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E�ect of sleep loss on
pain—New conceptual and
mechanistic avenues
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Medicine, Baltimore, MD, United States, 2Department of Neuroscience, Johns Hopkins School of
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Introduction: Sleep disturbances increase pain sensitivity in clinical and

preclinical settings, but the precise mechanisms are unknown. This represents

a major public health issue because of the growing sleep deficiency epidemic

fueled by modern lifestyle. To understand the neural pathways at the

intersection between sleep and pain processes, it is critical to determine the

precise nature of the sleep disruptions that increase pain and the specific

component of the pain response that is targeted.

Methods: We performed a review of the literature about sleep disturbances

and pain sensitivity in humans and rodents by taking into consideration the

targeted sleep stage (REMS, non–NREMS, or both), the amount of sleep lost,

and the di�erent types of sleep disruptions (partial or total sleep loss, duration,

sleep fragmentation or interruptions), and how these di�erences might a�ect

distinct components of the pain response.

Results: We find that the e�ects of sleep disturbances on pain are highly

conserved among species. The major driver for pain hypersensitivity appears

to be the total amount of sleep lost, while REMS loss by itself does not seem

to have a direct e�ect on pain sensitivity. Sleep loss caused by extended

wakefulness preferentially increases pain perception, whereas interrupted

and limited sleep strongly dysregulates descending controls such as DNIC,

especially in women.

Discussion: We discuss the possible mechanisms involved, including an

increase in inflammatory processes, a loss of nociceptive inhibitory pathways,

and a defect in the cognitive processing of noxious input.

KEYWORDS

sleep deprivation, pain, nucleus accumbens, DNIC, NREMS, REMS, forced awakening,

SWS

Introduction

When individuals do not get sufficient sleep or have their sleep curtailed,

they fail to maintain normal levels of alertness, which translates into attentional

lapses and poor cognitive performances (Van Dongen et al., 2003; Goel et al.,

2009; McHill et al., 2018). Insufficient sleep also negatively impacts metabolism

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1009902
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1009902&domain=pdf&date_stamp=2022-12-20
mailto:alatrem1@jhmi.edu
mailto:calexa41@jhmi.edu
https://doi.org/10.3389/fnins.2022.1009902
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1009902/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kourbanova et al. 10.3389/fnins.2022.1009902

(Spiegel et al., 1999; Tasali et al., 2008), immune and

cardiovascular functions (Faraut et al., 2012; Tobaldini

et al., 2014; Kohansieh and Makaryus, 2015; Irwin et al.,

2016), emotional regulation (Walker, 2009; Simon et al.,

2015), and pain (Smith and Haythornthwaite, 2004; National

Sleep Foundation, 2015). The overall enhancement in pain

sensitivity caused by various sleep disturbances has been

widely reported both at the clinical and preclinical levels with

consistent effects across species (Lautenbacher et al., 2006;

Finan et al., 2013; Schrimpf et al., 2015; Alexandre et al.,

2020). In sharp contrast, sleep disturbances do not increase

sensitivity to innocuous stimuli of various sensory modalities:

thermal discrimination, responsivity to light mechanical

stimuli, auditory and visual acuities are not changed by sleep

loss (Kundermann et al., 2004; Franzen et al., 2009; Scherer

et al., 2013; Alexandre et al., 2017). Altogether, these results

indicate that inadequate sleep specifically enhances pain

sensitivity, but the precise mechanisms responsible remain

largely unknown.

Pain is a complex neural process that involve detecting a

potentially harmful stimulus via specialized peripheral sensory

neurons called nociceptors, integrating the information at the

spinal cord level before sending it to the brain where a pain

sensation is generated to incorporate sensory-discriminative,

emotional, limbic and even cognitive components (Figure 1A).

Virtually all the components of the pain response can be

modulated along the nociceptive and pain pathways to either

enhance or depress the pain signal (Figure 1A). The ultimate

pain sensation generated is the result of the integration

of all these pain components, which contributes to the

multifactorial and individualized features of pain. Therefore,

an overall increase in pain sensitivity can be obtained by

various mechanisms, raising the possibility that different

sleep disturbances alter pain processing at distinct levels of

the nociceptive and pain pathways, and thus could have

cumulative effects.

Sleep is also a complex and dynamic neural process that

comprises of two major and distinct states, rapid eye movement

(REM) sleep and non–rapid eye movement (NREM) sleep.

They alternate periodically throughout the sleep cycle and

can be distinguished based on their electroencephalogram

(EEG) and electromyogram (EMG) features (Aserinsky and

Kleitman, 1953). In normal conditions, sleep architecture

has a predictable macro-organization with NREMS always

preceding REMS (Figure 1B). In humans, three stages of

NREMS have been characterized based on their EEG features

and to reflect transition into “deeper” sleep (N1, N2, and

N3 which is also designated as slow wave sleep SWS).

NREMS intensity can be assessed by quantifying the EEG

power between 0.5 and 4Hz, also known as slow-wave

activity (SWA) (Borbely, 1982; Borbely and Achermann, 1999).

REMS is characterized by an “activated” EEG (high frequency,

low amplitude waves), no postural muscular activity on the

EMG (atonia), and ocular saccades (that can be quantified

with electrooculogram) in both humans and rodents. The

distribution and amount of NREMS and REMS are mostly

determined by two principal and interacting systems: the

endogenous circadian clock and a homeostatic component that

regulates the need and intensity of sleep according to the

sleep-wake history (i.e., the time previously spent asleep or

awake) (Borbely, 1982). Due to these dynamic interrelations

between sleep-wake stages, many experimental sleep disruptions

are poised to have broader effects on other sleep parameters

than originally anticipated, notably NREMS and REMS amount.

As a result, the exact effects of various sleep disturbances,

especially during chronic settings, on pain processing are

not clear.

To understand the neural pathways at the intersection

between sleep and pain processes, it is then critical to

define precisely which sleep stages (REMS, non–NREMS,

or both) and what type of the sleep disruptions (sleep

loss, sleep fragmentation or sleep interruptions) affect the

pain sensation.

Here, we performed a review of the literature about sleep

disturbances and pain sensitivity in humans and rodents by

taking into consideration the amount of sleep lost. We find that

NREMS loss could be the major driver for pain hypersensitivity,

and that the temporal nature of the sleep disruptions could

affect different components of the pain response. We then

discuss possible neural mechanisms responsible and cellular

pathways involved.

