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Restoring morphology of light
sheet microscopy data based on
magnetic resonance histology
Yuqi Tian, James J. Cook and G. Allan Johnson*

Department of Radiology, Duke University School of Medicine, Durham, NC, United States

The combination of cellular-resolution whole brain light sheet microscopy

(LSM) images with an annotated atlas enables quantitation of cellular features

in specific brain regions. However, most existing methods register LSM data

with existing canonical atlases, e.g., The Allen Brain Atlas (ABA), which have

been generated from tissue that has been distorted by removal from the

skull, fixation and physical handling. This limits the accuracy of the regional

morphologic measurement. Here, we present a method to combine LSM

data with magnetic resonance histology (MRH) of the same specimen to

restore the morphology of the LSM images to the in-skull geometry. Our

registration pipeline which maps 3D LSM big data (terabyte per dataset) to

MRH of the same mouse brain provides registration with low displacement

error in ∼10 h with limited manual input. The registration pipeline is optimized

using multiple stages of transformation at multiple resolution scales. A three-

step procedure including pointset initialization, automated ANTs registration

with multiple optimized transformation stages, and finalized application of

the transforms on high-resolution LSM data has been integrated into a

simple, structured, and robust workflow. Excellent agreement has been seen

between registered LSM data and reference MRH data both locally and

globally. This workflow has been applied to a collection of datasets with varied

combinations of MRH contrasts from diffusion tensor images and LSM with

varied immunohistochemistry, providing a routine method for streamlined

registration of LSM images to MRH. Lastly, the method maps a reduced set

of the common coordinate framework (CCFv3) labels from the Allen Brain

Atlas onto the geometrically corrected full resolution LSM data. The pipeline

maintains the individual brain morphology and allows more accurate regional

annotations and measurements of volumes and cell density.

KEYWORDS

mouse brain imaging, magnetic resonance histology, light sheet microscopy, cross-
modality registration, tissue clearing

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1011895
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1011895&domain=pdf&date_stamp=2023-01-04
https://doi.org/10.3389/fnins.2022.1011895
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1011895/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1011895 December 23, 2022 Time: 14:16 # 2

Tian et al. 10.3389/fnins.2022.1011895

1. Introduction

Combining mesoscopic structural information of the brain
and histology at the cytoarchitectural scale has been a focus in
recent years to reveal the bridge between tissue morphological
alternations and disease (Casanova et al., 2009; Vemuri and Jack,
2010; Zhang et al., 2012), brain insult (Tuor et al., 2014; Fornito
et al., 2015; Weishaupt et al., 2016) and aging (Eylers et al., 2016;
Schmitz et al., 2018). There is clear evidence that morphological
disruptions underlie brain dysfunctions at both the meso- and
microscopic scale; for example the corpus callosum volume
reduction in autism (Egaas et al., 1995; Hardan et al., 2000;
Tepest et al., 2010; Loomba et al., 2021) and neuronal death
following ischemic insult (Weishaupt et al., 2016). Merging
structural changes in specific brain regions at the mesoscale
with corresponding quantitative cellular measurements at the
microscopic scale will open an entirely new window into
understanding the brain.

Diffusion tensor imaging (DTI) provides particularly unique
insight into brain morphology and connectivity (Fornito et al.,
2015). However, extension of DTI to more basic studies in the
mouse is challenging because the mouse brain @ 435 mg is about
3,000 times smaller than the human brain. Through a series of
innovations, the Duke Center for in vivo Microscopy (CIVM)
has extended the spatial resolution of magnetic resonance
imaging (MRI)/DTI by more than 500,000 times that of routine
clinical scans in perfusion fixed post mortem specimens (e.g.,
MRH) (Johnson et al., 1993; Johnson et al., 2007). Recent work
has pushed the resolution of DTI to 15 × 15 × 15 µm3

and accelerated the acquisition with compressed sensing, which
enables routine acquisition of high-resolution multidimensional
whole mouse brain images (Wang et al., 2018a; Johnson et al.,
2019, 2022). These high-fidelity mesoscale MRH data now
enable correlation between the MRH metrics and the tissue
cytoarchitecture.

The development of tissue clearing and LSM have allowed
neuroscientists to routinely image whole cleared mouse
brains at cellular resolution (Erturk et al., 2012). Continued
innovation in clearing (SHIELD) (Park et al., 2019) and
immunohistochemistry (SWITCH) (Murray et al., 2015) has
enabled staining of varied cell types (neuron, oligodendrocyte,
microglia), structural proteins (myelin) and pathologies (a-beta
and tau proteins).

Merging MRH and LSM data from the same specimen will
capture the best of both. MRH with DTI is a non-destructive
and multi-contrast imaging method which preserves accurate
brain morphology since the scanning can be done with the
brain in the skull. DTI with high angular sampling provides
maps of whole brain connectivity (Johnson et al., 2019). Multiple
scalar images provide exquisite tissue contrast differentiating
brain subunits. Post processing pipelines can exploit these
multi-contrast images to automatically label more than 300
different sub-regions (Johnson et al., 2022). LSM provides

cellular resolution but requires the removal of the brain from
the skull and tissue clearing, which induces tissue swelling.
Dissection of the brain from the skull frequently results in tissue
loss or tearing (Figure 1). Labeling is not always as uniform
as one might hope. Mapping LSM to MRH restores the tissue
geometry and allows automated labeling of the sub-regions in
the LSM data.

Finally, the most common method for labeling cleared brain
images (Kutten et al., 2016; Goubran et al., 2019; Tappan et al.,
2019; Perens et al., 2021) involves registration to the Allen
Brain Atlas which has been constructed from 2D serial sections
acquired at 100 µm intervals averaged from∼1,600 young adult
C57BL/6J mice (Wang et al., 2020). Mapping the cleared brain
images from another strain at a different age to the ABA may
obscure regional volume changes that might be important image
phenotypes for the study.

