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Introduction: Despite the importance of cognitive workload in examining

the usability of smartphone applications and the popularity of smartphone

usage globally, cognitive workload as one attribute of usability tends to be

overlooked in Human-Computer Interaction (HCI) studies. Moreover, limited

studies that have examined the cognitive workload aspect often measured

some summative workloads using subjective measures (e.g., questionnaires).

A significant limitation of subjective measures is that they can only assess

the overall, subject-perceived cognitive workload after the procedures/tasks

have been completed. Such measurements do not reflect the real-time

workload fluctuation during the procedures. The reliability of some devices

on a smartphone setting has not been thoroughly evaluated.

Methods: This study used mixed methods to empirically study the

reliability of an eye-tracking device (i.e., Tobii Pro Nano) and a low-cost

electroencephalogram (EEG) device (i.e., MUSE 2) for detecting real-time

cognitive workload changes during N-back tasks.

Results: Results suggest that the EEG measurements collected by MUSE 2 are

not very useful as indicators of cognitive workload changes in our setting,

eye movement measurements collected by Tobii Pro Nano with mobile

testing accessory are useful for monitoring cognitive workload fluctuations

and tracking down interface design issues in a smartphone setting, and

more specifically, the maximum pupil diameter is the preeminent indicator of

cognitive workload surges.

Discussion: In conclusion, the pupil diameter measure combined with other

subjective ratings would provide a comprehensive user experience assessment

of mobile applications. They can also be used to verify the successfulness of a

user interface design solution in improving user experience.
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Introduction

Portable media devices, such as smartphones, have become an increasingly pervasive

part of our lives. In 2020, the number of smartphone users in the United States

was estimated to reach 294.15 million and will reach 311.53 million by 2025 (O’Dea,

2021). American adults spent around 3 h and 30min per day using mobile phones in

2019, with an increase of about 20min from 2018, according to Zenith (Molla, 2020).
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Correspondingly, the number of applications in the App Store

has soared from the initial 500 in 2008 to roughly 2.22

million available applications in 2021 (Ceci, 2022). As a result,

mobile phone applications receive greater attention from the

Human–Computer Interaction (HCI) field, resulting in a surge

in the number of publications. We input a query “usability AND

phone AND application” with custom time ranges: 1991–2000,

2001–2010, and 2011–2020 in Google Scholar, and get 8,500,

55,500, and 68,200 results.

Researchers in Human–Computer Interaction (HCI) fields

have long recognized usability as the core of product design,

including the application design of smartphones (Shneiderman,

1986; Nielsen, 1993; Brooke, 1996; Dumas et al., 1999). Previous

research has manifested that cognitive workload is an essential

aspect of product usability (Harrison et al., 2013; Davids et al.,

2015).

Measuring cognitive workload has been recognized

as one challenge when taking objectivity and causality

into consideration (Brunken et al., 2003; Brünken et al.,

2010). Instruments such as the NASA questionnaire

(Hart and Staveland, 1988) help solicit perceived

cognitive workload from users after a task is completed.

Results obtained through such instruments are tinted

with a level of subjectivity and put the causality

between stimuli and reported cognitive workload

in question.

On the other hand, electroencephalogram (EEG) devices

can objectively monitor and record the brain’s electrical

activities and researchers have successfully identified signals

from EEG to measure cognitive workload (Gevins and

Smith, 2003; Antonenko et al., 2010a; Makransky et al.,

2019). And eye movement data have been collected and

analyzed to guide and advise various aspects of product

design: navigation, page layout, user interface (UI)

visualization style with design elements, advertisement,

user viewing behaviors, and user cognitive workload

(Goldberg and Wichansky, 2003; Nielsen and Pernice,

2010).

However, most of the studies were not executed in a

smartphone setting and they cannot provide direct evidence

for the reliability of EEG and eye-tracking devices to measure

cognitive workload in a smartphone setting, due to several

variabilities between desktop/laptop computer settings and

smartphone settings. The screen sizes of desktop/laptop

computers and smartphones are different: large vs. small. Users’

interactions with these devices are distinct: cursors vs. gestures.

The content compositions are not the same either: columns vs.

scrolling. Physically, the users interact with their smartphones in

different manners, such as: (1) one-handed, (2) two-handed, and

(3) cradled, (4) no-handed; and in three body postures: walking,

standing, and sitting/lying (Hoober, 2013).

Based on a thorough review of the related literature, we have

identified three gaps as follows:

(1) Despite the significance of cognitive workload, it tends to

be overlooked in the HCI field (Zhang and Adipat, 2005;

Coursaris and Kim, 2006; Harrison et al., 2013).

(2) The majority of studies we reviewed only examine the

overall cognitive workload during tasks and fail to study the

instantaneous or peak cognitive workload during tasks and

its relationship with product interface design and usability.

(3) There is little direct evidence to suggest that EEG and

eye-tracking devices are reliable in measuring cognitive

workload in a smartphone setting.

To address these gaps, we need to answer the two

questions first:

(1) Are EEG data collected by MUSE 2 and eye movement

data recorded by Tobii Pro Nano valid, reliable, and feasible

as assessment tools for the real-time cognitive workload?

(2) Are measures collected by the two devices (averages of

Event-related (de-)synchronization (ERD) of Alpha, Beta,

and Event-related synchronization (ERS) of Theta for TP9,

TP10, AF7, and AF8; pupil dilation, saccade duration and

saccade number, fixation duration, and fixation number)

sensitive to the cognitive workload of different N-back tasks

in real time when the tasks are completed on a smartphone?

To answer the questions asked above, we employed

a low-cost and portable electroencephalogram (EEG)

device (MUSE 2, https://choosemuse.com/muse-2-guided-

bundle/) and a user-friendly eye-tracking device (Tobii

Pro Nano, https://www.tobiipro.com/product-listing/nano/)

to detect real-time cognitive workload changes during

N-back tasks on a smartphone. Our hypotheses were

simple—we predict that the EEG device, MUSE 2, and

the eye tracker device, Tobii Pro Nano with smartphone

adopters, are reliably quantifying the cognitive workload of

users performing tasks on a smartphone by these measures

listed above.

Background

Cognitive workload in usability

According to the latest ISO 9241-11 (2018), usability is

“the extent to which a system, product, service can be used

by specified users to achieve specified goals with effectiveness,

efficiency, and satisfaction in a specified context of use.” Various

standards and models list a range of attributes for usability.

Among these attributes, the cognitive workload is defined by

Bevan and MacLeod (1994) as the mental effort required to

perform tasks and is particularly important in safety-critical

applications. It refers to the user’s cognitive processing amount

to using the application (Harrison et al., 2013).
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Cognitive workload measurements in HCI

The cognitive workload measurements can be roughly

grouped into three broad categories: subjective self-assessment

rating scales, performance measures, and psychophysiological

measures (Wilson and Eggemeier, 1991; Cain, 2007; Evans

and Fendley, 2017). Here, we only introduce two measures

adopted in this research: electroencephalogram (EEG) and eye

movement in psychophysiological measures.

