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Bilateral brain stimulation is an important modality used to investigate brain

circuits and treat neurological conditions. Recently, low-intensity pulsed

ultrasound (LIPUS) received significant attention as a novel non-invasive

neurostimulation technique with high spatial specificity. Despite the growing

interest, the typical ultrasound brain stimulation study, especially for small

animals, is limited to a single target of sonication. The constraint is associated

with the complexity and the cost of the hardware system required to achieve

multi-regional sonication. This work presented the development of a low-

cost LIPUS system with a pair of single-element ultrasound transducers to

address the above problem. The system was built with a multicore processor

with an RF amplifier circuit. In addition, LIPUS device was incorporated with a

wireless module (bluetooth low energy) and powered by a single 3.7 V battery.

As a result, we achieved an ultrasound transmission with a central frequency

of 380 kHz and a peak-to-peak pressure of 480 kPa from each ultrasound

transducer. The developed system was further applied to anesthetized rats to

investigate the difference between uni- and bilateral stimulation. A significant

difference in cortical power density extracted from electroencephalogram

signals was observed between uni- and bilateral LIPUS stimulation. The

developed device provides an affordable solution to investigate the effects

of LIPUS on functional interhemispheric connection.
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Introduction

A large body of research suggests that bilateral brain
stimulation may provide therapeutical benefits for various
neurological disorders (Kumar et al., 1999). In clinical settings,
bilateral deep brain stimulation (DBS) has shown improvements
in motor deficits and quality of life in patients with advanced
Parkinson’s conditions (Williams et al., 2010; Odekerken
et al., 2013). Invasive electrical stimulation of two thalami is
sought when unilateral stimulation cannot provide satisfactory
therapeutic effects for essential tremors (Ondo et al., 2001).
Additionally, pharmacologically resistant major depressive
disorder is within the scope of bilateral DBS utility (Mayberg
et al., 2005; Taghva et al., 2013). However, due to the invasive
nature of DBS, the risk of postoperative complications is
increased with an additional implanted electrode (Voges et al.,
2007). Non-invasive bilateral activation of motor cortices by
transcranial magnetic stimulation (TMS) showed a decrease in
the Yale Global Tic Severity Scale in children with Tourette
syndrome (Kahl et al., 2021), as well as an enhancement of motor
function after a stroke (Takeuchi et al., 2009; Park et al., 2017).
Another non-invasive technique is transcranial direct current
stimulation (tDCS) predominantly affects both hemispheres and
provides an additional therapeutic option for addiction (Batista
et al., 2015; Kim and Kang, 2021) and motor-related disorders
(Mordillo-Mateos et al., 2012; Di Lazzaro et al., 2014). Despite
the broad application of TMS and tDCS, they suffer from poor
spatial precision and shallow penetration depths (Wagner et al.,
2007). Therefore, alternative neurostimulation techniques that
can overcome these limitations are in demand.

Recent advances in focused ultrasound (FUS) have found
broad applications in neurotherapeutic scenarios (Rezayat and
Toostani, 2016; Meng et al., 2021). FUS offers relatively high
precision and has been successfully applied to deep brain regions
in a non-ionizing, non-invasive fashion (Legon et al., 2018; Shin
et al., 2018). High-intensity transcranial ultrasound has been
used in clinical studies to provide localized thermal ablation
of deep brain tissues to treat tumors (Zhou, 2011), essential
tremors (Schreglmann et al., 2017), and Parkinson’s disease
(Dobrakowski et al., 2014). Meanwhile, low-intensity pulsed
ultrasound (LIPUS) showed a non-thermal, non-destructive
capability to stimulate brain circuits (Rezayat and Toostani,
2016; Huang et al., 2019). Furthermore, varying the acoustic
pulsing scheme resulted in the suppression or excitation of
neural networks (Yoo et al., 2011; Kim et al., 2015; Yoon
et al., 2019). In vivo functional magnetic resonance imaging
(fMRI) (Verhagen et al., 2019) and ex vivo whole-cell patch-
clamp recording (Clennell et al., 2021) showed that acoustic
neuromodulation offers long-lasting effects, thereby opening
an unprecedented potential for various neurological disease
interventions. LIPUS has already been used to facilitate post-
stroke recovery (Baek et al., 2018), to suppress seizure activities
(Chen et al., 2020), and to treat major depression (Tsai, 2015).