Part 1: Total (NREMS+REMS) sleep
loss on pain

In humans, a single night of total sleep deprivation caused

a decrease in pain thresholds from a heat source (8 studies

out of 11), mechanical stimulus (both punctate and pressure;

5 studies out of 6) and cold (5 studies out of 6) when tested

immediately at the end of the sleep deprivation (Figure 2).

Furthermore, the pain response to a sustained noxious stimulus

(ischemia pain, cold pressor pain) was heightened in half of

the studies, suggesting a less robust or a ceiling effect of the

pain response (Drewes et al., 1997; Onen et al., 2001; Larson

and Carter, 2016; Eichhorn et al., 2018; Staffe et al., 2019).

Spontaneous pain complaints (general body pain, low back pain,

or headache) and migraine crises are more often reported after

one night of total sleep deprivation (Busch et al., 2012; Houle

et al., 2012; Palma et al., 2013). Both women and men show an

hyperalgesic effect of sleep loss, with a stronger trend for women

(Eichhorn et al., 2018; Staffe et al., 2019). One night of total

sleep deprivation increased temporal summation of pain ratings

upon repeated noxious pressure stimulations (Staffe et al., 2019),

suggesting a possible spinal nociceptive facilitation (Bosma et al.,

2015), although amplification within the brainstem, thalamus,
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FIGURE 1

(A) Schematic representation of nociceptive and pain pathways. Nociception consists of the detection of noxious stimuli, spinal reflexive

withdrawal and the transmission of the signal into the brain, where the pain sensation is generated. The pain sensation comprises

sensory-discriminative, emotional and cognitive components. Right: Example of major pain/nociception modulatory processes. (B) Sleep-wake

cycles in humans (top) and rodents (bottom) as analyzed with polysomnography. In normal conditions, NREMS always precedes REMS. Humans

display consolidated sleep during the night period, while rodents have polyphasic sleep, most prominent during the light period (subjective sleep

phase).

or cortical areas might also contribute. In contrast, detection of

innocuous stimuli (gentle touch, warmth) was not affected by

sleep loss (Kundermann et al., 2004, 2008; Lautenbacher et al.,

2006; Schuh-Hofer et al., 2013). Other sensory systems such

as visual performance and acoustic startle/reactivity, showed

a decrease in responsiveness after sleep loss (Franzen et al.,

2009; Jung et al., 2011; Liberalesso et al., 2012; Scherer et al.,

2013).

In rodents, acute total sleep deprivation is usually performed

by variations of the gentle handling paradigm (Tobler et al.,

1997; Page et al., 2014; Vanini et al., 2014; Vanini, 2016;

Alexandre et al., 2017) with animals tested at the end of the

session. Protocols providing novel objects without touching

the animals are minimally stressful, allowing for an extension

of wakefulness without forced locomotor activity. Nine and

twelve hours of sleep deprivation caused an increased sensitivity

for noxious heat (hotplate set at 52C, radiant heat with

Hargreaves), pressure (von Frey filaments) and sustained pain

(capsaicin), with an overall trend toward higher responses

in females (Page et al., 2014; Vanini et al., 2014; Vanini,

2016; Alexandre et al., 2017; Hambrecht-Wiedbusch et al.,

2017). Responses to noxious cold (∼4C; acetone test) were

not changed by sleep loss, in contrast to human data, which

might be due to technical differences to generate cold (Harvey

et al., 2010; Alexandre et al., 2020). Responses to somatic

innocuous stimuli (gentle touch with a brush, warmth (20–

37C) detection though a thermal gradient) were not changed,

even after 12 h of sleep deprivation (Alexandre et al., 2017).

Startle responses following loud acoustic stimuli were decreased

after 9 h of sleep loss (Alexandre et al., 2017), similar to

humans and presumably reflecting fatigue. Overall, these results

indicate that the enhancement of pain responses by total

sleep loss is consistent and well preserved in both rodents

and humans.
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FIGURE 2

E�ects of total sleep deprivation in humans and rodents for di�erent pain modalities (heat, mechanical, cold) and sustained pain. M indicates

men and F indicates women. n.t., not tested.

Part 2: State-specific sleep
deprivation in humans

In humans, SWS (NREMS N3) can be interrupted by

monitoring the EEG/EMG signals and applying a short auditory

stimulus (80–110 dB) based on the EEG/EMG features observed

in real time [for N3 = detection of slow-waves (0.5–3.5Hz)].

This protocol does not cause a total loss of NREMS or REMS,

but it increases the time spent in N1 and N2 (Arima et al.,

2001). Three consecutive nights of SWS deprivation did not

affect pressure pain responses applied to jaw muscles (Arima

et al., 2001), while pain sensitivity to pressure at tender

points (commonly used to diagnose fibromyalgia) was reported

increased in some studies (Moldofsky et al., 1975; Moldofsky

and Scarisbrick, 1976; Lentz et al., 1999) but not in others

(Older et al., 1998). All these studies had a relatively low N

(ranging from 6 to 19) which could explain the variability and

possibly insufficient statistical power. No major differences on

pain sensitivity were found between men and women. There is

currently no specific SWS-deprivation protocol in rodents.

REMS can be interrupted in humans by a frank awakening

(e.g., touching or moving subject) based on EEG/EOG/EMG

features observed in real-time. Quantifying the total amount

of sleep under these protocols indicates that some REMS

deprivation protocols might also cause a significant loss

of NREMS (∼30%; Roehrs et al., 2006), while others do

not (Moldofsky and Scarisbrick, 1976; Azevedo et al.,

2011). Interestingly, REMS deprivation protocols that

are not associated with total sleep loss do not increase

pain even after 4 consecutive days (Azevedo et al., 2011),

while a protocol that reduced total sleep amount increased

heat pain sensitivity after a single night (Roehrs et al.,

2006) (Figure 3). REMS deprivation by administration of

clonidine did not change heat pain sensitivity (nor total

sleep amount) in either men or women (Chouchou et al.,

2015).
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FIGURE 3

E�ects of SWS- and REMS-specific deprivation on pain in humans. Note the associated total sleep loss occurring in one REMS deprivation

protocol associated with pain hypersensitivity.