Measurement of cognitive workload using
electroencephalogram

Electroencephalogram (EEG) is an electrophysiological

method of monitoring and recording the brain’s electrical

activity. Most of the time, an EEG device that comprises non-

invasive electrodes is placed along a subject’s scalp. These

electrodes capture voltage fluctuations resulting from ionic

currents within the brain’s neurons.

In recent years, researchers have been evaluating the

potential of the EEG as a measure of cognitive workload in

different task conditions: arithmetic tasks (Anderson et al., 2011;

Cirett Galán and Beal, 2012; Kumar and Kumar, 2016; Borys

et al., 2017; Chin et al., 2018); cognitive tasks (Trammell et al.,

2017); reading tasks (Dimigen et al., 2011; Knoll et al., 2011;

Gwizdka et al., 2017); listening to music tasks (Asif et al.,

2019); visual search task (Winslow et al., 2013; Hild et al.,

2014); learning tasks (Dan and Reiner, 2017; Mazher et al.,

2017; Notaro and Diamond, 2018); and vehicle driving task

(Cernea et al., 2012). These studies confirm the fact that EEG

provides reliable signals for studying cognitive workload in their

respective settings.

Event-related (de-)synchronization (ERD/ERS) with Alpha,

Theta, and Beta bands is one of the three most popular

analysis techniques (Cabañero et al., 2019). Event-related

(de)synchronization (ERD) is a recognized rate-of-change

metric for oscillatory EEG dynamics, which was originally

developed to quantify changes in the Alpha band (Pfurtscheller

and Aranibar, 1977). Synchronization is a process where

neurons are getting in line (synchronized) to enter an idling

state. Desynchronization is a process where individual neurons

get ready to perform their parts in a task. The steps of

performing a task are: neurons desynchronize (wake up),

perform tasks, and neurons synchronize (rest).

To obtain percentage values for ERD/ERS, the power within

the frequency band of interest in the period after the event is

given by A, whereas that of the preceding baseline or reference

period is given by R. The percentage decrease (or increase) from

the reference interval (R) to the activation interval (A) (before

responding) was defined as

ERD/ERS% = [(R−−A)/R]∗100% (1)

(Pfurtscheller and Aranibar, 1977; Pfurtscheller and Lopes

da Silva, 1999; Pfurtscheller, 2001).

Negative values computed by Equation 1 indicate power

increase and desynchronization (ERD), and positive values

indicate power decrease and synchronization (ERS).

Pfurtscheller and Lopes da Silva (1999) recommended that

the term ERD is meaningful only if the baseline measured some

seconds before the event represents rhythmicity seen as a clear

peak in the power spectrum. Similarly, the term ERS only has

a meaning if the event results in the appearance of a rhythmic

component and therefore in a spectral peak that was initially not

detectable (Pfurtscheller and Lopes da Silva, 1999).

The quantification of ERD/ERS was divided into four steps,

first, the bandpass filtering was carried out for all Event-related

trials; second, the amplitude samples were squared to obtain

the power samples; third, the power samples of all trials were

averaged; and fourth, the time samples were averaged to make

the data smooth and reduce (Pfurtscheller and Lopes da Silva,

1999).

The review articles (Klimesch, 1999; Antonenko and

Niederhauser, 2010b) concluded that with increasing task

demands Theta synchronizes (decreases), whereas Alpha and

Beta desynchronize (increase) (Pfurtscheller and Berghold, 1989;

Neubauer and Fink, 2003; Stipacek et al., 2003; Klimesch et al.,

2005; Neubauer et al., 2006; Scharinger et al., 2016; Saitis et al.,

2018).

Measuring cognitive workload using eye
movement data

Multiple kinds of eye movement data related to cognitive

workload can be reliably collected using a high-quality eye-

tracking device.

Pupil dilation is an involuntary response, in which the pupil

diameter changes to protect the retina or to respond to a shift in

fixation between objects at different distances. Previous research

has shown that users’ pupils dilate when the difficulty of the

task increases and more cognitive effort has been allocated to

solve the task (Granholm et al., 1996; Pomplun and Sunkara,

2003; Klingner et al., 2008; Chen et al., 2011; Porta et al., 2012;

Rafiqi et al., 2015; Gavas et al., 2017; Ehlers, 2020). Accounting

for individual and environmental differences, it is necessary to

measure pupil diameters while referencing an adaptive baseline

(Lallé et al., 2016).

According to Purves et al. (2001), saccades are rapid and

ballistic movements of eyes that change the fixations abruptly.

Previous research has found that growth in saccade velocity

indicates a greater task difficulty (Barrios et al., 2004; Chen et al.,

2011; Lallé et al., 2016; Zagermann et al., 2018).

Eye fixation refers to a focused state when eyes dwell

voluntarily over some time and is the most common type of eye-

tracking event (Zagermann et al., 2016). Previous research has

proven that the correlation between the duration of fixation and
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FIGURE 1

(A) MUSE 2 EEG headband; (B) EEG electrode positions in the 10-10 system using modified combinatorial nomenclature, along with the fiducials

and associated lobes of the brain. Adopted from https://en.wikipedia.org/wiki/10%E2%80%9320_system_%28EEG%29#/media/File:EEG_10-

10_system_with_additional_information.svg.

the cognitive processing level is positive (Rudmann et al., 2003;

Goldberg and Helfman, 2010; Chen et al., 2011; Wang et al.,

2014; Zagermann et al., 2018).

Devices in measuring cognitive workload

As previously reviewed literature shows, the measures of

computing from EEG and eye movement data have been

proven to be effective for detecting cognitive workload changes.

However, most of the studies were conducted in smartphone

settings, and the devices adopted in these studies are not suitable

for use in smartphone usability testing environment.

Grateful to technology development, there are a wide range

of choices in the selection of devices to capture the EEG data

and eye-tracking data, respectively. Some examples of the EEG

devices, ordered at prices, from low to high include: MUSE

2 headband, Emotiv Insight, OpenBCI, ANT Neuro, BioSemi,

etc. (Farnsworth, 2019). A ranking of the top eye-tracking

companies, ordered by the number of publications found

through Google Scholar, is Tobii, SMI, EyeLink, Smart Eye,

LC Technologies, Gazepoint, The Eye Tribe, etc. (Farnsworth,

2020).

