditions that their corresponding

spike counts are {1, 1, 1, 1, 1} and {1, 2, 3, 4, 5}, respectively.

These involve more complicated temporal-credit assignments.

But surprisingly, the neuron can automatically learn effective

clues and assign them the corresponding number of spikes based

only on the feedback signal of the total number of output spikes,

as shown in Figures 8D,E. The experimental results show the

capabilities of the VSG algorithm to decompose the delayed

output signal and detect effective clues.

3.3. Classification of medical datasets

In this section, we test the proposed method on

three medical datasets from UCI machine learning

repository (Dua and Graff, 2017) and compare with

other algorithms.

3.3.1. Data encoding and output decoding

The data encoding refers to encoding real values into spike

times. As in Shrestha and Song (2016), Wang et al. (2017),

Taherkhani et al. (2018), and Luo et al. (2022), Gaussian

receptive field population encoding is used to encode each

feature in the original data separately. To encode a certain

feature, K identically shaped Gaussian functions that overlap

each other and cover the interval [a, b] are created, where a, b are

the maximum and minimum values of this feature, respectively.

Feeding a real value x into these Gaussian functions yields the

output value yi (i = 1, 2, · · · ,K), and then inversely mapping yi
to [0,T] to get the spike time. T is the time window of encoding

(in this section, T = 100 ms). A large yi corresponds to an early

firing time, a small yi corresponds to a late firing time, and spikes

with time later than 0.9T are canceled. Thus, an original sample

containing N features is encoded as an input pattern containing

KN neurons, each with at most one spike time. More details

about the encoding process can be found in Luo et al. (2022).

Here, for classification tasks, decoding the output refers

to determining the category identified by the network from

its output. In this section, the number of neurons in the

output layer is set equal to the number of categories, and each

neuron corresponds to a category. During training, the neuron

corresponding to the sample’s label is expected to fire Nd (= 5)

spikes, while the other output neurons are expected to not

fire. In the inference phase, the sample belongs to the class

corresponding to the output neuron that emits the most spikes.

If no output neuron fires, the sample belongs to the class of

neuron with the largest membrane voltage.

3.3.2. Medical datasets and classification results

The Wisconsin Breast Cancer dataset (WBC) contains 699

pieces of data described by 9 features, excluding 16 pieces of data

with missing values, 683 samples are used in our experiments.

The BUPA Liver Disorders dataset contains 345 samples with

six features, and the Pima Diabetes dataset contains 746 samples

with eight features. Each of the three datasets has two categories.

As in SpikeProp (Shrestha and Song, 2016), SWAT (Wade et al.,

2010), SRESN (Dora et al., 2016), and FE-Learn (Luo et al.,

2022), we divided the training set and test set in a 1:1 ratio.

For data encoding, we use the same number of neurons as

in SpikeTemp (Wang et al., 2017) and FE-Learn to encode

each feature, shown in Table 1 (# Encoders). A single-layer

network and a two-layer network with 360 hidden neurons are

used to conduct experiments separately. 20 independent trials

are carried out in each experiment, and each trial run 200

epochs. Table 2 reports the mean and standard deviation of the

classification accuracy in 20 trials.
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FIGURE 8

Detection of predictive clues. (A) The input spike pattern showing only 100 of the 500 synaptic a�erents. 10 di�erent cues (represented by

colored rectangles, 50 ms each) are embedded in the background pattern. (B,C) The membrane voltage traces of the trained neuron when there

is only one kind of e�ective clue, and it corresponds to 1 and 5 expected output spikes, respectively. (D,E) The membrane voltage traces of the

trained neuron when there are five kinds of e�ective clues, and they correspond to {1, 1, 1, 1, 1} and {1, 2, 3, 4, 5} expected output spikes,

respectively.

TABLE 1 Description of the dataset.

Dataset WBC Liver disorders Pima diabetes

No. of instances 683 345 768

No. of categorizes 2 2 2

No. of features 9 6 8

No. of encoders 15 25 10

No. of training 341 172 384

No. of testing 342 173 384

As shown in Table 2, the performance of single-layer VSG

is moderate, which is better than that of SWAT, Multilayer DL-

ReSuMe (Taherkhani et al., 2018), and single-layer FE-Learn.

The two-layer VSG performs better, further outperforming

SRESN and two-layer FE-Learn compared to its single-layer

counterpart. On the BUPA Liver Disorders dataset, it achieves

the highest test accuracy of 65.1% together with SpikeProp, but

a smaller standard deviation indicates that it is more stable than

SpikeProp. Furthermore, it achieves sub-optimal accuracy on

both theWBC and Pima Diabetes datasets. SpikeTemp achieved

a state-of-the-art test accuracy of 98.3% on the WBC dataset,

but it has a 2:1 ratio of training and test set, meaning it uses

more training samples to train the model and fewer test samples

to validate, which makes it more advantageous. The accuracy

of SpikeProp on the Pima Diabetes dataset is much higher

than other methods, but it requires a very large number of

training epochs, and it is inferior to the proposed method on

the WBC dataset. In conclusion, none of these algorithms can

be absolutely dominant, and the performance of the proposed

algorithm is relatively excellent.