In clinical application, thalamic ultrasound stimulation was
employed to treat consciousness disorders (Monti et al., 2016).

A typical LIPUS system consists of a single-element
transducer that requires at least one off-the-shelf function
generator and a linear RF amplifier (Tufail et al., 2011).
Implementing a second transducer for bilateral stimulation
would increase the system complexity and cost by about twofold.
Moreover, excessive tethering of the transducers limits the
motion of an animal subject on which the device is mounted,
causing undesired psychological stress (Blanchard et al., 2001).
A basic solution was suggested in a behavioral study involving
non-human primates, in which sequential sonication was used
on the right and left basal forebrain to alternate decisions
(Khalighinejad et al., 2020). However, time delays prevalent
in paired stimulation substantially impacted the stimulation
outcome (Oliveri et al., 2000; Torii et al., 2019). The phased-
array configuration has the potential for concurrent dual-target
stimulation, but this approach is still limited by immobilized
animals with a fixed, bulky acoustic probe above the head
(Li et al., 2018), thus inducing potential physiological and
behavioral changes which may interfere with the stimulation
(Kim et al., 2017).

The above limitations motivated us to develop a wireless,
low-cost system for concurrent LIPUS-mediated bilateral
stimulation on rats. In the previous work, we developed
a portable transcranial ultrasound system for remote brain
stimulation of freely behaving animals (Kim et al., 2020).
However, the system was designed to drive only a single
ultrasound transducer, thus offering single-target stimulation.
Herein, the bilateral brain stimulation system was constructed
with a multicore processor providing separate control of two
in-house built transducers. The efficacy of the developed
method was examined on Sprague Dawley rats through
electroencephalogram (EEG). In addition, the power density
change of the EEG signal was analyzed to evaluate a functional
interhemispheric communication induced by bilateral LIPUS
stimulation.

Materials and methods

Ultrasound system

The ultrasound transducers were designed based on PZT-
4 ceramics with a resonance frequency of 380 kHz and a
diameter of 7 mm (SMD07T02R412WL, Steiner & Martins
Inc., Davenport, FL, USA). PZTs were encapsulated into an
individual 3D printed (Verowhite, Stratasys, Eden Prairie, MI,
USA) transducer housing (8 mm in diameter, 6 mm in height).
Then, a 5.5 mm thick thermoplastic adhesive (3764, 3M, Saint
Paul, MN, USA) was filled on one side as an acoustic backing
layer to absorb back-reflected sound waves.
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The driving system which controls transducers was
developed based on two main compartments: a system on
chip (SoC, nRF52840, NORDIC Semiconductor, Norway) and
a pair of RF amplifier circuits. Firstly, a pulse width modulated
(PWM) signal with a frequency of 380 kHz and 50% duty cycle
(DC) was generated by a multicore processor inside the SoC.
Then, the generated PWM signal was amplified and lowpass
filtered by the amplifying circuit (Figure 1), which mainly
consisted of a combination of a metal-oxide-semiconductor
field-effect transistor (MOSFET; NCE0103, NcePower, China)
and a transformer with 1:6 ratio between the primary and
secondary winding. MOSFET with a transformer offered an
initial voltage boost of PWM due to additional voltage
originating across the primary coil of the transformer. Then,
the signal was amplified a second time due to the difference
in ratio between the primary and secondary winding. The
voltage across PZT was measured using a digital oscilloscope
(DSOX1204G, Keysight Technology, USA). Each core (total
of four cores) produces the independent PWM waveform,
offering the capability of each transducer to set different
sonication schemes [i.e., pulse repetition frequency (PRF),
pulse duration, and sonication onset]. The acoustic beam
profile and waveform from each transducer were measured
in free water space by needle-type hydrophone (HNR-0500,
0.5 mm probe, ONDA Corp., USA). The acoustic attenuation
caused by the rat skull was measured by placing the freshly
extracted rat skull between an ultrasound transducer and a
hydrophone.