Among listed choices, the MUSE 2 headband (Figure 1A,

$250) is an easy-to-use, affordable, and portable EEG recording

system from InteraXon Inc. It is a four-channel headband

with dry electrodes at positions AF7, AF8, TP9, and TP10

(Figure 1B). The headband is connected to the app on phone

via Bluetooth, which makes it a great tool for detecting cognitive

workload while the user is performing the task on smartphones,

especially in some field experiments, of course, after its reliability

is verified.

Despite the small number of sensors and the mismatch in

the locations of the sensors to the standard 10–20 electrode

positioning system, several studies have shown that the MUSE

headband has the potential to provide good quality EEG data.

Two studies (Arsalan et al., 2019; Asif et al., 2019) adopted

MUSE 2 to capture EEG data and adopted classifiers to classify

stress levels. Another study (Papakostas et al., 2017) also adopted

MUSE EEG to predict the user task performance, and they

achieved a maximum accuracy rate of 74%. Krigolson et al.

(2017) collected data by MUSE EEG system, and the results

showed quantifiable N200 and P300 Event-related potential

(ERP) components in the visual oddball task and the reward

positivity. However, these studies cannot provide direct evidence

on the EEG data captured by the MUSE EEG system is reliable

for cognitive workload changes.

Some studies have pointed out MUSE’s limitations. Ratti

et al. (2017) compared two medical grade (B-Alert, Enobio) and

two consumer (MUSE, Mindware) EEG systems in five healthy

subjects. Results showed that EEG data can be successfully

collected from four devices, yet MUSE showed a broadband

increase in power spectra and the highest relative variation

across test–retest acquisitions. Another study has also shown

that the data collected by MUSE headband were of poor quality

under noisy conditions, such as at a public lecture (Przegalinska

et al., 2018). To explore MUSE 2’s potential as a great tool

in smartphone usability testing, we still need direct empirical

evidence on the reliability of MUSE 2 in capturing EEG data for

measuring cognitive workload.

Having picked an EEG device with its usefulness still under

investigation, we selected a well-established eye-tracking device

for this study to control the risk. We chose Tobii Pro Nano

because it is one of the top eye-tracking companies and has
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been used in 20.5 k publications. It is also an accessible and

efficient approach to capturing eye movement (Figure 2) and

is used by many HCI researchers (Sugaya, 2019; Ehlers, 2020;

Lee and Chenkin, 2020). Ehlers (2020) adopted Tobii Pro

Nano to capture the pupil diameter and confirmed that it is a

valid indicator of cognitive workload. Lee and Chenkin (2020)

evaluated Tobii Pro Nano’s potential to differentiate between

experts and novices in the interpretation of POCUS clips in

medical fields. Sugaya (2019) used Tobii Pro Nano to test an

assumption about the meaning-making process of adjective

expression formation.

Tobii Pro Nano can be mounted on a mobile testing

accessory, also manufactured by Tobii (Figure 2). It has a screen

capture device connecting directly to smartphones. The screen

capture device records a high-definition (HD) video of the

mobile device’s screen at 60 frames per second with a latency

of only 10 milliseconds (Mobile Testing Accessory | Perfect for

Usability Tests., 2020). Yet, the mobile testing accessory is just

in the market, with no research done on it. The other great

device for smartphone experiments is Tobii Pro Glass with a

much higher price. If we can provide a piece of evidence on the

reliability of Tobii Pro Nano with a mobile testing accessory, it

could be a high-performance cost ratio choice for researchers.

Methods

The goal of the experiment was to examine the reliability

of the MUSE 2 headband and Tobii Pro Nano with a mobile

testing accessory for detecting cognitive workload changes

during a smartphone task and to select the best measure(s)

computed from data collected by the two devices. The measures

adopted in the experiment are (1) ERD percentage for Alpha,

Beta, and ERS Theta rhythms extracted from EEG data; (2)

multiple eye movements: pupil dilation, saccade duration,

saccade number in second, fixation duration, and fixation

number in second; and (3) user performance data: reaction time

and accuracy rate.

Participants

This study was approved by the UA IRB office (Protocol

Number: 2101428836) and obtained permission from Qinghe

High School, Jiangsu, China.

We recruited 5 students as pilots and 30 students

as participants from Qinghe High School, Jiangsu, China.

The inclusion criteria were normal vision or correct to

normal vision, normal cognitive function, and proficiency

in smartphones.

Students who participated either as pilots or as participants

were compensated 50 in Chinese currency after they complete

the task successfully.

FIGURE 2

Tobii Pro Nano with mobile testing accessory.

Apparatus

We used the MUSE 2 headband and Tobii Pro Nano as the

devices to collect cognitive workload-related measures.

The environment’s brightness variations produce changes in

the pupil size (Pfleging et al., 2016; Zagermann et al., 2016).

Therefore, the experiment was conducted in a room with

lightproof curtains down to avoid natural lighting conditions,

and electric lights on the room ceiling created a consistent

lamination for the experiment. Environment, such as noise, also

impacts cognitive load (Örün and Akbulut, 2019). We made

sure the experiment room was free of all noise during the

experimental sessions. All devices were sanitized before the next

participant came.

When using EEG devices, one has to fulfill several other

requirements. These include a clean scalp, clean electrodes,

minimum participant activities, including head movements,

since a small movement could generate muscle-based signals

known as artifacts (Pratama et al., 2020). We instructed all

participants to stay as still as possible and not to wear any

makeup during the experiment. Also, as the electrodes need

to be attached to the back of the ears, we encouraged the

participants to wear contacts instead of glasses.We also provided

a disposable wet cloth for participants to moisturize their

foreheads and back of the ears to get a better connection of the

EEG headset.
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FIGURE 3

A screenshot of the N-back task.

Task: N-back task

N-back tasks are continuous-recognition measures that

present stimulus sequences, such as letters or pictures. A

sequence of stimuli is presented to the participants one by

one. The participants are required to make a decision as to

whether the current stimulus is the same as the one presented

in N trials ago (Coulacoglou and Saklofske, 2017). The N

can be 0, 1, 2, 3, etc. There is an increase in difficulty in

tasks while N increases. An N-back task is a useful tool for

experimental research on working memory (Jaeggi et al., 2010),

and it has been adopted to manipulate cognitive workload

(Reimer et al., 2009; Ayaz et al., 2010; Yokota and Naruse,

2015).

In this study, all participants completed an N-back

task.When employed in a computer setting, the participants of

the experiment can press individual keys on keyboards as “YES”

or “NO”. To cope with the touch screen of a smartphone, we

placed “×” on the left bottom corner, and “
√
” on the right

bottom corner of the smartphone screen (Figure 3).

In this study, we employed a 1 back task and a 2 back task to

create a low cognitive workload condition and a high cognitive

workload condition. The rationale of only including 1 and 2

levels is to simulate cognitive workload levels that smartphone

users would experience in the real world.