State-specific sleep deprivation in
rodents

In rodents, the majority of REMS sleep deprivation has

been performed using variations of the “platform-over-water”

method (Mendelson et al., 1974) that take advantage of the

muscle atonia occurring during REMS (Jouvet et al., 1964). Rats

or mice are placed on top of a small platform surrounded by

water in which they fall when they enter REMS and lose postural

tone, causing them to wake up (Figure 4A). A modification

of this paradigm was introduced to circumvent isolation and

movement restriction by allowing a socially stable group of

animals to be sleep-deprived together in a large tank containing

multiple small platforms (Coenen and Van Luijtelaar, 1985).

While 6 h of this paradigm does not change heat and mechanical

pain sensitivity and 24 h has limited effects (Onen et al., 2000;

Wei et al., 2007; Wang et al., 2015; Tomim et al., 2016; Nasehi

et al., 2018; Sardi et al., 2018b), two or more consecutive

days are systematically associated with an increase in pain

responses for mild (44–46C) (Onen et al., 2000; May et al.,

2005; Damasceno et al., 2009; Harvey et al., 2010; Skinner et al.,

2011) and intense (52C) (Nascimento et al., 2007; Damasceno

et al., 2009; Araujo et al., 2011; Gurel et al., 2014) heat, pressure

(Randall and Selitto) (Ukponmwan et al., 1984; Onen et al.,

2000; Tomim et al., 2016) and punctate (von Frey filaments)

(Wei et al., 2008, 2010; Damasceno et al., 2009) mechanical

stimuli, and chemical pain (Figure 4A) (Hicks et al., 1979;

Onen et al., 2000; Tomim et al., 2016). The development

of heat hyperalgesia is stronger in females (Araujo et al.,

2011). However, “platform-over-water” protocols significantly

reduce NREMS by ∼30–50%, nearly ∼4–6 h sleep loss per day

(Grahnstedt and Ursin, 1985; Machado et al., 2004), making

it difficult to distinguish the relative contribution of REMS or

NREMS loss to the development of hyperalgesia. Interestingly,

the overall onset of hyperalgesia during “platform-over-water”

protocols ranges between 24 and 48 h, (corresponding to ∼5–

10 h total sleep loss), which is very similar to that of an acute

total sleep deprivation (between 6 and 9 h) (Alexandre et al.,

2017).

Sleep disruption protocols aiming at fragmenting NREMS

can also indirectly prevent the transition from NREMS to

REMS, thereby reducing REMS amount without significantly

altering NREMS amount in most cases (Figure 4B). These

protocols usually involve circular cages equipped with a

rotating sweeping bar or cage floor programmed to rotate/move

at specific intervals and durations (Figure 4B) (Ringgold

et al., 2013; Sutton and Opp, 2014; Alexandre et al.,

2017). Under these protocols, loss of REMS (ranging from

50 to 95%) without concomitant loss of total sleep did

not alter mechanical or heat pain after one or up to 5

consecutive days in males or females (Sutton and Opp,

2014; Wodarski et al., 2015; Alexandre et al., 2017). In one
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FIGURE 4

(A) E�ects of “platform over water” methods and sleep disruption protocols on sleep and heat and mechanical pain in rodents. REMS loss alone

is not associated with the development of hyperalgesia, while protocols that cause total sleep loss increase pain sensitivity. (B) Heat hyperalgesia

development accumulates over time independent of the species or sleep deprivation protocols used. An estimated 6h of total sleep lost per day

causes a relatively linear increase in heat pain that plateaus after 4 days. Heat hyperalgesia was estimated as a % of baseline from the studies

included. Studies with males are shown in red dots; studies with females are shown in pink dots. SD, Sprague Dawleys; HW, Hanover Winstar;

HG, Hargreaves test; (46–52), hotplate set at 46–52C; RS, Randall & Selitto pressure test; vF, von Frey assay; Chem, Formalin 1%; Elec, electric

current.

study (Wodarski et al., 2015), 8 h of sleep fragmentation that

caused a minor total sleep loss (∼30%; 2 h 40min) did not

increase heat and mechanical pain responses, while a sleep

fragmentation protocol that also caused ∼60% total sleep

loss (∼5 h 30min) increased pain responses. Such estimation

of the amount of total sleep loss required to increase pain
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sensitivity is aligned with total sleep deprivation studies

(Page et al., 2014; Alexandre et al., 2017).

Overall, these results suggest that traditional “REM sleep-

specific” deprivation protocols relying on platforms-over-the-

water techniques cause a significant total sleep loss over time,

which might be the main driver for pain hypersensitivity,

rather than the specific loss of REMS. Indeed, when ranking

all studies that used the same pain assay (latency to withdraw

on a hotplate set a 50–52C; to mitigate technical variability) by

pain intensity, we found that the main factor associated with

the gradual increase in heat pain was the overall amount of

sleep loss, irrespective of the sleep disruption protocol or species

used (Figure 4B). Furthermore, these compiled studies suggest

that when subjected to ∼6 h total sleep loss per day, animals

develop heat hyperalgesia with a relatively linear increase of

∼7% per day and reach a plateau after 4 d (Figure 4B). There

were not enough studies carried out with females to perform this

analysis. The overall pain profile from acute and chronic sleep

loss experiments suggests females develop stronger hyperalgesia

andmight reach a plateau sooner compared tomales. Altogether,

these results fit with the hypothesis that the amount of total

sleep loss, and not REMS or sleep continuity, is the major

factor associated with the increased pain sensation for heat and

mechanical stimuli.

Part 3: Dynamics of sleep loss on
pain

While the amount of total sleep loss appears to be a

major contributor to the increased pain response, the dynamics

of the sleep loss could target different components of pain

processing. This can be evidenced when comparing two models

of sleep disruption in humans achieving the same sleep deficit

after a single night: delayed bedtime and forced awakening

(Smith et al., 2007). In the delayed bedtime protocol, subjects

stay awake for 4 h past their usual bedtime, while under the

forced awakening protocol, subjects are awakened for 20min

every hour, and for a full hour at a random time during the

night. Both protocols reduce total sleep amount by ∼45–50%

(∼4 h). While the delayed bedtime protocol initially extends

wakefulness then allows for a consolidated sleep (i.e., with

increased SWS during the remaining sleep opportunity), the

forced awakenings protocol interrupts sleep with transient, short

(20min to 1 h) wake periods (causing more N1 at the expense

of SWS) (Figure 5). These different dynamics of sleep loss are

associated with preferential changes in pain responses, possibly

underlying specific mechanisms. In both men and women, a

single 4-h delayed bedtime is sufficient to increase heat and

mechanical pain sensitivity when subjects are tested at wake

up (Roehrs et al., 2006; Tiede et al., 2010; Faraut et al., 2015;