Our long-range goal is development of the infrastructure
to support routine, comprehensive morphologic phenotyping
of the mouse brain using combined MRH and LSM to map
the genetic impact on cells and circuits. Those familiar to
registration methods will appreciate that registration of images
into a common space requires recognition of the challenges
that are unique to the task and adapting the code to those
challenges. Those challenges are: (1) The sources of contrast in
MRH and LSM are wildly different. (2) Each modality has many
different contrasts, e.g., 11 different scalar images in MRH and
even greater number of contrasts in immune histochemistry for
LSM. (3) The geometric distortion in the LSM data can exceed
40% and there is frequent tissue loss. (4) The data volumes are
large approaching a terabyte for a single specimen. In this paper
we have addressed a these challenges, developed a process for
optimizing the software, and highlighted some of the limitations
in combining MRH/LSM of the same brain routine.

2. Materials and methods

2.1. MRH histology and LSM

All animal procedures were conducted under guidelines
approved by the Duke Institutional Animal Care and Use
Committee. Specimens were perfusion fixed using an active
staining method that has been described in detail previously
(Johnson et al., 2019). Warm saline to flush out blood
was perfused through a catheter in the left ventricle. This
was followed by a formalin/Prohance (Gadoteridol) mixture
titrated to reduce the spin lattice relaxation time (T1) of the
tissue enabling accelerated scanning. The MRH scanning was
performed on a 9.4T vertical bore magnet with a Resonance
Research Inc. (Billerica, Md) gradient coil yielding peak
gradients up to 2,500 mT/m. The scanner is controlled by
an Agilent console running VnmrJ 4.0. The acquisition was
accelerated using compressed sensing (Wang et al., 2018b;
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FIGURE 1

Distortion and tissue tearing in light sheet microscopy (LSM) compared to magnetic resonance histology (MRH). A comparison between LSM
images of a mouse brain stained with NeuN (A,C,E,F) and a diffusion weighted MRH image of the same specimen (B,D,G,H) highlights some of
the challenges and opportunities. Red arrows indicate the tissue tearing. Purple arrows indicate the swelling (specimen 200316). Scale bar:
1 mm.

Johnson et al., 2019). Diffusion tensor images were acquired
using a protocol described in detail in Johnson et al. (2022). The
protocol employed a Stesjkal Tanner spin echo sequence with
b-values of 3,000 s/mm2, 108 angular samples spaced uniformly

on the unit sphere, a compression factor of 8 × yielding a
large (252 GB) 4D volume with isotropic resolution of 15 µm.
A baseline (b0) image was acquired after every 10th angular
sample, yielding 18 baseline volumes. These volumes were
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averaged together to create a template to which all other
volumes were registered (ANTs) to correct for residual eddy
currents. A MATLAB script produced a diffusion weighted
image (DWI) by averaging the 108 diffusion images together.
The 4D data volume was processed through DSI Studio1 using
both the DTI and GQI algorithms (Yeh et al., 2010) which yields
eleven different scalar images (see Supplementary Table 3).
We explored the use of the following DTI scalar images to
drive the registration: axial diffusivity (AD), diffusion weighted
(DWI), fractional anisotropy (FA) and radial diffusivity (RD).
Two scalar data sets (DWI and FA) were used to registered
labels to the MRH volumes (and thence to the LSM) using the
Small Animal Multivariate Brain Analysis (SAMBA) an pipeline
described fully in Anderson et al. (2019).

Five specimens from Johnson et al. (2022) were included in
this study. They are summarized in Table 1. Specimen 200316,
a 90 day male C57/B6 mouse was used as a reference atlas. It
provides a modified version of the Common Coordinate Frame
(CCFv3) from the Allen Brain Atlas (Wang et al., 2020). The
CCFv3 defines regions of interest (ROIs) for 461 structures.
Many of these structures are so small that reliable alignment
is challenging. The reduced CCFv3 (rCCFv3) is a set of 180
labels/hemisphere generated by combining some of the regions
in CCFv3 that are too small to transfer accurately in the
registration pipeline. The full summary of the rCCFv3 can be
found in Johnson et al. (2022).

Following the MRH scans, the brains were removed from
the skulls and sent to LifeCanvas Technology2 for tissue clearing
and LSM imaging. The brains were cleared using SHIELD (Park
et al., 2019) and stained using SWITCH (Murray et al., 2015) and
scanned on a selective plane illumination microscope (SPIM)
yielding three channel whole brain images at a resolution of
1.8 × 1.8 × 4.0 µm. Each of the three channels yields a nearly
isotropic volume at a different wavelength of ∼ 300GB. The
aggregate dataset for one specimen (MRH and 3 channels of
LSM) is typically ∼ 1 TB. Table 1 lists immuno histochemistry
stains that were used to test the pipeline.

2.2. Multiple stages of the workflow

Initial attempts at registration with popular registration
algorithms (Avants et al., 2008; Klein et al., 2010) were
particularly unsuccessful in cerebellum and olfactory bulb both
of which are prone to significant distortion after removal from
the skull (Figure 2). Our workflow employs an initial manual
initialization followed by an automated multistep registration
based on ANTs (Avants et al., 2008). The manual initialization
is applied to all specimens to correct the most challenging
distortions. It uses sparse landmarks (15∼20) with many

1 https://dsi-studio.labsolver.org/

2 https://lifecanvastech.com/

concentrated in olfactory bulb and brain stem where the tissue
distortion in the LSM are the greatest. Landmarks are placed in
pairs, on both LSM and MRH. The landmark locations are 4
landmarks on olfactory bulbs, 2–3 landmarks on vessels on both
sides between cortex and striatum, 3 landmarks on cerebellum,
2 landmarks on dentate gyrus, 2 landmarks on hippocampus
and 2 landmarks on brain stem (as shown in Supplementary
Figures 5B, D). The second automated step is described in detail
below.