The key features of the N-back task implementation were:

• Four sets of letters were created and arranged in two groups

for a training block and an experiment block.

◦ Training Block:

∗ Five trails of one back task (EEIPP) as a

training session,

∗ Six trails of two back task (OSOMLI) as a

training session;

◦ Experiment Block:

∗ low cognitive workload block: 20 trials of 1 back

task (DAABEEDRRODHHRDSSELDD);

∗ high cognitive workload block: 21 trails of 2

back (BAEAAEASHSAELEOBBBOSHS).

• These two sets of letters in the experiment block were

designed to have an identical “YES” or “NO” response

sequential: YNNNYNNNYNNNYNNYNNYN.

• Each stimulus was presented for maximally 3,000

milliseconds.

The low and high cognitive workload blocks were randomly

and evenly assigned to participants. More specifically, 15

participants assigned an odd ID completed the task in Order

1: low cognitive workload block, high cognitive workload block;

and another 15 participants assigned an even ID completed the

task in Order 2: high cognitive workload block, low cognitive

workload block.

Procedure

All participants entered the experiment room and

performed the experiment once at a time.

First, the participants watched an instructional video of

the instruments and experimental procedure (https://youtu.

be/_d24CRSwhuQ). They were free to ask any questions after

viewing the video.

The experiment started with the participant filling in a

demographic questionnaire (Appendix A). This questionnaire

covered subjects’ age, gender, strong hand, experience with

smartphones, and current smartphone usage situation. Then,

they wore the MUSE 2 headband and adjusted themselves

to a comfortable sitting position. After that, the participants

completed an eye-tracking calibration with Tobii Pro Nano

followed by 10 s with an eye-open relaxed position and another

10 s with an eye-closed comfortable position.

After the preparation step, the participants completed the

training session. They can ask any questions about the N-back

task during or after the training section. The training sessions

were excluded from data analysis.
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FIGURE 4

(A) The MUSE 2 headband was transmitted over Bluetooth to a phone via an application called Mind Monitor for EEG data collection, and the

EEG data were uploaded to the research’s selected cloud drive after each participant completed the task. (B) The N back task was recorded on a

website designed by researchers, and the user performance data were collected via the server. (C) The Tobii Pro Nano eye tracker was

connected to a laptop with Tobii Pro Lab software installed, and the eye movement data were collected by the Tobii Pro Lab software and stored

in the hard drive of the laptop.

Then the participants completed the experiment session

of the N-back task at the experiment station, wearing the

MUSE 2 headband. They first completed 20 trails of 1-

back/2-back stimuli, followed by 20 trails of 2-back/1-back

stimuli, with intervals of approximately 1–2 s in between

each 1-back/2back stimuli (the time between a response

and the display of the next stimuli) and a rest period of

5 s in between 1-back and 2-back blocks. The participants

were instructed to respond to tasks as accurately and

rapidly as possible. The variation of intervals between

each 1-back/2back stimuli caused by the internet loading

time varied.

The MUSE 2 headband collected raw EEG data of TP9, AF7,

AF8, and TP10 through an application called Mind Monitor

(iOS Version 2.2.0) (Figure 4A). And the Tobii Pro Nano

recorded multiple types of eye movement data: pupil dilation,

saccade length, saccade velocity, fixation duration, and fixation

number (Figure 4B). The self-developed website for the N-back

task collected the reaction time and accuracy rate during the

experiment (Figure 4C) (N-back task website: http://n-back.

artkey.xin/). It is designed for an experiment on a smartphone,

and it works best on a smartphone.

Besides the procedure described above, the procedure

described in Appendix B when conducting the experiments as

a precaution against COVID-19 was followed as well.

Measures

Data collected from the experiment allow us to examine and

compare the following measures:

(1) Event-Related Synchronization percentage (ERS) of

Theta, Event-Related Desynchronization percentage

(ERD) of Alpha, and Event-Related Desynchronization

percentage (ERD) (Equation 1).

(2) Multiple eyemovements: pupil dilation, saccade duration,

saccade number in second, fixation duration, and fixation

number in second.

(3) User performance data: reaction time (RT) and accuracy

rate (AR). Reaction time (RT) is the period between the

onset of a letter and the response made by a participant.

The accuracy rate (AR) is the ratio of the number of

correct inputs and the total number of inputs.
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TABLE 1 Participants’ answers for Questions 4–8 in the demographic

questionnaire.

Question Answer (n = 30)

Q4: Smartphone: You are able to operate

smartphones proficiently.

Strongly agree – 20

Agree – 10

Neither agree nor disagree – 0

Disagree – 0

Strongly disagree – 0

Q5: Smartphone: Which operating system do

you use more frequently and proficiently?

iOS – 3

Android – 22

Both – 5

Other – 0

Q6: Smartphone: How many years have you

owned/used a smartphone?

<1 year – 5

1–2 years – 15

3–5 years – 7

5–10 years – 1

>10 years – 2

Q7: Smartphone: How many hours a day on

average do you use your smartphone when

the school is in session?

0.5–1 h – 28

1–2 h – 2

3–5 h – 0

6–8 h – 0

>8 h – 0

Q8: Smartphone: How many hours a day on

average do you use your smartphone when

the school is on break?

0.5–1 h – 5

1–2 h – 10

3–5 h – 13

6–8 h – 2

>8 h – 0

Results, analysis, and discussion

The experiment has investigated the feasibility of using

data acquired wirelessly from an EEG headband (MUSE

2) and an eye-tracking device (Tobii Pro Nano) to assess

cognitive workload in a well-controlled N-back task in a

smartphone setting.

Demographic data

A total of 30 high school students from Qinghe High School

in Huaian, Jiangsu, China completed the experiment, including

the demographic questionnaire (Appendix A). Eleven of the 30

participants were female and 19 were male, and the female

and male ratio is 11/19. Their average age was 16.34 years old

(SD= 0.61). All participants were from the first year in high

school. The right hand was the dominant in 29 participants,

and the other participant was ambidextrous. The answers to

Questions 4–8 of the demographic questionnaire are presented

in Table 1. To summarize the data in Table 1, all participants

were frequent and proficient smartphone users.

User performance data

Only 29 participants’ user performance data were processed,

analyzed, and discussed here. Participant ID 126’s experimental

data were not recorded due to Internet connection issues.

We analyzed user performance data (reaction time and

accuracy rate) in order to confirm that participants perceived the

various N-Back conditions as different. User performance data

processing, user performance data results, and user performance

data analysis are included in this section.

User performance data processing

TheN-Back website recorded participants’ ID, N-back order,

current letter, participants’ choices, accuracy (yes/no/null),

reaction time, start timestamp in Unix time, and end timestamp

in Unix time. Unix time is a system for describing a point in time

and it is the number of seconds that have elapsed since the Unix

epoch, excluding leap seconds (Ritchie and Thompson, 1978).