Matre et al., 2015), similar to the effects of a night of total

sleep deprivation, while a single night of forced awakenings

does not affect these modalities (Smith et al., 2007; Finan

et al., 2017; Iacovides et al., 2017; Letzen et al., 2020). Both

delayed bed onset and total sleep deprivation are associated with

an extended wake, suggesting that heat and mechanical pain

might be caused by a common mechanism sensitive to excessive

wakefulness, i.e., a maximum period beyond which normal

pain perception and neurobehavioral functioning cannot be

maintained (Van Dongen et al., 2003). In support of this,

administration of caffeine and modafinil, two drugs that can

restore alertness, normalize heat and mechanical pain sensitivity

(Vanini, 2016; Alexandre et al., 2017), without removing the

sleep debt. Both sleepiness and pain hypersensitivity accumulate

during experimental sleep deprivation (Alexandre et al., 2017),

and sleepiness ratings in healthy individuals correlate with

their pain complaints (Smith et al., 2007). Chemogenetic

activation of GABAergic neurons in the anterior cingulate cortex

in mice is sufficient to concomitantly increase delta power

(which could indicate increased sleep pressure) and mechanical

pain (Li et al., 2020). These results suggest that the neural

circuits driving sleepiness could also be responsible for the

heightened heat and mechanical pain sensitivity after an acute

sleep loss.

Another major difference in pain processing between

reduced yet consolidated sleep and fragmented sleep concerns

diffuse noxious inhibitory controls (DNIC), a type of descending

controls that can suppress the nociceptive signal at the spinal

cord level. DNIC are triggered when two noxious stimulations

occur simultaneously in different dermatomes, and they can

be assessed in humans by using “conditioned pain modulation

(CPM)” protocols (Yarnitsky, 2010; Yarnitsky et al., 2015). One

night of forced awakenings strongly disrupts CPM in women

(Smith et al., 2007), whereas a single 4-h delayed bedtime does

not (Matre et al., 2016; 14 women, 8 men; Smith et al., 2007;

women only; Matre et al., 2017; night shifts: 41 women, 12

men) (Figure 5), indicating that a mild sleep loss with disrupted

continuity specifically targets these descending controls. Clinical

studies support this assertion as DNICs are strongly altered

in fibromyalgia patients who also suffer from mild total sleep

loss and sleep disruption by awakenings (lasting more than

3min; Lautenbacher and Rollman, 1997; Diaz-Piedra et al.,

2015; Bjurstrom and Irwin, 2016), as well as patients with

temporomandibular joint pain where DNICs were most altered

in patients with poor sleep quality (Edwards et al., 2009).

Interestingly, experimental sleep disturbances only disrupt

DNIC in women (Eichhorn et al., 2018), which could contribute

to the strong incidence of fibromyalgia and temporomandibular

joint disorder pain in women.

DNICs are triggered specifically by the activation of lamina

V spinal neurons (Villanueva and Le Bars, 1995) that project

to the subnucleus reticularis dorsalis (SRD, also known as

dorsal reticular nucleus DRt, and called medullary reticular

nucleus in mice; Villanueva and Le Bars, 1995; Le Bars, 2002).

Some SRD neurons project directly back into the deep dorsal
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FIGURE 5

Di�erential e�ects of sleep loss caused by extended wake and fragmented wake/interrupted sleep on pain sensitivity and DNIC. While both

protocols cause a loss of total sleep of ∼4h, extended wake promotes heat and mechanical pain hypersensitivity and forced awakenings disrupt

DNIC specifically.

horn lamina (V-VII; Villanueva et al., 1995) while others

activate several medullar pathways (Bouhassira et al., 1992b)

that will also eventually project back to the spinal cord to

inhibit projecting neurons (Leite-Almeida et al., 2006). It is

important to note that DNICs are physiologically distinct from

“traditional” descending inhibitory controls that originate from

the rostroventral medulla (RVM), notably the locus coeruleus

(LC) and the median raphe nucleus (MRN) (Basbaum and

Fields, 1978, 1984; Bouhassira et al., 1992a; Le Bars et al., 1992;

Kucharczyk et al., 2022), and the effects of forced awakenings

on those are not known. Nonetheless, because delayed bed

onset does not disrupt DNICs, this raises the possibility that a

mild sleep loss coupled with sleep interruptions caused by the

forced awakening protocol might affect more strongly lamina V

pain pathways.

In contrast to heat and mechanical pain, cold pain responses

are not changed by delayed bed protocol (Faraut et al., 2015),

but they are increased after forced awakenings (Rosseland et al.,

2018) (Figure 5).

Part 4: Chronic sleep disruptions and
recovery sleep

The similar increase in acute pain responses to heat and

mechanical stimuli observed after a single night of total

sleep deprivation or at wake time after a delayed bedtime

indicates that a short sleep opportunity is not sufficient

to restore normal pain sensitivity. Indeed, the increase in

heat and mechanical pain caused by sleep loss persists in

humans (Roehrs et al., 2006; Tiede et al., 2010; Faraut et al.,

2015; Matre et al., 2015, 2016; Odegard et al., 2015; Staffe

et al., 2019) and even aggravates in rodents (Page et al.,

2014; Alexandre et al., 2017; Sardi et al., 2018a). Cumulative

deficits after sleep loss have also been reported for diverse

biological processes, such as cognitive performance (Van

Dongen et al., 2003; Banks et al., 2010), energetic metabolism

(Spiegel et al., 1999; Van Cauter et al., 2008; Everson and

Szabo, 2011), and immune system functions (Bryant et al.,

2004). This is particularly relevant, because chronic insufficient
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FIGURE 6

(A) Top, development of heat hyperalgesia after acute sleep deprivation 6, 9, and 12h (ASD6, 9, 12) and chronic sleep deprivation (6 h of sleep

deprivation per day; CSD1, 3, 4). Data are expressed as % of baseline and ranked by intensity of hyperalgesia. Each dot represents an animal.