2.3. Quantitative loss function

The goal of registration is to transform the image of interest,
M i.e., the image that is being moved (the LSM volume) into
the space defined by the fixed reference image F (MRH volume).
Our pipelines use a series of transforms applied successively with
a loss function to evaluate each stage of transformation. For a
single transform stage n, the transformation Tn can be obtained
from optimizing the loss function:

Ln (M, F) = S(Tn◦M, F) (1)

in which S is the similarity between F and transformed M.
Common similarity metrics include mutual information (MI),
cross correlation (CC), mean square error (MSE), which capture
how well the two images are matched based on the joint
histogram or signal intensities. Since we may use these metrics
during registration, using the same metric repetitively for
evaluation is unacceptable. At the same time, MSE, CC, global
MI etc., by their intensity-based or histogram-based principles
will not generate a stable predictability map between LSM
and MRH due to the wildly different contrasts. The further
explanation can be seen with the MI equation in the section
“2.4 Optimization and validation.” Therefore, we need to devise
a different loss function.

The initialized LSM data is warped to MRH space with
a combination of registration steps built on ANTs (Avants
et al., 2008). Our workflow encompasses multiple types of
registration, and each type has different settings of metrics for
optimization and multi-resolution coarse-to-fine refinement.
The loss function should evaluate the cumulative consequences
of each of these steps. We devised a loss function based on a
large group (50–200) of fiducials to optimize the pipeline and
evaluate its stability (see Table 1). We emphasize that these
fiducials were used only in the evaluation of our pipeliness and
are not required for routine use. These fiducials were generated
by an experienced researcher on five different specimens (see
Table 1) and consisted of matched pairs of points in MRH
and LSM. Assuming the composite transform generated from
our workflow is T, applying T to the fiducials in the space
of LSM transforms these fiducials to the MRH space. The
distance between one MRH fiducial (rmr) and its corresponding
transformed LSM fiducial (T(rlst)) in the space of MRH is
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TABLE 1 Test specimens for combined magnetic resonance histology (MRH)/light sheet microscopy (LSM) registration.

Specimen Strain/Age Fiducial NeuN Syto MBP IBA1 AutoF

191209 C57/90 d 175 X X X

200302 C57/90 d 50 X X X

200316 C57/90 d 200 X X X

190108 BXD89/111 d 52 X X X

200803 BXD89/687 d 51 X X X

FIGURE 2

The failure of existing registration algorithms in the cerebellum and olfactory bulb. (A,B) DWI; (C,D) NeuN image after registration; (E,F) overlaid
DWI/NeuN (specimen 191209). The left hand column shows the result of Elastix (Klein et al., 2010) with rigid and b-spline registration and
default settings. The registration errors in the olfactory bulb and brain stem are reduced but the errors in the dentate gyrus and cerebellum are
significant (arrows in panel E). The right hand column shows the result of ANTs (Avants et al., 2008) with affine and SyN and default settings.
There is a reasonable overlap in the dentate gyrus but significant mismatch in the cerebellum and olfactory bulb (arrows in panel F).

regarded as displacement from ground truth, and the average
displacement i.e., L2 norm is used as the loss score, i.e.

L2 =
∑n

i = 1 (rmr,i−T(rlst,i))
2

n
(2)

2.4. Optimization and validation

The registration transform can be separated into linear and
non-linear stages. To reduce the computation, a complicated
registration should start from the linear transforms to adjust

the position, orientation, and scaling of the moving image
to coarsely and globally match the fixed and moving images.
Then, application of non-linear transforms will deform the grid
to locally match the fine details of fixed and moving images.
From the popular options of non-linear transforms, we choose
b-spline and symmetric diffeomorphic normalization (SyN)
registration methods based on their efficiency on large datasets
with complicated geometry.

B-spline relies on the control points to adjust local transform
until reaching the minima of the loss function. The curve
defined by b-spline is a conjunction of multiple polynomial
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curves which only depends on a local group of the control
points. Based on the zero-order parametric continuity of
B-spline, changing one control point will only influence the
local neighborhood on the grid instead of propagating further.
Therefore, b-spline can generate localized deformations flexibly
and is computationally efficient when dealing with many control
points. The conventional b-spline method applies free-form
deformation to the image. In this study, the reversal form of the
deformation is also required when transforming images between
the fixed and moving spaces. Hence, we adopt the b-spline with
the explicit symmetry i.e., b-spline Syn (Tustison and Avants,
2013) in the actual practice.

SyN, as a representation of diffeomorphic algorithms,
generates voxel-wise transformation based on symmetrical
and invertible displacements and velocity fields. SyN is
implemented on the Insight ToolKit platform and based on
Large Deformation Diffeomorphic Metric Matching (LDDMM)
principles. As an improvement, it develops the symmetry
between the fixed and moving images, i.e., instead of
maximizing the similarity between T◦M and F, SyN maximizes
the similarity between ϕ1 (m, t)M and ϕ2

(
f , 1− t

)
F, in which

t ∈ [0, 1], m and f are the respective identity positions of M and
F, and ϕ1, ϕ2 are the respective correspondence maps from M
to F, and from F to M. Based on the backward and forward
symmetry, t = 0.5. The optimization problem is then based on
the equation:

E (F,M)

= inf
ϕ1

inf
ϕ2

∫ 0.5

t = 0
{||υ1 (x, t)||2L + ||υ2 (x, t)||2L}dt

+S�(|F (ϕ1 (0.5))−M (ϕ2 (0.5))|) (3)

to minimize both the pixel displacement and the difference
between F (ϕ1 (0.5)) and M (ϕ2 (0.5)), in which υ1 and υ2 are
velocity fields in the opposite directions, S� is the similarity
measurements across the whole x surface. The advantage of
SyN is the low computational cost and the preservation of
the image topology.

An additional factor influencing the registration is the
selection of the similarity metrics. The most common
similarity metrics include cross correlation (CC) and mutual
information (MI).