Bluetooth low energy (BLE) module was embedded into
the SoC, offering a wireless control of stimulation protocol
[i.e., stimulation onset, sonication duration (SD), PRF, and DC
of stimulation]. The entire system was powered by a single
3.7 V lithium-polymer battery with 900 mAh, with a DC–
DC power converter (IP5306) to boost 3.7–5 V. The entire
system was compiled on a circuit board with dimensions
40 mm × 40 mm × 10 mm. The circuit with a total weight of
33 g (15 g excluding battery) was placed inside a rat’s backpack,
offering the possibility for the animal to move freely (Figure 1B).
For the awake rat, the transducers were transiently fixed over
the scalp using topical skin adhesive (Dermabond, Johnson &
Johnson, USA).

Animal preparation

All animals were cared for in accordance with the guidelines
for the Care and Use of Laboratory Animals. The animals
were housed in a temperature-controlled room with alternate
light/dark conditions (a 12 h light/dark cycle, light on
07:00–19:00) and ad libitum access to water and food. All
surgical procedures were carefully reviewed and approved by
the Institutional Animal Care and Use Committee (IACUC)
of the Korea Institute of Science and Technology. Nine
Sprague-Dawley rats (7–10 weeks old male, 220–280 g) were
used for this study.

Surgical procedures and
electrophysiological assessment

Animals were anesthetized by an intramuscular injection
of a ketamine/xylazine mixture (80 mg/kg ketamine, 10 mg/kg
xylazine). Sufficient depth of anesthesia was ensured prior
to the surgical procedure by toe pinch assessments. The
additional dose of anesthetic agent (one-third of the original
dose) was delivered as needed to complete the surgical and
LIPUS procedures. The scalp fur was removed, and a midline
incision was made to expose the skull. Six custom-made screw-
type electrodes were fabricated with insulated copper wires
(UL-AWG36, SME, South Korea), and anchor screws were
fixed on the skull to record EEG signals. Two electrodes were
placed above a motor cortex [Anteroposterior (AP): −3 mm,
Mediolateral (ML): ±1 mm]; the other two were located above
the somatosensory area (AP: −3 mm, ML: ± 4 mm); ground
and reference electrodes were fixed above the cerebellum. EEG
activity was measured from the rat cortex with an 8 kHz
sampling frequency and finite impulse response bandpass
filtering from 0.1 to 200 Hz (Digital Lynx SX, Neuralynx,
Inc., USA). EEG was acquired with a wired connection for
precise recording of neural signals, while control of LIFUS
was performed wirelessly through BLE communication. Two
transducers were placed above the right and left primary motor
cortex (AP: +1.5 mm, ML: ±4 mm) and connected to the LIPUS
system. The ultrasound gel was applied between the transducer
and the skull to minimize acoustic impedance mismatching.
A custom code in MATLAB (R2020a, MathWorks, Inc., USA)
was used to control and synchronize LIPUS stimulations with
EEG recording via Bluetooth protocol.

Ultrasound stimulation protocols

The right primary motor (M1) cortex was selected to
evaluate the effect of unilateral LIPUS stimulation with one of
two sonication schemes: 1 kHz PRF and 50% DC (stimulation
condition #1), 100 Hz PRF and 5% DC (stimulation condition
#4). During the unilateral stimulation, the transducer on the left
hemisphere did not generate any ultrasound wave.