Bottom, table indicating the amount of relative sleep deficit (compared to undisturbed sleep), extended wake and sleep debt at the beginning of

sleep deprivation. Data are presented as cumulative hours of wake from 7a.m. (B) “Relative sleep deficit” model to test if development of

hyperalgesia during acute (ASD) and chronic (CSD) sleep deprivation correlates with the cumulative relative sleep loss. Left, accumulation of

relative sleep loss over four consecutive days of daily 6 h sleep deprivation. Dashed line represents cumulative wake in undisturbed sleep and

black line represents cumulative wake during daily 6 h sleep deprivation. Stars represent time of sensory testing. Note: the amount of relative

sleep loss is the same as relative wake gain. Right, lack of correlation between percentage of hyperalgesia and relative sleep deficit during acute

and chronic sleep deprivation. (C) “Extended wake” model to test if development of hyperalgesia during acute (ASD) and chronic (CSD) sleep

deprivation correlates with the amount of extended wake coupled with carryover sleep debt. Left, quantification of the sleep debt (in blue) that

builds up during chronic sleep deprivation protocol (in red). Stars represent time of sensory testing. Right, the development of heat hyperalgesia

during acute and chronic sleep deprivation correlates with the amount of extended wake coupled with the carryover sleep debt. Goodness to

fit: R squared = 0.9916.

sleep is becoming more frequent in the general population

(up to 30%) and can be caused by poor sleep hygiene

(TV, screens, etc.), work conditions (schedules/shiftwork,

multiple jobs) or diseases (e.g., obesity-related sleep disorders;

Holingue et al., 2018; Freire et al., 2022).

We quantified the cumulative wake amount over 5

consecutive days of experimental sleep restriction (6 h of

sleep deprivation daily, starting at light onset) in mice and

confirmed that despite a normal homeostatic sleep response

(increased in NREMS SWA and NREMS amount) occurring

each day during the sleep opportunity period, there was

an accumulation of sleep loss/deficit over time (Alexandre

et al., 2017). We compared the degree of heat hyperalgesia

caused by an acute, extended wakefulness of 6, 9, and 12 h
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with the effects of the repeated sleep restriction protocol (6 h

of extended wake per day) and found they both gradually

increased, with a plateau after 12 h acute sleep deprivation

or 4 d of sleep restriction (Figure 6A). Interestingly, we

found that the development of heat hyperalgesia fits best

when incorporating the carryover amount of wake (i.e., the

sleep debt at the beginning of the active period, in blue)

with the extended wake (in red, Figure 6B), rather than the

relative cumulative sleep loss measured at the time of testing

(i.e., at the end of the sleep deprivation session; in pink;

Figure 6C).

Overall, the cumulative effects of sleep debt on pain could

explain why heat and mechanical pain hypersensitivity takes

several days to develop in complex chronic settings that

are associated with a moderate total sleep loss in humans.

For example, the forced awakenings protocol, which causes

a 4 h total sleep loss per day, is insufficient to increase

heat or mechanical (pinprick) pain after a single night (see

Figure 5), but increases pain responses to both modalities after

two consecutive nights (Smith et al., 2007; Iacovides et al.,

2017; Irwin et al., 2022). As the individual has to maintain

wakefulness throughout the day despite the homeostatic sleep

pressure caused by the first night of forced awakenings

(4 h sleep loss and broken sleep continuity), this maintained

wakefulness could represent an additional extended wake

period. After the second night of forced awakenings, the

net result is accumulation of sleep debt coupled with an

episode of extended wakefulness (similar to an acute night

of delayed sleep onset), which causes heat and mechanical

hypersensitivity. Similarly, platform-over-the-water protocols

occur over several days, causing a buildup of sleep debt that

increases heat pain hypersensitivity over time. Finally, these

dynamic processes could explain how longitudinal protocols

where individuals go through stage-specific sleep deprivations

followed by total sleep deprivation can lead to complex and

sometimes misleading interpretations.

In conclusion, both clinical and preclinical studies confirm

a strong effect of sleep disturbances on pain sensitivity in a

highly conserved manner. However, different sleep disturbances

affect preferentially specific components of the pain response.

REMS deprivation is not associated with a strong increase

in pain responses, and the major driver for hyperalgesia

appears to be the total amount of sleep lost. Further, the

dynamics of sleep loss reveal potential mechanistic insights:

sleep loss caused by extended wake is strongly associated

with heat and mechanical pain hypersensitivity; whereas a

similar loss achieved by disrupting sleep continuity causes

a loss of diffuse noxious inhibitory controls. Finally, the

sleep debt and its deleterious effects on pain sensitivity

are cumulative over days, despite a preserved homeostatic

sleep rebound, which over time could contribute to the

complex pain responses profile observed in chronic sleep

disturbances settings.

Part 5: Possible sites for pain
modulation by sleep loss

Nociceptive signals can be amplified at many levels along

the pain pathways (see Figure 1A). Below we describe where the

nociceptive input might be enhanced by acute and chronic sleep

loss, and the potential mechanisms.

Nociceptors

Nociceptors can lower their activation threshold, notably

when exposed to pro-inflammatory cytokines/chemokines,

trophic factors or even foreign bodies (Chiu et al., 2013),

a process known as peripheral sensitization. A major source

of proinflammatory cytokines are immune cells. Immunity is

composed of the innate and the adaptive immune systems

and both are heavily regulated by circadian and sleep-wake

cycles (Imeri and Opp, 2009; Lange et al., 2010; Besedovsky

et al., 2012; Dimitrov et al., 2015; Irwin and Opp, 2017;

Liu et al., 2021) and strongly affected by sleep loss (Bryant

et al., 2004). An acute total sleep loss of 3–4 h is sufficient

to alter the innate immune system that consists of monocytes

(blood-circulating precursors of macrophages), macrophages,

eosinophils, neutrophils, basophils, mast cells, and natural

killer cells (NK cells). In particular, the number of circulating

neutrophils and monocytes increase after sleep loss in humans

(Irwin et al., 2008; Christoffersson et al., 2014; Faraut et al.,

2015; Lasselin et al., 2015), rats (Ibarra-Coronado et al., 2015)

and mice (Guariniello et al., 2012). In these cells, sleep loss

enhances the transcriptional activity of the proinflammatory

nuclear factor NFkB, which in turn promotes the production

and release of TNFα, IL-1β, IL-6, IL-8, and C-reactive protein

(Hu et al., 2003; Haack et al., 2007; Irwin et al., 2008, 2015,

2022; Yehuda et al., 2009; Aho et al., 2013; Carroll et al., 2015;

Dimitrov et al., 2015). These cytokines can bind to and sensitize

nociceptors directly (Brenn et al., 2007; Binshtok et al., 2008;

Kawasaki et al., 2008; Stemkowski et al., 2015). In addition,

IL-1β triggers the induction of cyclooxygenase 2 (COX2) in

macrophages (Samad et al., 2001) which leads to the production

of the prostaglandin PGE2, a potent sensitizer of nociceptors

(Chapman and Dickenson, 1992; Chen et al., 1999). PGE2 levels

correlate with migraine and headache complaints after sleep

deprivation (Haack et al., 2007, 2009). The overall shift into

a pro-inflammatory profile while factors that can terminate

the immune response (i.e., anti-inflammatory cytokines and

chemokines), could extend the duration of inflammation.