3.4. Classification of speech datasets

In this section, we conduct experiment on speech

recognition datasets. As mentioned earlier, VSG can detect

useful clues in long spatiotemporal patterns, so it is also suitable

for processing signals with rich temporal information like

speech signals.

3.4.1. Data encoding and output decoding

The TIDIGITS corpus (Leonard and Doddington, 1993)

is a common dataset widely used for speech recognition
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TABLE 2 Comparison of classification performance on medical datasets.

Dataset Breast cancer Liver disorders Pima diabetes

Architecture Epochs Architecture Epochs Architecture Epochs

SpikeProp 55-15-2 1,000 37-15-2 3,000 55-20-2 3,000

SWAT 54-702-2 500 36-468-2 500 54-702-2 500

SRESN 54-(8-12) 306 36-(6-9) 715 54-(9-14) 254

SpikeTemp 135-306 / 150-226 / 80-431 /

Multi DL-ReSuMe / 100 246-360-2 100 / 100

MPD-AL 135-2 200 150-2 200 80-2 200

FE-Learn 135-2 200 150-2 200 80-2 200

FE-Learn2 135-360-2 200 150-360-2 200 80-360-2 200

VSG 135-2 200 150-2 200 Feb-80 200

VSG2 135-360-2 200 150-360-2 200 80-360-2 200

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

SpikeProp 97.3± 0.6 97.2± 0.6 71.5± 5.2 65.1± 4.7 78.6± 2.5 76.2± 1.8

SWAT 96.5± 0.5 95.8± 1.0 74.8± 2.1 60.9± 3.2 77.0± 2.1 72.1± 1.8

SRESN 97.7± 0.6 97.2± 0.7 60.4± 1.7 59.7± 1.7 70.5± 2.4 69.9± 2.1

SpikeTemp 99.1 98.3 93 58.3 77.5 67.6

Multi DL-ReSuMe 98.2 96.4 69.9 61.8 72.1 70.6

MPD-AL 99.9± 0.1 97.2± 0.6 92.7± 1.8 62.2± 3.6 71.4± 1.9 69.6± 1.3

FE-Learn 94.8± 0.9 94.3± 1.7 72.2± 5.0 61.2± 3.6 79.3± 1.2 71.2± 2.0

FE-Learn2 100± 0.0 97.5± 0.5 96.6± 0.7 64.8± 2.3 90.6± 1.4 72.5± 1.5

VSG 99.2± 0.5 97.1± 0.7 74.7± 1.6 63.8± 2.0 77.4± 1.4 72.3± 1.5

VSG2 99.3± 0.3 97.6± 0.6 96.3± 8.1 65.1± 1.9 91.8± 1.8 73.7± 1.7

(Wu et al., 2018a,b). It consists of 11 isolated spoken digit strings

(from “0” to “9,” and “oh”) and speakers from 22 different

dialectical regions. 2,464 and 2,486 speech utterances make up

the standard training set and testing set. There is already a

set of well-established and feasible encoding methods for this

dataset: As shown in Figure 9, the raw speech waveform is first

filtered by a Constant-Q-Transform (CQT) cochlear filter bank

to extract spectral information, where the filter bank consists of

20 cochlear filters from 200 Hz to 8 kHz. Then the threshold

coding mechanism (Gütig and Sompolinsky, 2009) is applied to

convert the each frequency sub-band into a spike pattern of 31

neurons. Finally, the spike patterns obtained from all frequency

bands are spliced into a complete spike pattern of 620 neurons.

More details about the encoding process can be found in Pan

et al. (2020).

There are also differences among samples of the same

category in a dataset, especially for large and complex datasets,

for which a fixed number of outputs is unreasonable. Therefore,

we adopt the dynamic decoding (DD) strategy (Luo et al., 2019,

2022; Zhang et al., 2019) in this experiment. Instead of specifying

a fixed number of output spikes, the dynamic decoding strategy

decides whether to add a new spike based on the current sample.

Here, we modify the strategy as follows to adapt to the proposed

algorithm: If the actual spike count of an output neuron is 1 ≤

No < Nd, a new spike should be added, but unless themembrane

voltage of the selected point reaches a given sub-threshold, i.e.,

V(t∗) ≥ ϑs, the new point will be discarded and no learning will

be performed. This gives the output neuron a degree of freedom

to respond to different inputs of the same class.

3.4.2. Network settings and results

The input layer of the network has 620 neurons and is

responsible for feeding the encoded spike patterns into the

network. The output layer contains 11M neurons, of which M

neurons are a group, corresponding to a class in the dataset.