I conducted a Shapiro–Wilk test for the reaction time (RT) of

all participants for 1 back and 2 back tests to check its normality.

The result is significant (p < 0.001), which indicates that the

data are not normally distributed. Therefore, I conducted a

Mann–Whitney–Wilcoxon Test for the reaction time (RT)

between 1 and 2 back.

User performance data results

The descriptive statistics and the Mann–Whitney–Wilcoxon

Test results for the reaction time (RT) and accuracy rate (AR)

between conditions are presented in Table 2.

User performance data analysis

Reaction time

The Mann–Whitney U test was conducted to examine

whether the reaction time (RT) had statistically significant

differences between 1 and 2 back for all participants, for

participants with odd IDs, and for participants with even IDs.

The p-values (< 0.001) indicate the answer is yes, as expected

(Table 2).

Accuracy rate

The Mann–Whitney–Wilcoxon test was conducted to

examine whether the accuracy rate (AR) had significant

differences between 1 back and 2 back for the 29 participants.

The p-value (<0.001) indicates the answer is yes, as expected.

The median of 1 back accuracy rate is 1, which is higher than the

median of 2 back accuracy rate (0.9) (Table 2).

User performance data discussion

As expected, the reaction time (RT)increased and accuracy

rate (AR) decreased with the leveled-up differential of N-Back
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TABLE 2 The descriptive statistics and Mann–Whitney–Wilcoxon Test results for reaction time (RT) (unit: second) and accuracy rate (AR) between 1

and 2 back.

Measure N back N Mean SD Median W* p-value

Reaction time 1 580 1.11 0.35 1.06 91,036 < 2.2e-16***

2 580 1.58 0.65 1.43

Reaction time with odd IDs 1 300 1.15 0.32 1.13 25,475 < 2.2e-16***

2 300 1.65 0.67 1.53

Reaction time with even IDs 1 280 1.06 0.38 0.98 19,302 < 2.2e-16***

2 280 1.51 0.62 1.33

Accuracy rate 1 29 0.94 0.14 1 702 6.547e-06***

2 29 0.85 0.11 0.9

*W-Value is the sum of the ranks of the first sample. ***P = 0.001.

tasks, and 1 and 2 back tasks did create low and high cognitive

workload conditions for the experiment’s participants.

EEG data

EEG data processing and analysis

Only 29 participants’ EEG data were processed, analyzed,

and discussed here. Participant ID 126’s EEG was not recorded

due to Internet connection issues.

During the experiment, participants wore a MUSE 2

headband connected to the Mind Monitor. The Mind Monitor

collected their EEG data. According to the Technical Manual

from the Mind Monitor website, bandpass filtering was carried

out on the raw data with power noise at 50Hz or 60Hz. Then,

a fast Fourier transform (FFT) calculation (Heckbert, 1995) was

applied to the raw data to get Theta, Alpha, and Beta.

The recorded EEG signals were processed using Excel and R

to get two baselines:

• baseline_near: Based on the timestamps recorded by the

N-back task website, we sectioned the intervals starting

from−200ms to the onset of each letter as the baseline

interval for each letter (Xiang et al., 2021).

• baseline_away: According to the timestamps recorded by

the N-back task website, we segmented the first 3,000ms of

the 10 s relaxing eyes open relaxing as a baseline.

Computed ERD of Alpha {TP9, AF7, AF8, TP10}, ERD of

Beta{TP9, AF7, AF8, TP10}, and ERS of Theta {TP9, AF7, AF8,

TP10} with baseline near for each letter interval; and ERD of

Alpha AF7, Alpha AF8, Beta AF8, and Beta TP9 with baseline

away for each letter interval. The interval starts from the onset

of each letter to the time point that a choice is being made by

participants, which is definitely ≤ 3 s.

A non-parametric test, the Mann–Whitney–Wilcoxon

test, was selected for non-normal data. The

Mann–Whitney–Wilcoxon test was conducted for 12 measures

(Alpha {TP9, AF7, AF8, TP10}, ERD of Beta{TP9, AF7,

AF8, TP10}, and ERS of Theta {TP9, AF7, AF8, TP10} with

baseline_near between 1 back and 2 back; and ERD of Alpha

AF7, Alpha AF8, Beta AF8, and Beta TP9 with baseline away 1

back and 2 back. See Appendix C for the details.

EEG data results

The average workload is the average value of instantaneous

loads within a task duration (Xie and Salvendy, 2000). In this

study, the average cognitive workload is represented by the

average ERD of Alpha, Beta, and ERS of Theta for TP9, TP10,

AF7, and AF8 of the intervals of each letter with baseline_near.

To examine whether there is a difference between 1 and

2 back for averages of ERD of Alpha, Beta, and ERS of

Theta for TP9, TP10, AF7, and AF8 with baseline near, we

conducted Mann–Whitney–Wilcoxon tests between 1 and 2

back of all participants. The results are included in Table 3. Due

to computational problems, the numbers of subjects (N) vary

between the analyses.

It is not feasible to have a baseline for each stimulus in

scenarios of users experiencing an application on smartphones.

Hence, to explore the feasibility of adopting a single baseline

away with stimulus, we conducted Mann–Whitney–Wilcoxon

tests for averages of ERD of Alpha AF7 and Beta TP9 with

baseline away between 1 and 2 back for all participants,

participants with odd IDs, and participants with even IDs,

respectively. We find no significant results (Table 4).

Analysis of EEG results

Different cognitive workloads evoked associated human

brain oscillatory responses (Krause et al., 2000; Pesonen et al.,

2007) that made it possible to measure the corresponding

cognitive workload levels.

The results in Table 3 show that only Alpha ERD AF7

and Beta ERD TP9 among the 12 measures (TP9, AF7,

AF8,TP10 ∗ Alpha, Beta, and Theta) are sensitive to the different
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TABLE 3 The descriptive statistics and Mann–Whitney–Wilcoxon test results for averages of ERD of Alpha, Beta, and ERS of Theta for TP9, TP10,

AF7, and AF8 with baseline near between 1 and 2 back.