T cells and B cells (adaptive immune system) are further

classified into helper (Th), regulator (Treg), killer (cytotoxic)

and memory T cells, and they produce a highly targeted

cellular response that relies on the prior exposure to the foreign

bodies. Sleep loss durations lasting from 3 to 21 days affect the
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FIGURE 7

E�ects of sleep loss on immune system (A), spinal cord (B), descending controls (C) and limbic system (D). (A) Sleep disturbances cause a shift

toward pro-inflammatory responses. This could promote risk of migraine attacks and maladaptive immune response in case of injury or

infection. (B) Sleep loss might increase responsiveness of spinal nociceptive circuits, without causing central sensitization. (C) Sleep

disturbances decrease morphine’s analgesic e�ects probably at the PAG level. This dysregulation of PAG neurons might a�ect “traditional”

descending controls. DNIC are strongly a�ected by sleep loss by fragmentation. This e�ect seems stronger in women. (D) Sleep loss alters

normal NAc function, which could a�ect several components of the pain response such as aversion to pain, determination of stimulus salience

or pain cessation reward. Sleep loss causes hyperexcitability of NAc neurons and reducing this (local silencing, increase D2R signaling, blocking

A2AR signaling) restores pain sensitivity. DAergic transmission might also be impaired by abnormal VTA neurons inhibition by SNR GABAergic

neurons contacted by PB neurons. Dysfunctions of NAc circuits might mediate evoked pain hypersensitivity after sleep loss, especially after

extended wake periods. NAC, nucleus accumbens; VTA, ventral tegmental area; SNR, substantia nigra pars reticulate; PB, parabrachial nucleus;

PAG, periaqueductal gray area; LC, locus coeruleus; RVM, reticular ventromedial area; RM, Raphe Magnus; SRD, subnucleus reticularis dorsalis.

adaptive immune system, with an overall downregulation of the

“cellular immune response” carried out by Th-1 lymphocytes

in favor of Th-2 and Th-17 lymphocytes-mediated responses

in humans and rodents (Van Leeuwen et al., 2009; Axelsson

et al., 2013; Nunes et al., 2018). This promotion of Th-2-

mediated responses could be further strengthened by PGE2

produced bymonocytes/macrophages (Harris et al., 2002). IL-17

directly causes pain (Pinto et al., 2010) by sensitizing nociceptors

(Segond von Banchet et al., 2013), while the pro-nociceptive

effects of IL-22 are possibly indirectly mediated by neutrophil

recruitment (Pinto et al., 2015). IL-22 can also promote the

differentiation into Th-2 lymphocyte profile, further amplifying

this shift (Lou et al., 2017). Finally, the dysregulation of B

cell function after chronic sleep loss impairs the efficiency of

immunization (Zielinski and Krueger, 2011; Prather et al., 2012).

Overall, these results indicate that sleep loss initially

promotes the proinflammatory component of the innate

immune response (monocytes/macrophages, neutrophils) and

then a shift toward allergic reactions and autoimmunity at

the adaptive immune system level (Th2/Th17). Because these

changes are associated with an increase in pronociceptive

signaling (IL-6, IL-1β, TNFα) and a reduction of antinociception

(IL2), they could contribute to pain hypersensitivity or a

delayed recovery after tissue injury. However, administration of
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the non-specific COX1/2 inhibitor ibuprofen does not reduce

acute or chronic sleep loss-induced heat or mechanical evoked

pain hypersensitivity (Wodarski et al., 2015; Alexandre et al.,

2017), suggesting a limited role of inflammatory processes

in these symptoms. In contrast, spontaneous pain complaints

or migraine attacks, whose frequency increases after repeated

nights of insufficient sleep (Haack and Mullington, 2005; Haack

et al., 2007; Odegard et al., 2011) might be mediated by the sleep

loss-induced increase in prostaglandin levels (Haack et al., 2009).

Finally, sleep loss-induced increase in IL-6 or TNFα levels might

aggravate the defects in emotional status (Hunt et al., 2021),

possibly by crossing the blood brain barrier and reaching the

mesolimbic system (Hunt et al., 2022) (Figure 7A).

Spinal cord

The spinal cord is a major site for nociceptive signal

modulation. Only a small fraction of spinal neurons project

to brain structures and they are mostly located in the lamina

I and V of the dorsal horns (Todd, 2010). These neurons

are under strong modulatory controls, both excitatory and

inhibitory that originate both locally (“segmental controls”)

and at the supra-spinal level (mostly located within the

rostroventral medulla and the pons); (Alexandre et al., 2020).

Changes in the excitatory/inhibitory balance in the dorsal

horns of the spinal cord will affect the nociceptive signal

sent to the brain. One potent form of spinal plasticity is

called central sensitization, which corresponds to a heightened

functional state of the spinal nociceptive neurons where their

activation threshold is reduced, they produce stronger and

longer responses upon activation by noxious stimuli (a symptom

referred to as hyperalgesia), and they can be activated by

innocuous stimulations (allodynia) (Latremoliere and Woolf,

2009). Sleep loss could enhance spinal excitability bymodulating

both segmental and supraspinal controls.

Proinflammatory cytokines and PGE2 produced at the

periphery after sleep loss can penetrate the spinal cord and

promote nociceptive transmission (Baba et al., 2001; Samad

et al., 2001; Latremoliere and Woolf, 2009). In addition,

sleep loss increases sensitivity of NMDAR and mGluR in

the dorsal horns (Wei et al., 2007, 2010), and this is

associated with an increase in mechanical pain in rats.