Two bilateral sonication protocols were integrated into
the experiment procedure to evaluate the modulatory effect
produced by simultaneous, contralateral LIPUS stimulation.
Stimulation condition #2 combines excitatory stimulation
(1 kHz PRF and 50% DC) on the right hemisphere with
concurrent suppressive stimulation (100 Hz PRF and 5% DC)
on the left motor cortex. During stimulation condition #3,
both the right and left hemispheres underwent simultaneous
excitatory stimulation (1 kHz PRF and 50% DC). All stimulation
conditions were performed with a central frequency of 380 kHz,
SD of 300 ms, inter-stimulus interval (ISI) of 2 s, and spatial-
peak pulse-average intensity (ISPPA) of 2.3 W/cm2, as shown in
Figure 2. Each sonication condition consists of 200 stimulation
trials.

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1011699
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1011699 September 21, 2022 Time: 11:58 # 4

Kim et al. 10.3389/fnins.2022.1011699

FIGURE 1

(A) Schematic diagram of the wireless LIPUS system. A system on a chip (SoC) generates PWM signals that are further converted to 380 kHz sine
waves to feed ultrasound transducers (PZTs). R1 = R2 = 100 �; C1 = C2 = C3 = 100 uF; D1 – SS14. (B) The entire system fits inside a backpack
that was worn by an awake rat. The arrows indicate ultrasound transducers. (C) An acoustic waveform with a central frequency of 380 kHz was
generated from the LIPUS system. The time and frequency domains are shown as blue and orange color, respectively. (D) The acoustic beam
profile of the in-house built transducer was measured in a free water condition. The longitudinal pressure map is on the left, and the transverse
profile is on the right (measured 2 mm away from the transducer surface). The full width at half-maximum (FWHM) of pressure is indicated with
dotted black lines. The white arrow shows the direction of sonication.

Electrophysiological analysis

Electroencephalogram signal was analyzed based on the
power density of brain wave oscillation. A notch filter with
a cutoff frequency of 60 Hz was applied to remove line
noise from the EEG signal. The time-locked signal of the
EEG oscillation synchronized with the stimulation interval was
collected from each stimulation trial. Trials with substantial
noise were removed by a thresholding method. For each
sonication condition, a total of 1,700 trials were randomly
collected to match the same numbers for statistical analysis.
Power spectral density (PSD) analysis was performed by the
short-time Fourier transform (STFT) on each trial by sliding
the 500 ms time window for every 16.7 s. The averaged across
baseline (from −500 to −200 ms) and stimulation period (from
0 to 300 ms) value of delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), and gamma
(30–45 Hz) oscillation was collected from each trial. PSD was
grand averaged within each sonication condition to evaluate
the effect of the LIPUS stimulation on the neural activity
change. A two-tailed, paired t-test was performed to compare
baseline and LIPUS periods in terms of the power of brainwaves.

PSD associated with LIPUS period (from 0 to 300 ms) from
each trial was normalized with respect to baseline values and
averaged within each sonication condition to compare the effect
of LIPUS from each sonication condition. Kruskal–Wallis, non-
parametric one-way ANOVA followed by the Tukey–Kramer
post hoc analysis was used to compare the PSD change induced
by stimulation conditions.

Results

Bilateral low-intensity pulsed
ultrasound system

The voltage across PZT showed the capability of the
developed system to convert 3.7 V PWM from SoC to a half-
rectified signal with a peak-to-peak amplitude of 108 V to
drive the PZT. Due to the narrow band of PZT resonance
frequency, the half-rectified signal was a sinusoidal waveform.
Fourier analysis of the acoustic signal produced from the
transducer (Figure 1C) showed a central frequency of 380 kHz.
Figure 1D shows the acoustic beam profile from a single
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FIGURE 2

(A,B) Sonication parameters for the LIPUS stimulation. (C) Combinations of sonication parameters for unilateral (1, 4) and bilateral (2, 3) primary
motor cortex stimulation. (D) A schematic diagram of LIPUS stimulation and EEG recording cite.

transducer measured in free water conditions. The beam profile
and pressure map were indifferent between the two transducers.
Moreover, the acoustic power produced from one transducer
was maintained similarly when the second transducer was
turned on. The highest pressure was observed around 2 mm
from the transducer surface with peak-to-peak pressure of
481 kPa (ISPPA = 2.3 W/cm2). In the transversal profile, FWHM
was 3.2 mm in diameter. A loss of 10% in acoustic pressure
was observed due to attenuation caused by the rat skull. The
acoustic pressure map after the skull showed the highest peak
was maintained around 2 mm from the transducer surface with
a minor distortion of the transversal profile (Supplementary
Figure 1).