A common definition of CC is

CC (F,M) =

∑
i,j (Fi,j − F)(Mi,j −M)√∑

i,j
(
Fi,j − F

)2
√∑

i,j
(
Mi,j −M

)2
(4)

CC is very sensitive to significant rotation and scale changes
and any intensity difference, which limits its performance
on cross modality registration evaluation, but including local
neighborhood CC into the optimization penalty may still help
with matching the contours of cross modality images.

MI defined by:

MI (F,M) = H (M)−H (M | F) = H (M)+H (F)

−H (FM) =
∑
m∈M

∑
f∈F

p(f ,m)log
p(f ,m)

p
(
f
)
p(m)

(5)

originates from information theory and measures how
much information of one image can be predicted correctly
from another image which is already known. In this
equation, H is the entropy, p(f, m) is the joint probability
density function of the fixed reference atlas F and the
moving image M that is being mapped into that reference,
and p(f) and p(m) are the marginal probability density
functions of F and M.

MI is commonly used for cross-modality registration
because it is based on intensity probability distribution instead
of pure intensity. However, for registering MRH and LSM, only
employing MI may be risky. As shown in Figure 1, e.g., DWI
and NeuN, in regions like cerebellum and olfactory bulbs, the
intensity of gray matter in DWI is relatively low while in NeuN is
high; meantime, in the central parts of the brain and the cortex,
the intensity in DWI is relatively high while in NeuN is low.
With the definition of MI, the joint histogram of F and M is
scattered and the MI in this case is low, with the minimum being
0 which means no mutual information between two images. MI
is a good measurement for Image F,M when the joint histogram
of F and M consists of one or multiple condensed distributions,
but may not be a good similarity measurement for MRH+LSM
as the local contrast distribution is wildly different. Therefore,
if the loss function calculated by MI is high, we do not know
whether it is induced by the geometric mismatch because of the
failed registration, or just the local contrast difference between
MRH and LSM.

Table 2 describes the steps for optimizing the registration
between an MRH and LSM. In our initial tests we used the DWI
and Syto16 images from specimen 191209, because they both
present abundant landmarks with some similarities, though
the contrasts are different. In later studies, we used DWI
and NeuN because NeuN and Syto16 have similar contrast
and the NeuN stain from LifeCanvas was more consistent.
Table 2 lists multiple stages starting with the global alignment
progressing to local higher resolution details. At each stage
multiple variations of the ANTs modules appropriate for that
task are compared. We refer to a collection as a “pipe” e.g.,
P1_01 is one combination of ANTs modules to perform global
registration. The pipe with the lowest L2 norm is chosen for the
final pipeline. The output of this pipe is the starting point for
the next stage. The Syto LSM image was initialized using the
coarse (20 point) landmark initialization correcting the large
distortions in brainstem and olfactory bulb. The optimization
described in Table 2 was performed on data that had been
down sampled to 45 µm to allow a broad search of parameters.
In each stage, we employ the multi-resolution method, which
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TABLE 2 Pipeline optimization pyramid @ 45 µ m resolution.

Experiments Optimization composition Score

Stage 1
Global

To optimize the combination of multiple transforms

P1_01 Affine (Default) + Syn (Default) 0.3467

P1_02 Affine (Default) + B-spline Syn (Default) + Syn (Default) 0.303

P1_03 Rigid (Default) + Affine (Default) + Syn (Default) 0.4269

P1_04 Rigid (Default) + Affine (Default) + B-spline Syn (Default) + Syn (Default) 0.3644

P1_05 Affine (Default) + B-spline Syn (Default) 0.3333

P1_06 B-spline Syn (Default) + Syn (Default) 0.3131

Stage 2
Similarity

To optimize the similarity metrics

P2_01 Affine (MI) + B-spline Syn (CC) + Syn (MI) 0.303

P2_02 Affine (MI) + B-spline (CC) + Syn (CC) 0.3606

P2_03 Affine (MI) + B-spline (MI) + Syn (MI) 0.3385

P2_04 Affine (MI) + B-spline (MI) + Syn (CC) 0.3752

P2_05 Affine (CC) + B-spline (CC) + Syn (MI) 0.3186

Stage 3
B-spline

To tune the multiresolution setting in b-spline stage

P3_11 --shrink-factor 10--smoothing 5 0.332

P3_12 --shrink-factor 1--smoothing 5 0.323

P3_13 --shrink-factor 1--smoothing 1 0.326

P3_21 --shrink-factor 10× 1--smoothing 2× 1 0.280

P3_22 --shrink-factor 10× 1--smoothing 10× 2 0.285

P3_23 --shrink-factor 10× 1--smoothing 10× 10 0.350

P3_24 --shrink-factor 2× 1--smoothing 2× 1 0.308

P3_31 --shrink-factor 10× 5× 1--smoothing 3× 2× 1 0.277

P3_32 --shrink-factor 10× 5× 1--smoothing 10× 5× 1 0.312

P3_33 --shrink-factor 10× 5× 1--smoothing 10× 10× 10 0.383

P3_34 --shrink-factors 3× 2× 1--smoothing 3× 2× 1 0.300

P3_41 --shrink-factor 10× 7× 4× 1--smoothing 1× 1× 1× 1 0.274

P3_42 --shrink-factor 10× 7× 4× 1--smoothing 4× 3× 2× 1 0.268

P3_43 --shrink-factor 10× 7× 4× 1--smoothing 10× 7× 4× 1 0.362

P3_44 --shrink-factor 10× 7× 4× 1--smoothing 10× 10× 10× 10 0.495

P3_45 --shrink-factor 4× 3× 2× 1--smoothing 4× 3× 2× 1 0.278

P3_51 --shrink-factor 9× 7× 5× 3× 1--smoothing 9× 7× 5× 3× 1 0.292

P3_52 --shrink-factor 9× 7× 5× 3× 1--smoothing 5× 4× 3× 2× 1 0.355

Stage 4
B-spline distance

To tune b-spline spline distance

P4_00 Spline distance default to 26 0.268

P4_01 Spline distance = 10 0.341

P4_02 Spline distance = 40 0.268

P4_03 Spline distance = 60 0.268

Stage 5
Syn

Tuning the multiresolution setting in SyN stage

(Continued)
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TABLE 2 (Continued)