Capsaicin (active ingredient of red-hot chili peppers that activate

TRPV1 channels) can be used to trigger central sensitization

and measure associated behavioral changes caused by spinal

plasticity. Four nights of platform over water paradigm (rats)

increased c-fos immunoreactivity in the trigeminal nucleus

upon supradural capsaicin infusion, suggesting increased spinal

neuronal excitability, or longer time to return to normal

sensitivity at the first relay of nociceptive transmission (Kim

et al., 2019). After two nights of forced awakenings (humans),

women displayed increased windup pain (but not men),

while men developed mechanical secondary hyperalgesia (but

not women) (Smith et al., 2019). These results indicate a

possible spinal amplification of nociceptive signaling with

probable sex difference. However, the lack of development of

secondary allodynia in sleep-deprived subjects suggests that

forced awakenings and moderate sleep loss do not trigger a state

of central sensitization (where innocuous stimuli activate spinal

nociceptive neurons and cause pain), but rather specifically

amplify the nociceptive/pain signal. This amplification could

involve a spinal facilitation, suggested by the increase in c-

fos spinal staining and windup pain readout (Figure 7B). The

increased pain ratings during repeated nociceptive stimulations

could also involve supraspinal changes (in brainstem, thalamus,

cortex) or an increasing discomfort or anxiety with repeated

painful stimulations.

Several lines of evidence suggest sleep loss could also

dysregulate descending controls into the spinal cord. Traditional

descending inhibitory controls are mostly recruited by the

spino-periaqueductal gray (PAG) pathway, which originates

from lamina I spinal projection neurons (Gauriau and Bernard,

2002). The PAG is critical for the analgesic effects of

morphine (Fields, 2004; Ossipov et al., 2014). Under normal

conditions, morphine binds to inhibitory PAG interneurons,

which release their brake on glutamatergic PAG neurons that

project onto the pain-inhibiting RVM neurons (“OFF-cells”).

This disinhibition of RVM “OFF cells” allows the recruitment

of inhibitory descending controls. After a single night of sleep

deprivation, there is a loss of morphine analgesic efficacity in

humans and rodents (Ukponmwan et al., 1984; Nascimento

et al., 2007; Steinmiller et al., 2010; Skinner et al., 2011;

Alexandre et al., 2017), which could be due in part to an

hyperexcitability of GABAergic PAG interneurons preventing

the recruitment of inhibitory descending pathways from the

RVM (Tomim et al., 2016).

Administration of amitriptyline, a non-selective 5-HT/NA

reuptake inhibitor (which increases levels of these monoamines

in the spinal cord), improves heat pain hypersensitivity in rats

after sleep loss (but not mechanical pain hypersensitivity), thus

supporting the hypothesis of a partial loss of noradrenergic

and serotoninergic descending controls (Wei et al., 2008;

Wodarski et al., 2015). Amitriptyline has also been shown to

be an agonist of Kv7.2/7.3 channels (Punke and Friederich,

2007), and selective activation of these channels phenocopied

amitriptyline in sleep-deprived animals (Wodarski et al.,

2015), which could suggest Kv7.2/7.3 are involved in sleep

loss-induced heat hyperalgesia. However, one caveat is that

activation of Kv7.2/7.3 channels causes analgesia in well-rested

animals (Teng et al., 2016) and are not restricted to the

RVM-spinal projections. Finally, in parallel to this possible

loss of inhibitory descending controls, sleep loss increases

RVM cholecystokininergic transmission, which promotes pro-

nociceptive descending controls (“ON-cells”; Tomim et al.,

2016).
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Overall, several studies indicate a probable change in

spinal-midbrain pathways’ excitability after sleep loss. Sleep

disturbances do not trigger a frank state of central sensitization,

but rather a relative gain in pronociceptive signaling, in part

mediated by changes in RVM spinal projections (Figure 7C).

Whether this plasticity also involves intrinsic changes within the

spinal nociceptive circuits remains unclear.

Brain: Mesolimbic system

While the spino-thalamo-cortical pathway plays a key role

for the sensory-discriminative component of pain and the

spino-parabrachial pathway generates its emotional (escape and

aversive memory) and autonomic (heart rate, pupil dilatation,

sweating) components (Gauriau and Bernard, 2002; Tracey

et al., 2019; Chiang et al., 2020), several brain areas associated

with cognitive and emotional processes can also modulate the

final pain response based on its context (e.g., attention to

pain, distraction analgesia, pain tolerance, etc.). The mesolimbic

system could play a major role in this contextualization of

the pain sensation, notably by determining the salience of the

stimulus (Knutson et al., 2001; Roitman et al., 2005; Cooper

and Knutson, 2008; Al-Hasani et al., 2015) and by modulating

the reward system during and after a pain stimulation (Lammel

et al., 2014; Navratilova et al., 2015; Yang et al., 2021). Several

lines of evidence have recently pointed to a critical role of the

mesolimbic system, notably the nucleus accumbens (NAc) on

the proalgesic effects of sleep loss on pain (Finan et al., 2013;

Sardi et al., 2018b; Alexandre et al., 2020). The NAc is subdivided

in three functionally distinct areas: the NAc core, the medial part

of the NAc shell, and the lateral part of the NAc shell (Lammel

et al., 2014), which all likely play a distinct role in the overall pain

experience. The NAc core is critical to determine the salience

of stimuli (Chen and Bruchas, 2021), the medial NAc shell is

involved in the aversive-encoding prediction of an unpleasant

stimulus (including pain) (de Jong et al., 2019); the lateral NAc

shell is a key structure for the reward system (Lammel et al.,

2014; de Jong et al., 2019). NAc activity is strongly modulated

by dopamine released from the ventral tegmental area (VTA)

via mostly segregated pathways: the medial VTA projects to

the NAc core and the medial NAc shell, while the lateral VTA

almost exclusively projects onto the lateral NAc shell (Lammel

et al., 2014). A painful stimulation causes an activation of DA

neurons located in the most ventral part of the medial VTA

(Brischoux et al., 2009; Lammel et al., 2014; de Jong et al.,

2019), presumably reinforcing aversion (de Jong et al., 2019),

while it mostly inhibits dopamine release in the lateral NAc shell

(de Jong et al., 2019), likely blocking pleasant/reward pathways

during ongoing pain. This inhibition of lateral VTA neurons

is notably mediated by GABAergic SNR neurons, which are

directly contacted by lateral parabrachial nucleus neurons (Yang

et al., 2021). At the cessation of the pain stimulation, there

is a rebound of dopamine release onto neurons of the lateral

NAc shell, a phenomenon known as “pain cessation reward”

(Navratilova et al., 2015).