Measure N Back N Mean SD Median W* p-value

Theta_ERS_TP9_near 1 415 0.5103788 2.3437866 0.1606055 81,290 0.05664

2 424 0.3624826 0.8789823 0.1961127

Theta_ERS_AF7_near 1 442 1.479168 7.528482 0.3261652 102,550 0.1951

2 488 40.222121 858.424241 0.3993164

Theta_ERS_AF8_near 1 463 256.550957 4473.14064 0.4962916 107,560 0.7199

2 471 1.656752 6.897568 0.4979768

Theta_ERS_TP10_near 1 402 0.1968689 0.2983741 0.1055942 76,520 0.1935

2 402 0.4827313 2.7181894 0.1440152

Alpha_ERD_TP9_near 1 407 −0.2429342 0.6022346 −0.0708803 94,305 0.07823

2 433 −1.0891115 16.1080866 −0.0994483

Alpha_ERD_AF7_near 1 417 −0.4870307 1.31401 −0.1177238 89,413 0.03469**

2 395 −4.1949784 63.64311 −0.1726443

Alpha_ERD_AF8_near 1 422 −1.305807 7.191686 −0.1905496 91,227 0.9368

2 431 −7.442734 122.014022 −0.2087486

Alpha_ERD_TP10_near 1 382 −0.3358805 1.1701908 −0.0741198 75,913 0.6915

2 391 −0.2689888 0.5359719 −0.0839877

Beta_ERD_TP9_near 1 424 −0.0948762 0.1298309 −0.053213 94,695 0.04122**

2 413 −0.1438368 0.3410383 −0.0645524

Beta_ERD_AF7_near 1 398 −0.4218005 1.783285 −0.0801937 86,126 0.8545

2 436 −0.6272942 3.536376 −0.0829866

Beta_ERD_AF8_near 1 431 −0.1898465 0.3919714 −0.0811931 99,618 0.1104

2 435 −0.2896695 0.7094699 −0.1054581

Beta_ERD_TP10_near 1 259 −0.1434616 0.2283444 −0.0740742 36,067 0.2439

2 263 −0.1571087 0.1960775 −0.0797461

*W-Value is the sum of the ranks of the first sample. The bold values are p values smaller than 0.01, so they are statistically significantly. **P = 0.01.

TABLE 4 The descriptive statistics and Mann–Whitney–Wilcoxon test results for averages of ERD of Alpha_AF7 and Beta_TP9 with baseline away

between 1 back and 2 back.

ID Measure N Back N Mean SD Median W* p-value

ALL Alpha_ERD_AF7_away 1 325 −0.707954 0.6306785 −0.548365 56,233 0.2634

2 364 −0.707059 0.7387755 −0.4852188

Beta_ERD_TP9_away 1 179 −0.119261 0.1193088 −0.0843989 20,950 0.1648

2 205 −0.154169 0.1637146 −0.1034079

*W-Value is the sum of the ranks of the first sample.

workloads of between 1 and 2 back conditions for all participants

(p < 0.05).

The magnitudes of Alpha ERD AF7 and Beta ERD TP9

are significantly greater for the 2 back than for the 1 back

(Figure 5), indicating that Alpha and Beta increase as tasks

demand more cognitive workload. This is in line with previous

studies that found with inclining task demands, Alpha and

Beta desynchronize (increase) (Klimesch, 1999; Stipacek et al.,

2003; Klimesch et al., 2005; Neubauer et al., 2006; Antonenko

et al., 2010a; Antonenko and Niederhauser, 2010b; Xiang et al.,

2021).

The insensitivity of the six measures (AF8 and TP10 ∗

Alpha, Beta, and Theta) can be explained by the functions of the

cerebral cortex.

The TP10 electrode is positioned behind the right ear, which

is the right temporal lobe, and the AF8 electrode is on the

right forehead, which is the right frontal lobe (Figure 1). The

TP9 electrode is positioned behind the left ear, which is the left

temporal lobe, and the AF7 electrode is on the left forehead,

which is the left frontal lobe (Figure 1).

The left temporal lobe is associated with understanding

language, learning, memorizing, forming speech, and
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FIGURE 5

Box plots with medians between 1 back and 2 back for Alpha ERD AF7 (A) and Beta ERD TP9 (B).

remembering verbal information (Guy-Evans, 2021b). We

used English letters as a stimulus in the N-back task and

participants’ primary language is Chinese, thus it makes sense

that Beta ERD TP9 are found to have significant differences

between 1 and 2 back.

The AF7 electrode is on the left side of the frontal lobe.

The frontal lobe is located behind the forehead, at the front

of the brain. Each lobe controls the operations on opposite

sides of the body: the left hemisphere controls the right side

of the body and vice versa (Guy-Evans, 2021a). It is believed

that the left frontal lobe works predominantly with language,

logical thinking, and analytical reasoning. The right frontal

lobe, on the other hand, is mostly associated with non-verbal

abilities, creativity, imagination, musical, and art skills (Guy-

Evans, 2021a).

The dominant hands of 29 participants were the

right hand, and the remaining one was both hands. We

observed all participants only used their right hands to

make the choices. This explains that the Alpha ERD AF7

(left forehead) but not AF8 (right forehead) was found

to have significant differences between 1 and 2 back.

However, the other four measures of TP9 and AF7 shall

be sensitive to the difference in cognitive workload, as previous

studies prove.

Discussion on EEG data

In summary, MUSE 2 outputs good signals, but these signals

may not be readily useful in the studies on the usability of

smartphone applications for an entire and consecutive user

experience as a result of the difficulty in selecting a sensible

baseline due to two rationales.

The first rationale behind the difficulty in the selection of a

sensible baseline lies in the fact that only Alpha ERD AF7 and

Beta ERD TP9 show sensitivity to the difference in cognitive

workload between 1 and 2 back. It is not consistent with that

given in previous studies (Klimesch, 1999; Stipacek et al., 2003;

Klimesch et al., 2005; Neubauer et al., 2006; Antonenko and

Niederhauser, 2010b; Xiang et al., 2021).

Second, according to Pfurtscheller and Lopes da Silva

(1999), ERD/ERS is required to have a baseline captured some

seconds right before the events. Yet, it is not feasible to have a

baseline for each stimulus in the scenarios of users experiencing

any applications on smartphones. We had carried out an

exploration of adopting a single baseline away with stimulus,

but unfortunately it did not show any statistically significant

differences for averages of ERD of Alpha AF7 and Beta TP9

between 1 and 2 back.

All in one sentence, although MUSE 2 is of consumer grade,

comfortable to wear, and wireless connected, it is a reliable

device for researchers to capure stable EEG data for measuring

cognitive workload. It does show some promise for detecting

cognitive workload elicited by isolated/independent elements

in user interface (UI) design, and selective signals may be

combined with eye-tracking data to detect UI issues that invoke

user errors.

Eye movement data

Eye movement data processing and analysis

During the experiment, participants completed N-back tasks

on a smartphone attached to the mobile testing accessory

with the Tobii Pro Nano mounted on the top (Figure 2). Eye

movement data were collected by the Tobii Pro Nano via the

Tobii Pro Lab software (version 1.162.32461).