Low-intensity pulsed ultrasound
stimulation modulates brain oscillatory
power

Figure 3 shows the effect of LIPUS stimulation on the
neural oscillations of the right motor cortex. The overall
PSD of the right motor cortex for each sonication condition
is shown in Supplementary Figure 2. All four stimulation
conditions significantly changed the power of specific brain
waves compared to baseline. In detail, a significant increase
in power of delta waves was induced by sonication conditions
#1 [t(1,699) = −2.07, p < 0.05] and #2 [t(1,699) = −3.31,
p < 0.001]. Theta wave was significantly elevated by condition
#1 [t(1,699) = −3.25, p < 0.01]. The comparison between
pre- and post-stimulation showed that the power of alpha

oscillations was significantly increased by sonication conditions
#3 [t(1,699) = −2.48, p < 0.01] and #4 [t(1,699) = −2.43,
p < 0.05]. The power of beta oscillations was significantly
increased for sonication conditions #1 [t(1,699) = −2.69,
p < 0.01 for low beta, t(1,699) = −4.70, p < 0.001 for high beta],
#2 [t(1,699) = −2.93, p < 0.01 for low beta, t(1,699) = −4.79,
p < 0.001 for high beta] and #4 [t(1,699) = −3.16, p < 0.01
for low beta, t(1,699) = −10.23, p < 0.001 for high beta]. The
power of the gamma brainwaves was also significantly increased
in all sonication conditions. [t(1,699) = −2.71, p < 0.05 for #1;
t(1,699) = −6.47, p< 0.001 for #2; t(1,699) = −2.52, p< 0.05 for
#3; and t(1,699) = −15.71, p < 0.001 for #4].

Modulatory effect of bilateral
low-intensity pulsed ultrasound
stimulation

The normalized PSD of all sonication conditions is shown
in Figure 4. PSD comparison showed a statistically significant
difference between unilateral sonication conditions #1 (1 kHz
PRF and 50% DC) and #4 (100 Hz PRF and 5% DC) in the
power of delta (motor cortex from both hemispheres showed
a higher power during #1, both p < 0.01), theta (motor cortex
from both hemispheres, and left somatosensory cortex showed
a higher power during #1, both p < 0.05), high beta (motor
and somatosensory cortices from both hemispheres showed a
lower power during #1, both p < 0.01), and gamma oscillations
(motor and somatosensory cortices from both hemispheres
showed a lower power during #1, both p < 0.01). We also
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FIGURE 3

Average power spectral density (PSD) obtained from the right motor cortex during baseline and LIPUS stimulation with unilateral (sonication
conditions 1 and 4) and bilateral (sonication conditions 2 and 3) stimulation protocols. (*p < 0.05, **p < 0.01, ***p < 0.001, paired t-test.).