Overall, these studies indicate that the dynamics of

dopamine release onto different regions of NAc are extremely

important for an adequate pain response. Functional magnetic

resonance imaging (fMRI) studies found that sleep loss

strongly alters these activation dynamics of NAc upon noxious

stimulation (Krause et al., 2019; Seminowicz et al., 2019), notably

through a defect in D2R/D3R transmission (Volkow et al., 2008,

2012). In rodents, excitotoxic lesions, local silencing of the NAc

(Sardi et al., 2018a,b) or administration of modafinil (Alexandre

et al., 2017), which enhances DAergic tone (Boutrel and Koob,

2004), normalize pain sensitivity without any analgesic activity

on their own. This dysregulation of VTA-NAc function upon

painful stimulation after sleep loss could affect how a nociceptive

stimulus is evaluated (salience), how pain (or its cessation)

is going to be anticipated, or dampen the positive sensation

associated with the termination of a painful stimulus. VTA

neurons are strongly implicated in sleep-wake behaviors and

both DAergic and GABAergic neurons of the VTA are active

during wakefulness and quiet during NREMS (Eban-Rothschild

et al., 2016). Their sustained activation during extended wake

coupled with a limited recovery during shorter sleep opportunity

could contribute to the accumulation of sleep loss-induced

hyperalgesia. In addition, an increased input from the spinal-

parabrachial pathway after sleep loss (originating from lamina I

nociceptive neurons) could in turn overactivate SNRGABAergic

neurons projecting to the lateral VTA, and thereby contribute

to the reduced DAergic transmission onto NAc neurons and

disrupt normal activation dynamics of this nucleus upon painful

stimulation (Figure 7D).

The majority of NAc neurons expressing D2R express

the excitatory adenosine A2A receptors (Valjent et al., 2009)

(A2AR). Blockade of A2AR, notably by caffeine, normalizes

pain in sleep-deprived animals (Alexandre et al., 2017; Sardi

et al., 2018a) while local administration of A2AR agonists

extends sleep loss-induced hyperalgesia in rats (Sardi et al.,

2018b). Adenosine accumulates with wakefulness, which would

contribute to the overexcitability of NAc neurons during

extended wake.

Altogether, these data suggest that sleep loss might lead to

a state of hyperexcitability of D2R/A2AR NAc neurons, which

would be caused by a combination of reduced function of

D2R (internalization, or decoupling of G-protein), but also an

accumulation of adenosine during wakefulness activating A2AR

(Gq-coupled). Restoring an inhibitory brake on these neurons

(by promoting D2R or blocking A2AR) could restore normal

pain sensitivity by maintaining the normal excitatory/inhibitory

balance required for the different subnuclei of the NAc to

function (Figure 7D). Finally, it is worth mentioning that in

humans, laser-evoked potential signal was reduced after sleep

loss, despite an increase in pain ratings (Tiede et al., 2010;
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Azevedo et al., 2011), which would suggest that the nociceptive

input might not be increased in higher brain structures,

but rather by promoting how the signal is perceived and

contextualized—two major features of the mesolimbic system.

Conclusions

Despite significant differences in sleep-wake patterns

between humans and rodents and a great heterogeneity in

protocols used to disturb sleep, the effects of sleep disturbances

on pain sensitivity are remarkably conserved across species.

In addition, in all species assessed, females developed more

pain hypersensitivity than males, and this might involve distinct

neural mechanisms. We propose that the major driver for pain

hypersensitivity is the total amount of sleep lost, while REMS

loss by itself does not seem to have a direct effect on pain.

REMS deprivation however increases the febrile response and

might contribute to impaired recovery upon injury (Sutton and

Opp, 2014; Wang et al., 2015; Vanini, 2016; Dai et al., 2022).

The dynamics of sleep loss might affect different components

of the pain response: sleep loss caused by extended wakefulness

preferentially increases pain perception, whereas interrupted

and limited sleep strongly dysregulates descending controls such

as DNIC, especially in women.

Sleep disturbances affect pain pathways at several anatomical

levels. Insufficient sleep causes a shift in the immune system

toward a proinflammatory profile. While the increase of

these proinflammatory factors (notably prostaglandins and

cytokines) at the periphery is not sufficient to trigger evoked

pain hypersensitivity, these agents might promote migraine

as well as the risk of developing abnormal pain after injury

(and inflammation). Sleep disturbances might enhance pain

transmission at the spinal level, without however causing a

state of full central sensitization (i.e., no development of

allodynia). This increased spinal excitability has a strong

sexual dimorphism, which could be caused by sex-dependent

spinal mechanisms or changes from supraspinal structures. For

example, sleep disturbances affect DNICs only in women, while

men are mostly spared. Sleep loss causes an overexcitability of

PAG neurons, which reduces morphine analgesic efficacy and

could also alter “traditional” descending controls. Finally, sleep

loss caused by an extended wake, similar to that experienced

by a large body of the general population, might preferentially

affect the mesolimbic system. This system plays a key role in

the emotional and cognitive component of the pain response.

Sleep loss-induced dysfunctions of the mesolimbic system could

increase pain by promoting the attention to pain, amplifying

catastrophizing (expectation of when a painful stimulus will

stop), and reducing distraction analgesia.

Because the deleterious effects of sleep loss on pain

sensitivity are cumulative, they likely contribute to the complex

sleep and pain profiles observed in chronic clinical settings.

Understanding how specific pain components are dysregulated

by different sleep disturbances will help decipher how they

interact over time, and the best strategies to promote sleep

features that normalize pain sensitivity.

Methodology

We searched for articles studying the effects of sleep

disturbances on pain on PubMed and Google Scholar. Key

words included “sleep deprivation”; “sleep loss”; “chronic

sleep deprivation”; “chronic sleep loss”; “chronic sleep

restriction”; “REMS deprivation”; “total sleep deprivation”;

“pain”; “nociception” and their combination. For this review,

we selected studies that measured evoked pain sensitivity in

laboratory settings (no diaries). Only experiments in healthy

subjects were used. For animal studies, we only used data

from healthy animals (in some cases, non-injured animals that

acted as controls to injury models). Determination of pain

hypersensitivity (or normal pain sensitivity) was analyzed for

all time points reported within the studies. In studies using

multiple sleep disruption protocols, we only analyzed the pain

results from the first disruption used. If studies not obtained

by the PubMed or Google Scholar searches were identified by

reading manuscripts, they were added to this study.
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