Similar to the EEG data, the recorded eye movement

data were processed using Excel and R through several steps

to get averaged pupil dilation left, averaged pupil dilation

right, averaged fixation duration, averaged fixation number in

second, averaged saccade duration, averaged saccade number in

second, maximums of pupil dilation left, maximums of pupil

dilation right, maximums of fixation duration, and maximums

of saccade duration.
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A non-parametric test was selected for non-normal data. See

Appendix C for data processing and analysis detailed steps.

Eye movement data results

The Tobii Pro Nano was extremely sensitive to angle

changes between participant’s eyes and the device. Based on the

experience we had gathered from pilots, we had a higher chair

for the participants to improve the capture rate and adjusted the

Tobii Pro Nano angle according to each participant. Despite the

higher chair we had employed and the active adjustments made

to the mobile testing accessory, the capture rates varied across

participants. Eighteen participants’ data with relatively higher

capture rates were processed and analyzed here.

Averaged cognitive workload is quantified by the averaged

pupil dilation left and the averaged pupil dilation right,

the averaged fixation duration and the averaged fixation

number, and the averaged saccade duration and the averaged

saccade number.

To examine whether there were statistically significant

differences for averaged pupil dilation changes between low

and high cognitive workload conditions, we conducted a

Mann–Whitney–Wilcoxon test for averaged pupil dilation left,

averaged pupil dilation right, between 1 and 2 back. The results

are presented in Table 5.

In this research, the averaged fixation duration and the

fixation number in second were adopted as the representative

of the averaged cognitive workload during the intervals, starting

from the appearance of each letter to the time point that choices

were made.

To examine whether there were statistically significant

differences for averaged fixation duration and fixation number

in second between low and high cognitive workload conditions

were observed, we conducted Mann–Whitney–Wilcoxon

tests between 1 and 2 back. The results are presented

in Table 5.

In this research, the averaged saccade duration and the

averaged saccade number in second were adopted as the

representative of the averaged cognitive workload during the

intervals, starting from the appearance of each letter to the time

point that choices were made.

To examine whether there were statistically significant

differences for the averaged saccade duration and the averaged

saccade number in second between low and high cognitive

workload conditions, we conducted Mann–Whitney–Wilcoxon

tests between 1 and 2 back. The results are presented in Table 5.

The maximum pupil dilation left and the maximum pupil

dilation right were adopted as the representative of the peak

cognitive workload during the intervals, starting from the

appearance of each letter to the time point that choices

were made.

To examine whether statistically significant differences

for maximums of pupil dilation changes between low

and high cognitive workload condition, we conducted

Mann–Whitney–Wilcoxon tests for maximums of pupil dilation

left and of pupil dilation right between 1 and 2 back. The results

are presented in Table 6.

In this research, the maximums of fixation duration were

adopted as the representative of the peak cognitive workload

during the intervals, starting from the appearance of each letter

to the time point that choices were made.

To examine whether statistically significant differences

exist for the maximums of fixation duration between low

and high cognitive workload conditions, we conducted

Mann–Whitney–Wilcoxon tests between 1 and 2 back. We find

no significant results (Table 7).

In this research, the maximum saccade duration was

adopted as the representative of the peak cognitive workload

during the intervals, starting from the appearance of each letter

to the time point that choices were made.

To examine whether statistically significant differences

exist for the maximums of saccade duration between low

and high cognitive workload conditions, we conducted

Mann–Whitney–Wilcoxon tests for it between 1 and 2 back. We

find no significant results (Table 7).

Eye movement results’ analysis

Overall, the eye movement data collected by the Tobii Pro

Nano are valid and reliable. Some measures (pupil dilation,

saccade number in second, fixation number in second) are

sensitive to the difference of average cognitive workload and

peak cognitive workload introduced by the 1 or 2 back tasks.

The averages of pupil dilations of both eyes have been proven

to be reactive to the differences of average cognitive workload

between 1 and 2 back tasks consistently. As Table 5 reveals,

there are statistically significant differences between 1 and 2 back

for the averages of pupil dilation of both eyes (p < 0.05). The

medians of the averages of pupil dilations of both eyes are larger

in 2 back than in 1 back. The medians of the averages of pupil

dilations of both eyes remain greater in the 2 back and in the

1 back, so that the bigger average of pupil dilations means a

higher averaged cognitive workload. This finding is in line with

earlier studies (Granholm et al., 1996; Pomplun and Sunkara,

2003; Klingner et al., 2008; Chen et al., 2011; Porta et al., 2012;

Rafiqi et al., 2015).

The same pattern is discovered in the maximums of pupil

dilation. There are statistically significant differences between 1

back and 2 back for maximums of pupil dilation of both eyes

(p < 0.05 or < 0.001) (Table 6). The medians of the maximum

pupil dilation of both eyes are larger in 2 back than in 1 back for

both eyes, which indicates the larger maximum of pupil dilations

means a higher peak cognitive workload.

As for fixation and saccade, statistically significant

differences were observed between 1 and 2 back in the fixation

number in second and saccade number in second (Table 6).
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TABLE 5 The descriptive statistics and Mann–Whitney–Wilcoxon test results for the averaged pupil dilation left, the averaged pupil dilation right,

the averaged fixation duration, the averaged fixation number, the averaged saccade duration, and the averaged saccade number in second between

1 and 2 back.

Measure [mm] N back N Mean SD Median W* p-value

Averaged pupil dilation left 1 245 0.0776042 0.3685327 0.1129762 24,874 0.0006402***

2 247 0.2135481 0.3894946 0.1967991

Averaged pupil dilation right 1 255 0.1306679 0.4081041 0.1599511 29,682 0.005187**

2 271 0.2631821 0.4403823 0.2407292

Averaged fixation duration [ms] 1 247 224.4167 186.5857 166.7222 30,689 0.6749

2 254 217.8477 167.6373 166.4935

Fixation number in second 1 247 25.89081 15.4502 22.97702 33,166 0.02676**

2 254 24.25003 14.94318 22.54331

Averaged saccade duration[ms] 1 267 27.14384 10.29906 25 37,158 0.9221

2 277 27.43823 13.47225 25

Saccade number in second 1 267 11.416636 6.600944 10.673235 41,258 0.0196**

2 277 9.862231 5.004347 9.687836

*W-Value is the sum of the ranks of the first sample. The bold values are p values smaller than 0.01, so they are statistically significantly. **P = 0.01; ***P = 0.001.

TABLE 6 The descriptive statistics and Mann–Whitney–Wilcoxon test results for the maximum pupil dilation left and the maximum pupil dilation

right between 1 and 2 back.

Measure [mm] N back N Mean SD Median W* p-value

Maximums of pupil dilation left 1 299 −0.5025064 1.676639 0.1764088 26,852 0.03083**

2 300 −0.3933013 1.735202 0.2990345

Maximums of pupil dilation right 1 300 −0.30043015 1.54833 0.2411331 37,104 0.0001998***

2 300 0.04463652 1.391381 0.397199

*W-Value is the sum of the ranks of the first sample. **P = 0.01; ***P = 0.001.