compared the PSD changes induced by unilateral and bilateral
stimulation to observe the modulatory effect associated with the
functional interhemispheric connection. The effect of unilateral
stimulation of the right primary motor cortex with sonication
condition #1 (1 kHz PRF and 50% DC) on PSD was significantly
changed by the simultaneous stimulation of the contralateral
primary motor cortex with 100 Hz PRF and 5% DC (sonication
condition #2). The power of theta oscillations (left motor
cortex) significantly (p < 0.05) decreased, while gamma power
significantly increased (p < 0.05) during sonication #2. The
PDS of high beta power recorded from the right motor and
left somatosensory cortices significantly (p < 0.05) decreased
when 1 kHz PRF and 50% DC sonication were applied bilaterally
(sonication condition #3) compared to unilateral 1 kHz PRF
and 50% DC sonication (sonication condition #1). The effect
of unilateral 100 Hz PRF and 5% DC was also changed by
simultaneous sonication of the contralateral motor cortex with a
1 kHz PRF and 50% DC pulsing scheme. A significant (p< 0.05)
increase in delta (left motor cortex) and a decrease in alpha,
high beta, and gamma power were observed during bilateral
stimulation #2 compared to unilateral stimulation #4.

Discussion

In this work, we developed a wireless LIPUS system for
bilateral brain stimulation, characterized the system capability,
and validated the acoustic stimulation in vivo over the motor
cortex on the anesthetized rats. The system characterization
showed that the developed device offered a level of acoustic
energy that matched previous neuromodulation studies (Puts
et al., 2015; Niu et al., 2022). The designed device also showed

the capability to change sonication parameters (PRF, DC, ISI,
and SD) remotely, offering a rapid adjustment of the stimulation
parameters according to the application. Powered by a battery,
the developed system possesses portable for rat size and weight.
Considering stimulation protocols used in the present study, a
battery with 900 mAh provides 40 min of unilateral or 25 min
of bilateral sonication with pulsing. The battery with higher
capacitance can be used for a longer SD, but the system’s total
weight will be increased. It is important to mention that due to
the internal resistance of PZT, prolonged continuous sonication
may cause the thermal elevation of the ultrasound transducer,
leading to thermal injury to tissues or permanent damage to
the transducer. Thus, we do not recommend using a DC over
50% or a pulse duration longer than 10 ms. Sub-megahertz
ultrasound frequency selected in this study offered excellent
transmission through the rat skull. Based on the acoustic map
and location of transducers, along with acoustic simulation from
our previous work (Kim et al., 2020), the developed system
produced an ultrasound field presumably concentrated within
the motor cortex.

In vivo evaluation of the developed LIPUS system was
performed based on power change of brain oscillations. Despite
the potential of the LIPUS device to be used on awake
rats, the anesthetized animal model was chosen to avoid any
confounding brain activities or motion artifacts during the
awake state. Four sonication scheme was examined in this study.
Previous studies showed that the specific LIPUS parameters
produced a unique stimulation effect (Zhang et al., 2021). Short
DC (<10%) with slow PRF (<100 Hz) tended to lead to the
inhibitory effect, while DC above 30% with PRF around 1 kHz is
commonly used for excitatory application (Yoon et al., 2019).
Recent work with single neuron recording and optogenetic
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FIGURE 4

Normalized oscillatory power with four sonication conditions. (*p < 0.05, **p < 0.01, ***p < 0.001, Kruskal–Wallis, non-parametric one-way
ANOVA followed by the Tukey–Kramer post hoc analysis.).

intervention also demonstrated that the excitatory neurons are
more sensitive to higher PRF protocols, while the response from
inhibitory neurons is indifferent regardless of PRF (Yu et al.,
2021). Therefore, two distinct stimulation parameters (1 kHz
PRF and 50% DC, presumably excitatory, and 100 Hz PRF and
5% DC, presumably inhibitory) were chosen in this study. Here,
the power density analyses of EEG signal showed that the 1 kHz
PRF and 50% DC stimulation produced a higher power in slow

brain oscillations (delta and theta) and lower power in high beta
and gamma oscillations compared to 100 Hz PRF and 5% DC
stimulation. Although spectral power change does not certainly
prove which sonication parameters suppress or excite, a decrease
in beta power was associated with motor execution (Brinkman
et al., 2014). Thus, lower power in beta oscillation may provide
additional support that 1 kHz PRF and 50% DC sonication had
an excitatory property.