Experiments Optimization composition Score

P5_01 --smoothing 3× 2× 1× 0--shrink 4× 3× 2× 1 0.2679

P5_02 --smoothing 10× 7× 4× 1--shrink 10× 7× 4× 1 0.3543

P5_03 --smoothing 10× 7× 4× 1--shrink 4× 3× 2× 1 0.3084

P5_04 --smoothing 1× 1× 1× 1--shrink 4× 3× 2× 1 0.2703

P5_05 --smoothing 0× 0× 0× 0--shrink 4× 3× 2× 1 0.2637

P5_06 --smoothing 0× 0× 0× 0--shrink 6× 4× 2× 1 0.2626

P5_07 --smoothing 0× 0× 0× 0--shrink 10× 7× 4× 1 0.2625

P5_08 --smoothing 0× 0× 0× 0× 0--shrink 20× 15× 10× 5× 1 0.2633

P5_09 --smoothing 3× 2× 1× 0--shrink 10× 7× 4× 1 0.2656

Specimen is 191209-1-1. The steps and parameters for the pipes that were tested are summarized for each stage. For each stage only the parameters to be optimized will change, and one
optimal pipe will be selected among the pipes within one stage. The aim of the pipeline initialization is to select an optimal registration variables for certain contrasts in MRH/LSM. The
pipeline optimization has been performed using one specimen. The application to additional specimens and contrast combinations has been demonstrated in Supplementary Table 2.

initially performs the registration at a lower resolution with
fewer control points and then samples the control points to
a higher resolution following convergence of the loss function
without consuming large computing resources.

The optimization pyramid (Table 2) includes:

◦ Stage 1 focuses on optimizing large global details. Each pipe
employs linear registration (rigid and affine) followed by
non-linear registration (b-spline syn and syn). Each pipe
uses the same default parameters. In stage 1, P1_02 i.e.,
Affine (Default) + B-spline Syn (Default) + Syn (Default)
yielded the lowest loss score so its output served as the
input for stage 2.
◦ Stage 2 focuses on similarity metrics, i.e., mutual

information or cross correlation.
◦ Stage 3 adjusts the b-spline multi-resolution settings with

number of layers, shrink factors (i.e., down-sampling) and
smoothing sigmas (i.e., the radius of Gaussian filter).
◦ Stage 4 adjusts the b-spline distance, an additional

parameter in b-spline syn.
◦ Stage 5 alters the synmulti-resolution settings with different

number of layers, shrink factors and smoothing sigmas.

The pipe with the lowest L2 norm is labeled in
green at each stage.

2.5. Registration validation

Registration with the five specimens was evaluated using
the fiducials recorded in Table 1. The use of fiducials facilitates
the comparison of different pipes and image combinations
explained in the section “3.1 Optimization of pipes” and
“3.2 Pipeline performance with varied image combinations.”
Supplementary Figure 5 shows the dense collection of fiducials
used to optimize the pipes (specimen: 191209). We performed
an initial evaluation on specimen 200316 with an equally dense

set of fiducials. At this point, it was clear that a sparser set would
be adequate for validation in the other specimens.

The precision of a given registration was measured using
Imaris3 which allows one to load multiple 3D volumes of
different spatial resolution as layers. Vascular landmarks were
identified using the three-plane view. Imaris allows one to toggle
between an LSM image and a companion MRH image while
interactively moving a 3D cross hair. One initially identifies a
vessel in cross section in the LSM and moves the plane until
one encounters a bifurcation. At this point the 3-dimensional
coordinates are recorded. The process is repeated in the
MRH and the Euclidean distance is measured. Supplementary
Figure 3 shows the magnified cross section of a vessel in the
NeuN image. The plane of the vessel cross section was adjusted
until the bifurcation was evident and a fiducial was marked. The
RD image provides high contrast for the same vessel where the
same vessel bifurcation is visible.

2.6. Data and code availability

We have made the data for experiments 1–3
available under creative commons by NC-SA at https:
//civmimagespace.civm.duhs.duke.edu/login.php/client/4.
The data is stored in H5 format to enable interactive
examination using Neuroglancer.4 Reviewers can log in
with the following credentials. Viewers will remain anonymous.
cr371@duke.edu
Password: mrmicroscopy

The code is available in github.5 The code provided
is implemented in Perl and bash (which are available on
windows/macos) and based on Ants.6

3 https://imaris.oxinst.com/products/imarisessentials

4 https://github.com/google/neuroglancer

5 https://github.com/YuqiTianCIVM/MRH_LSM_registration

6 https://github.com/ANTsX/ANTs
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When applying this method, please follow the
procedures described in the accompanying instructions
for installation and in the method section. The processing
time will depend on the computing resource. Please use
a high-performance computing resource paired with high
memory and page faulting, especially if the input data
is hundreds of GB.

3. Results

3.1. Optimization of pipes

Figure 3A plots the rank ordered L2 norm for each pipe.
Visual comparison are provided in Figures 3B–I. Figures 3B, F,
the starting point for all the comparisons shows the initialization
using ∼20 manual landmarks. The comparison between a
45 µm pipe that is less accurate (e.g., p2_02, L2 = 0.361) and
the optimal pipe @ 45 µm e.g., (p3_42, 0.268), is shown in
Figures 3C, D, G, H. The improvement is evident (see white
arrows in Figure 3G).