TABLE 7 The descriptive statistics and Mann–Whitney–Wilcoxon test results for the maximums of fixation duration between 1 and 2 back for all

selected participants.

Measure N Back N Mean SD Median W* p-value

Maximum of fixation duration [ms] 1 247 290.8664 226.5789 217 30234 0.3964

2 256 309.6367 247.3612 217

Maximum of saccade duration[ms] 1 267 42.42697 23.30892 33 36237 0.5242

2 280 43.71071 24.47466 33

*W-Value is the sum of the ranks of the first sample.

Irreconcilable with previous findings is that the correlation

between the number of fixation and cognitive workload is

negative. Previous studies have concluded that an upswing

number of fixations correlate with an increased cognitive load

level (Goldberg and Helfman, 2010; Chen et al., 2011; Wang

et al., 2014; Zagermann et al., 2018). And the higher number

of saccades in second (saccade velocity) is also related to lower

cognitive workload, opposing the previous research (Barrios

et al., 2004; Chen et al., 2011; Lallé et al., 2016; Zagermann et al.,

2018).

Discussion on eye movement data

In this study, we found that eye-tracking device, Tobii

Pro Nano with mobile testing accessory, appears to be a valid

instrument for monitoring the cognitive workload difference in

a smartphone setting. This finding along with previous studies

(Sugaya, 2019; Ehlers, 2020; Lee and Chenkin, 2020) can provide

an initial empirical evidence on the reliability of Tobii Pro

Nano with mobile testing accessory. Moreover, the average pupil

dilation and the maximum pupil dilation have been ratified

as the effective measures of cognitive workload difference in a

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.1011475
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang and Cui 10.3389/fnins.2022.1011475

TABLE 8 The tasks in the papers.

Paper Task

Chen et al. (2011) observing team player positions in basketball

game videos

Goldberg and Helfman (2010) scanning within and between bar, line, and

spider graphs

Barrios et al. (2004) browsing content to learn

Lallé et al. (2016) retrieve, find, sort, and compute in charts

Wang et al. (2014) online shopping tasks on a shopping website

Zagermann et al. (2018) three visual search tasks that represent

different levels of difficulty

smartphone setting, and they enlarge along with the difficulty

levels of N-back task rising.

One incongruent finding is that the fixation velocity

and saccade velocity decline with the increment of cognitive

workload, while the previous studies found an upswing number

of fixations correlate with an increased cognitive load level

(Barrios et al., 2004; Goldberg and Helfman, 2010; Chen et al.,

2011; Wang et al., 2014; Lallé et al., 2016; Alonso Dos Santos and

Calabuig Moreno, 2018; Zagermann et al., 2018).

One possible justification for this reverse is the different

task design. The N-back task only required participants to look

at one spot on the screen, while the previous studies required

participants to observe, scan, and search during tasks and the

gazes were not fixed in one spot (Table 8).

Another obvious concern about the Tobii Pro Nano is the

unstable capture rate. Only nearly half of the participants’ data

was captured enough to be adopted.

One pilot participant’s capture rate was 0% and he

mentioned that he had a high degree of astigmatism, around

500–600 in both eyes. Astigmatism is an imperfection

in the curvature of your eye’s cornea or lens (Boyd,

2021). It may be helpful to think of the normal eye as

being shaped like a basketball. With astigmatism, it is

shaped more like an American football. The Tobii Pro

Nano may not effectively recognize the eyes of people

with astigmatism. This suggests that the low capture rate

for some participants may be caused by astigmatism.

Therefore, information about astigmatism was obtained

from the participants.

For the astigmatism degree, we averaged two eye degrees.

The capture rate was recorded in the Tobii Pro Nano. We

adopted Spearman’s rho statistic to assess the correlation

between capture rate and astigmatism degree, and the

correlation coefficients and p values are given in Figure 6.

The result shows that there is a statistically significant

negative correlation between capture rate and astigmatism

degree (p < 0.05 or < 0.001). The correlation coefficient is

−0.55. The negative correlation between astigmatism and

capture rate may have resulted from the changes in the shape

of eyeballs.

Overall, the objective of Experiment 1 was to assess the

feasibility of using wirelessly acquired EEG (MUSE 2) and eye-

tracking device (Tobii Pro Nano) to assess cognitive workload in

a well-controlled N-back task in a smartphone setting. And the

eye-tracking device, Tobii Pro Nano, can be adopted as a device

to collect eye movement data to monitor cognitive workload

fluctuations in a smartphone setting with a screen for high

astigmatism, and pupil dilation can be measured for cognitive

workload differences.

Conclusion and future directions

This study aimed to verify the feasibility of using

eye-tracking (i.e., Tobii Pro Nano) and low-cost

electroencephalogram (EEG, i.e., MUSE 2) devices to measure

real-time cognitive workload changes during mobile application

use, and which measures are sensitive to cognitive workload

differences. Results from the experiment manifest that the

eye-tracking device (Tobii Pro Nano) can be adopted as a

device to collect eye movement data to monitor cognitive

workload fluctuations in a smartphone setting, and pupil

dilations can be used to measure the cognitive workload

differences, with a screening test to filter out people with a high

astigmatism degree.

There are three main directions for future research. The first

one is to adopt pupil dilations as an effective measure to assess

users’ cognitive workloads while experiencing a smartphone

application and to improve the UI design of the application

based on the assessment.

The second one is to expand the age range to cover middle-

aged and older adults. Only younger users who were born with

smartphones were included in the study and we found that they

have a high level of endurance for design issues and proficient

capability to resolve issues by themselves. While it has been

found that cognitive performance declines with age (Deary et al.,

2009), it is reasonable to expand research to include middle-aged

and older adults to verify the findings in the different age groups

to investigate whether experience with smartphones overcomes

cognitive ability’s recession.

The third one is to test findings in other settings, e.g.,

virtual reality (VR), wearable devices, etc. Some ubiquitous

screens (e.g., smart watches, etc.) and certain brand immersive

experience technologies (e.g., VR glasses, etc.) have been

winning consumers’ heart with acceptable prices and great user

experiences. It is necessary to test our findings in these settings

as well.

In the far future, one major direction we desire to explore

is to establish a multidimensional assessment tool for product

usability, including subjective ratings, psychophysiological

measures, and performance measures. We understand this
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FIGURE 6

The correlation between capture rate and astigmatism degree.

objective is extensive and requires considerable time and human

resources to complete.

Another direction is to expand from application-focused

studies to include cognitive-focused studies. Instead of studying

how to improve the usability of specific kinds of software

applications, we aim to study cognitive processes, such as how

to help people focus or refocus in different settings.
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