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1011699
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1011699 September 21, 2022 Time: 11:58 # 8

Kim et al. 10.3389/fnins.2022.1011699

Our observation showed that bilateral sonication produced
a significantly different effect on PSD compared to unilateral
sonication. The effect of unilateral stimulation of the right
primary motor cortex with presumably excitatory (sonication
condition 1) was significantly altered by contralateral
presumably inhibitory sonication in PSD theta and gamma.
When presumably excitatory sonication was applied to both
hemispheres, a power of high beta oscillation was only changed
compared to unilateral “excitatory” sonication. The broader
range of PSD was substantially affected by contralateral
sonication during presumably inhibitory sonication. The
comparison of unilateral “inhibitory” with bilateral stimulation
showed a significant difference in the power of delta, alpha,
high beta, and gamma brainwaves. Meanwhile, the modulatory
effect of bilateral conditions #2 and #3 showed no difference
in oscillatory bands between each other, even though the total
acoustic energy deposition of stimulation #3 (1 kHz PRF and
50% DC on each hemisphere) is higher compared to bilateral
stimulation #2 (100 Hz PRF and 5% DC). Thus, the above
observation may imply that changes in PSD are not a simple
outcome of differences in acoustic energy deposition within
the brain but rather a unique feature of stimulation schemes.
It is also important to mention that considering the diameter
of transducers (7 mm) and the geometry of the rat’s skull, the
intersection of two acoustic beams within the brain would
be negligible in the present study. Meanwhile, if necessary,
the developed system can be adapted for the dual-crossed
transducer technique to achieve high spatial precision by
replacing the current ultrasound transducers with the ones with
a longer focal distance (Kim et al., 2021).

Many previous studies of bilateral brain stimulation
concentrated on implementing identical stimulation protocols
with either the excitatory or inhibitory effect (Rogasch et al.,
2014). However, our results imply that some possibility of using
the same stimulation protocol on the bilateral brain region may
not effectively induce additional effects on the brain in some
cases compared to unilateral brain stimulation. In contrast,
the bilateral LIPUS stimulation with two different stimulation
protocols on each hemisphere showed a modulatory effect on
both slow theta and fast gamma brain oscillations compared to
the unilateral stimulation.

A statistically significant difference between EEG signals
obtained after uni- and bilateral LIPUS indicates the modulatory
effect within functional interhemispheric communication.
Functional interhemispheric communication is primarily
carried out through the corpus callosum. Substantial evidence
demonstrated that the stimulation of a brain region in one
hemisphere affects the neural activity of the contralateral brain
area (Bloom and Hynd, 2005). Interhemispheric inhibition in
the motor cortex was observed in healthy subjects as a process
in which an increase in activity of one motor cortex inhibited a
motor evoked potential initiated by the opposite motor cortex
(Ferbert et al., 1992). In unilateral stroke, inhibition between the

cerebral hemispheres is essential in post-stroke rehabilitation.
The impaired interhemispheric connection after stroke reduces
inhibition from the lesioned area onto the contralateral brain
region. The overexcitation of the contralesional hemisphere
produces aberrant interhemispheric inhibition hindering
poststroke recovery (Gazzaniga, 2000). On the other side, the
external inhibition of the contralesional hemisphere using TMS
was already implemented as a treatment procedure for stroke
patients (Kirton et al., 2010; Boddington and Reynolds, 2017). In
previous publications, the unilateral LIPUS-mediated excitation
of stroke-affected regions also showed a neuroprotective effect
(Liu et al., 2019; Baek et al., 2020). However, most stroke studies
with TMS or LIPUS were performed with unilateral stimulation
of ipsilesional or contralesional hemispheres or bilateral
stimulation with identical protocol on both hemispheres.
Incorporating bilateral LIPUS stimulation for simultaneous
suppression and/or excitation of hemispheres, based on
the structural reserve after stroke, could provide a superior
therapeutic benefit. The proposed bilateral LIPUS system could
be utilized in future animal studies to determine the optimal
stimulation protocol for stroke-affected brains.
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