The parameters derived from Stages 1–3 had significant
impact on the L2 norm. Changing the b spline distance and
Syn in Stages 4 and 5 had less impact so the default settings
were used in P3_042 as the starting point for experiments
conducted with the full resolution (15 µm data) outlined in
Table 3. The variable of interest for this stage of optimization
is the shrink factor. This last stage is more nuanced depending
on compute time and the combination of LSM/MRH contrasts
(e.g., DWI/Syto, FA/NeuN) which is discussed in more detail
in the section “3.2 Pipeline performance with varied image
combinations.” The optimization @ 15 µm is started from
pipe P6_01, which has the same registration setting with the
optimal pipe @ 45 µm (P3_042). Table 3 demonstrates that
the shrink factor has an enormous impact on compute time
but the L2 norm remains relatively unchanged. Inspection of
the results shows more subtle impact of the shrink factor.
P6_01H overfits the data and is 27 times slower. P6_07H
does not overfit and it can be executed in a modest time.
Comparison between the best pipe at 45 µm (P3_042) and
P6_07H optimized on 15 µm is shown in Figures 3D, E, H,
I.

The L2 norm is also shown separately for the cerebellum
(CB), olfactory bulb (OB), central section of the brain (C),
and brain stem (BS). Each region poses unique challenges to
the algorithm. The contrast is very high between the white
matter and the intensely stained granular cell layer in the
cerebellum in both the NeuN and Syto images, and there is
comparable strong contrast in the DWI. Thus, the L2 norm
for this cerebellar region converges to a low value for all the
pipes. In the central part of the brain, the dentate gyrus, fimbria,
and corpus callosum all provide unambiguous landmarks and
fine tuning the pipeline leads to gradual improvement in the

score. The olfactory bulb shows a similar effect, but the score
does not converge to as low a-value. This may be because the
olfactory bulb is one of the most distorted regions of the brain,
and there are frequent tissue tears (e.g., the top red arrow in
Figure 1). Finally, the brain stem is the most challenging region
for registration as evidenced by high L2 norm and the high
variability between different pipes. The cause of this is again
evident on inspection of the sagittal LSM and MRH imaged
in Figures 1C, 2D, F. The spinal cord in the LSM is grossly
misplaced from its natural position forcing the algorithm into
large displacements.

The transform obtained from the 15 µm registration
was applied to the full resolution LSM data through the
python interface of 3D Slicer, in the order of their generation.
The time to apply transforms to full resolution LSM data
(∼300GB) was∼2 h.

3.2. Pipeline performance with varied
image combinations

The registration success depends on the similarity between
the anatomical features that are evident in the fixed and
moving volumes. The initial work described above varied
the pipes while registering Syto16 to DWI using specimen
191209-1-1. This section of the manuscript uses a fixed pipe
(p6_07H) to explore the success of several specific combinations
of LSM/MRH images in another specimen (200316) to
demonstrate the approach more broadly. The DTI pipeline
produces eleven different scalar images, each highlighting
different diffusion properties (see Supplementary Table 3).
The anatomic landmarks in the LSM vary widely depending
on the immunohistochemistry used. There are an enormous
number of combinations. Figures 4A–F show representative
comparisons derived from specimen 200316 to help justify the
comparisons we chose. The auto fluorescence (AutoF) image
(Figure 4A) is frequently used to drive registration to the
AutoF image in the ABA. NeuN (Figure 4B) and Myelin basis
protein (i.e., MBP, Figure 4C) are of particular interest to our
work in aging. The DWI (Figure 4D) is created by averaging
all the (registered) diffusion weighted images producing high
contrast to noise with many anatomic landmarks throughout
the volume. Cortical layer definition and contrast in the
dentate gyrus are particularly high in this volume. There
are strong similarities between NeuN (Figure 4B) and DWI
(Figure 4D). The FA image (Figure 4E) is a logical choice
as it highlights white matter. The RD image (Figure 4F) is a
putative marker of myelin integrity that might map well to the
MBP.

3.2.1. Comparison of p6_03H and p6_07H
Two pipes were chosen for more careful comparison:

p6_03H and p6_07H. Because of the similarities between NeuN
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FIGURE 3

Demonstration of the range of results derived from the varied pipes. (A) Shows the L2 norm for the pipes listed in Tables 2, 3 registering Syto16
to DWI (specimen 191209). (B) Shows that the initialization results in reasonable alignment in the central slice. But (F) shows that initialization
fails in the distal slices in the cerebellum. (C,D,G,H) Show results at 45 µm with L2 norms of 0.361 using pipe P2_02. There are still significant
errors in the cerebellum (arrows in panel G). (D,H) With pipe P3_42 performs better with a lower L2 norm of 0.268. Finally, a comparison of
panels (D,H) (@ 45 µm) and (E,I) (@ 15 µm) with pipeline P6_07_H demonstrates the utility of performing the registration using the higher
resolution data. The cerebellar slice in panels (F–I) highlights a frequent problem i.e., loss of the parafloculoss from handling. The broken
symmetry in the data gives rise to asymmetric misalignment (arrows in panels C,D,H).

and DWI, this combination was chosen to evaluate these two
pipes in three different specimens. Supplementary Figure 1 and
Supplementary Table 1 summarize the comparison. P6_03H
is faster than p6_07H and for one specimen (191209) yielded
a lower L2 norm. The resulting volumes were imported into
Imaris to allow interactive review of the relative success
of the registration across the entire volume. Supplementary
Figure 1 demonstrates that p6_03H yields consistent subtle
misregistration in the dentate gyrus that is absent in p6_07H.

3.2.2. Relative success of multiple
combinations

Supplementary Table 2 summarizes an exhaustive
comparison of p6_07H across five specimens with 15 different
pairs of images. Specimen 200316 with the largest number
(200) of fiducials was run twice with different initializations.
Specimens 190108 and 191209 are from the BXD series
providing a strain with different anatomy than the B6.
Comparison of the L2 norms between specimens is not
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TABLE 3 Optimization of pipeline @ 15 µ m resolution.