For the group of neurons corresponding to the sample’s label,

Nd = 5, while the rest of the neurons are expected to not fire

(Nd = 0). In the training phase, if the actual number of spikes

emitted by a output neuron is not equal to Nd, the parameters

are adjusted according to the DD strategy (ϑs = 0.8) and the

VSG algorithm, where the Adam optimizer (Kingma and Ba,

2015) is also used. During inference, the sample is classified into

the class corresponding to the group of neurons with the largest

number of output spikes. If all output neurons fail to fire, the

sample is considered to belong to the class corresponding to the

neuron with the largest membrane voltage. As in the previous

section, we use a single-layer network (620−11) and a two-layer
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FIGURE 9

Schematic diagram of the encoding process of a speech sample (left) and the applied two-layer classification network (right).

TABLE 3 Comparison of classification performance on TIDIGITS

datasets∗.

Model Type Layers Accuracy

Tavanaei and Maida (2017b) SNN+SVM 1 91.00%

Tavanaei and Maida (2017a) Spiking CNN+HMM 3 96.00%

Neil and Liu (2016) MFCC+RNN 4 96.10%

ETDP (Zhang et al., 2020) SNN 2 95.80%

MPD-AL (Zhang et al., 2019) SNN+DD 1 97.52%

FE-Learn (Luo et al., 2019) SNN+DD 1 96.42%

FE-Learn2 (Luo et al., 2022) SNN+DD 2 98.10%

VSG (M = 1) SNN+DD 1 96.34%

VSG (M = 1) SNN+DD 2 98.23% (98.03%)

VSG (M = 10) SNN+DD 2 98.47% (98.32%)

*DD, dynamic decoding. Values in parentheses are the average of 10 experiments.

network with 800 hidden neurons (620−800−11M,M = 1, 10)

to conduct experiments separately.

Table 3 shows the highest test accuracies achieved by the

proposed method and other baseline methods. A single-layer

network trained with VSG can achieve a maximum accuracy of

96.34%. As a single-layer network with only 11 output neurons,

it performs well, as the best performingMPD-AL (among single-

layer network) has 110 output neurons. In addition, when there

is only one set of output neurons (M = 1), the two-layer

network trained by VSG outperforms the two-layer FE-Learn

by a slight advantage. When the number of output neurons is

increased (M = 10), the performance can be further improved,

reaching the highest accuracy of 98.47% as against other baseline

methods. However, since the proposed method has only a slight

advantage over FE-Learn2, it may not have statistical confidence.

So we re-executed the proposed algorithm 10 times (500 epochs

each) on the two-layer network and reported the average test

accuracies (in parentheses). WhenM = 10, the average accuracy

is 98.32%, which is also higher than the highest accuracy of

FE-Learn2. In addition, although the average accuracy when

M = 1 is only 98.03%, the highest accuracy (98.23%) is higher

than that of FE-Learn2. We believe that this can demonstrate the

superiority of the proposed algorithm.

4. Discussion and conclusion

Temporal-credit assignment problem is a non-trivial

problem in machine learning, and the aggregate-label learning

algorithm MST is an innovative SNN algorithm to solve this

problem. Then TDP1 improves the computational efficiency

of MST by modifying the formula for calculating the weight

derivative. Subsequently, MDP-AL bypasses the procedure of

iteratively finding critical thresholds in the MST and TDP1 by

adjusting the weights directly from the membrane voltage, thus

greatly reducing the computation time. But there is a drawback

in MPD-AL, that is, it may not be able to find the critical time it

needs, leading to the failure of learning.

In this paper, we propose to find the potential points for

emitting a new spike and the old spike that need to be removed

from the time derivative of membrane voltage, avoiding the

dilemma of failing to find the adjustment points. Furthermore,

on the one hand, the intermediate variables required to calculate

this time derivative are also necessary in the calculation of

membrane voltage and subsequent weight derivatives, so little

additional computation is added. On the other hand, we choose

the point with the fastest growth of the time derivative to

add the spike, and select the point with the slowest growth of

the derivative (among the existing pulses) to remove it, which

is experimentally proven to achieve a good balance between

efficiency and stability.

A single neuron trained with this algorithm can be

used to tackle the challenging temporal-credit assignment

problems. Specifically, it can detect valid clues embedded in

distracting clues and background spiking activity, deconstruct

aggregated delayed feedback signal and then assign them to

valid clues. Further, unlike MST, TDP1, and MPD-AL, which

is limited to the training of a single neuron or a single-

layer network, the proposed algorithm is rooted in multi-layer

SNNs for derivation, which further extends its performance. Its
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application on UCI and speech classification datasets also proves

its superiority.

Although the proposed algorithm is simple and efficient, it

has drawbacks. Like MPD-AL, when learning predictive clues, if

the clues in the training samples are too densely distributed, it

will be difficult to learn, which may be an unavoidable problem

caused by not calculating the precise critical threshold. In

addition, as a multi-layer spike-driven SNN learning algorithm,

the proposed learning rule suffers from common problems such

as gradient exploding and dead neurons. These all require us to

further optimize.
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