Pipeline Composition Score Time

Stage 6

P6_01_H --shrink-factor
10× 7× 4× 1

0.2419 3 d 17 h

P6_02_H Coarser affine
--shrink-factor
30× 21× 12× 1

0.2834 6 d 12 h

P6_03_H --shrink-factor
30× 21× 12× 3

0.2147 2 h 29 m

P6_04_H --shrink-factor
30× 21× 12× 1

0.2544 6 d 12 h

P6_05_H --shrink-factor
40× 28× 16× 4

0.2232 2 h 43 min

P6_06_H --shrink-factor
20× 14× 8× 2

0.2314 18 h 12 m

P6_07_H --shrink-factor
10× 7× 4× 2

0.2382 10 h 29 m

The shrink factors in the b-spline and SyN stages are the main variables to be optimized.

appropriate since each specimen has a different set of fiducials.
This highlights some of the limitations in using fiducials
as a quantitative metric for comparison of the quality of a
registration. The precision of fiducial pairs will be biased by
the reader placing the pairs. This results in a lower (nonzero)
level which will vary between specimens that is dependent on
the reader/fiducial e.g., an average error of 135 µm for the
NeuN/DWI combination for specimen 200803 with 51 fiducials
and 235 µm for specimen 191209 with 175 fiducials. However,
comparison of the L2 norms across the different registration
combinations within a specimen can provide useful insight into
which pairs provide the best registration. For example, mapping
MBP to RD is one of the least successful combinations. Mapping
NeuN to DWI or Syto to DWI yields one of the lower L2 norms
for all the specimens. The duplicate comparison for specimen
200316 highlights the stochastic nature of the registration with
a 12% difference in the L2 norm (NeuN+DWI) between the two
runs, but the relative scores of varied combinations of mapping
remain unchanged.

One of the more surprising results is the success of the
AutoF/DWI combination. Supplementary Figure 2 shows the
results of registration using the pipe p6_07H with two image
combinations: AutoF to DWI and NeuN to DWI with specimen
200316. The transforms generated with the AutoF to DWI
registration was then applied to the NeuN. The registered pairs
(NeuN to DWI) for both transforms were interactively reviewed
in Imaris to discern areas in which the transforms differed. The
target image (DWI) is displayed in yellow, and the moving image
(NeuN) is displayed in green. In Supplementary Figure 2A
(NeuN to DWI) there are subtle errors in alignment in the
cerebellum that are not evident in the autoF/DWI pair. Yet the
internal structures e.g., the dentate gyrus seem to be comparable.
Comparison of the moving images C) NeuN or D) AutoF,

highlight the high contrast granular layer in the NeuN image
and the relatively flat contrast in the AutoF image. The high
contrast in this granular layer dominates the registration since
the NeuN stain in the outer edge of the brain is nonexistent.
Registration using the AutoF is more successful since the
contrast in the cerebellum is quite flat. This highlights one of
the most challenging aspects of this task i.e., the registration of
two volumes with completely different sources of contrast.

The NeuN/DWI combination has become our standard
method since many of our planned studies require insight into
neuronal density. Landmark comparison of the vessels in the
NeuN to DWI registration was undertaken using Imaris as
described in the section “2.5 Registration validation” to gauge
the quality of registration away from the edges. The process was
executed on 11 different vessels spread throughout the brain.
The mean displacement was 22± 14 µ m.

3.3. Volume corrections to LSM

The most common way of delineating brain regions on an
cleared brain image is via registration to an atlas (Kutten et al.,
2016; Tappan et al., 2019; Perens et al., 2021) or registration
of the atlas to the volume under study (Goubran et al., 2019).
The most commonly used atlas is the ABA i.e., the CCFv3 3D
template constructed from a population of 1,675 young adult
B6 brains using AutoF (Wang et al., 2020). In Figure 5, we
used our MRH atlas to estimate the regional volume changes
in the LSM images from tissue swelling in specimen 190108.
This specimen (111 day BXD 89) is representative of our broader
interest- understanding the genetic basis for age related changes
in the BXD family (Ashbrook et al., 2021). We registered the
NeuN to DWI for specimen 190108 using the final registration
pipeline. Labels were registered to the DWI of specimen
190108 from our reference B6 atlas (200302) using our MRH
registration pipeline (Anderson et al., 2019). The transform that
was generated was inverted to transform the labels on the DWI
back to the uncorrected NeuN volume. Figures 5A, B shows
the NeuN volume before and after correction, respectively. Note
the changes in the width is larger than the change in length
highlighting the nonuniform distortion. This is even more
apparent in Figures 5C, D which shows a sagittal cross section
before and after correction.

Figure 6 summarizes the change in volume for the 50
largest regions of interest. We have used the reduced set
of labels (rCCFv3) defined in Johnson et al. (2022). The
nomenclature is consistent with CCFv3. The magnitude and
variability are significant. The olfactory bulb (OB) is nearly
80% larger in the uncorrected data while the corpus callosum
(cc) is ∼10% smaller. The problem is compounded when
comparing specimens as the differential swelling varies, and
it varies considerably between different clearing methods.
These variations must impact the shape of the structures.
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FIGURE 4

Light sheet microscopy of different stains and MRH of different contrasts. (A) Auto fluorescent, (B) NeuN, (C) MBP, (D) DWI, (E) FA, (F) RD scale
bar is 2 mm (specimen 200316).

Supplementary Figure 4 demonstrates the impact on the non-
uniform distortion on the hippocampus, a region of particular
interest in age related neurodegeneration (Sabuncu et al., 2011;
Katabathula et al., 2021). Supplementary Figure 6 demonstrates
the variability of deformation in 30 brain regions across multiple
specimens.

4. Limitations

Registration of LSM to the MRH of the same specimen
improves the geometric accuracy over existing methods of
registration to the Allen Brain Atlas as demonstrated in
Figure 6. But there are limitations. While the MRH data are
acquired with the brain in the skull they are not a perfect
match to the in vivo scan. Ma et al. (2005, 2008) have compared

in vivo and ex vivo scans. They are significant with volume
difference between in vivo and ex vivo (out of skull) varying
from +60% (fimbria) to −79% (ventricles). The majority of
this difference arises from removing the brain from the cranial
vault. Our images have been acquired with the brain in the skull
which reduces this problem. But the ventricles are collapsed
and there may be shrinkage due to fixation. Inspection of the
data before skull stripping has demonstrated no measurable
separation of the brain surface from the skull so the shrinkage
from fixation is limited. But ventricle distortion remains a
limitation. An additional source of uncertainty arises from
the transfer of the label from our canonical MRH atlas to
any new MRH data using our SAMBA pipeline (Anderson
et al., 2019). The accuracy and precision of the pipeline are
dependent on the tuning parameters of the pipeline and the
morphologic differences between the unknown specimen to
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FIGURE 5

Distortion correction of the LSM data by registration to the MRI
of the same specimen (190108). (A) Surface rendering of
uncorrected LSM volume and (B) corrected LSM volume. The
scale bar is 2 mm. (C) Midsagittal section of the labels on the
LSM data before correction; (D) midsagittal section after
correction: the scale bar in panels (C,D) is 2 mm. The distortion
is present both within the plane of section and across the plane
making it difficult to define identical planes. The highlighted
edges in panel (C) are an interpolation artifact.

which labels are mapped and the canonical atlas. We are
confronted with the fact that the atlas is constructed from
a B6 as is the ABA. But the tests performed in validating
the atlas included a systematic variation of inputs using a

synthetic model with varied anatomy and a real world source
of variation based on a model of stroke causing significant
volume changes in several structures in the brain. With
appropriate selection of the SAMBA registration parameters
ROC analysis showed area under the curve (AUC) better than
0.99.

5. Discussion

This work was initiated to enable combined analysis of cells
and circuits from MRH and LSM in the same specimen. We have
developed a method to register the LSM images which allow
us to count cells to MRH, which maintains brain morphology
inside the skull more closely approximating that in a live animal.
Transferring labels from the MRH to the corrected LSM data
allows us to measure regional cell densities with much greater
accuracy than previous methods.

We addressed several challenges in correcting the significant
and irregular distortion in the LSM; registration between
fundamentally different images with significant differences in
contrast; registration of very large volumes (300 GB). We have
employed an initialization involving ∼ 20 landmarks followed
by pipeline with multiple stages of transformations and metrics
to minimize a user customized L2 norm score.

From the optimization, we selected the registration
workflow with a combined consideration on accuracy and time.
The optimized workflow (pipeline p6_07) takes an average
of 7.5 h on a computer with 2 64-core processors and 2TB
RAM with page faulting, with the L2 norm of 135 µm.
The workflow shows robustness in multiple specimens. Our
approach takes advantage of the high spatial and contrast
resolution in the MRH images to provide internal landmarks
the drive the registration locally across the whole brain which
is evident from the small mean displacement (∼22 µm) of
fiducials, which are picked at the junctures of vessels in
both MRH and LSM.

As both MRH and LSM include varied contrasts (Figure 4),
we did experiments to find the best combination of different

FIGURE 6

Bar plot of ratio of the volume before and after registration. The regions are ranked by the ROI volume. The ratio is obtained by
Vbefore reg−Vafter reg

VMR
.

The abbreviations of the regions are based on rCCFv3 (Johnson et al., 2022) with a labeling convention consistent with CCFv3.
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diffusion scalar images and immunohistochemistry with LSM.
A surprising conclusion is that registrations between DWI and
AutoF or NeuN are similarly good. The practical consequence
for our use is that we will not have to acquire an AutoF
image freeing up a channel in the LSM for a more useful
cytoarchitectural measure i.e., NeuN.

Multiple groups have developed methods for automated
labeling of 3D optical images from cleared mouse brains
(Kutten et al., 2016; Perens et al., 2021). These approaches
rely on the Allen Brain Atlas as the reference (Wang et al.,
2020). We are interested in mapping the age-related changes
across multiple strains (for both genders). Registration of
these data to the young adult male C57 that is the core of
the ABA could obscure the morphologic changes of interest.
Renier et al. (2016) used MRI of a fixed mouse brain
to measure the degree of distortion from tissue processing
with iDisco but their MRH images were of a half brain
taken with a relatively low contrast gradient echo out of
the skull. Labeling relied on mapping the autofluorescence
image to the ABA. The MRI was not used in this step.
Goubran et al. (2019) have developed a pipeline that is
similar to that which we report here. Our work differs
from their approach in four ways. Our dMRI protocols
acquire data @ 15 µm vs 200 µm i.e., a difference in
voxel volume of 2370 X with the commensurate challenge
of larger image arrays. As demonstrated in Figures 3E, I,
registration with the full resolution MRH (15 µm) makes
a difference. Supplementary Table 2 provides an excellent
starting point for evaluation of many of the alternatives.
Finally, our pipeline takes advantage of a truly isotropic
3D MRH atlas of the brain in the skull to which rCCF3
labels have been mapped. Our approach provides an efficient
method for segmenting brain regions in LSM data mapped
in the MRH space of the same specimen which will allow
quantitative study of cytoarchitecture e.g., cell density along
with connectivity. The contrast study also would be a fruitful
area for the further work. For example, a broader study could
consider synthesizing synthetic contrast from combinations
of scalar dMRI images that might contain complementary
information or using machine learning to transferring the
contrast from LSM to MRH to reduce the registration
difficulty due to different contrast distributions (Sedghi et al.,
2021). Artificial intelligence may well provide new avenues to
improve the registration quality and efficiency (Fu et al., 2020;
Sedghi et al., 2021).
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