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Predicting follow-up lesions from baseline CT perfusion (CTP) datasets in

acute ischemic stroke patients is important for clinical decision making. Deep

convolutional networks (DCNs) are assumed to be the current state-of-the-

art for this task. However, many DCN classifiers have not been validated

against the methods currently used in research (random decision forests, RDF)

and clinical routine (Tmax thresholding). Specialized DCNs have even been

designed to extract complex temporal features directly from spatiotemporal

CTP data instead of using standard perfusion parameter maps. However,

the benefits of applying deep learning to source or deconvolved CTP data

compared to perfusion parameter maps have not been formally investigated

so far. In this work, a modular UNet-based DCN is proposed that separates

temporal feature extraction from tissue outcome prediction, allowing for

both model validation using perfusion parameter maps as well as end-

to-end learning from spatiotemporal CTP data. 145 retrospective datasets

comprising baseline CTP imaging, perfusion parameter maps, and follow-

up non-contrast CT with manual lesion segmentations were assembled from

acute ischemic stroke patients treated with intravenous thrombolysis alone

(IV; n = 43) or intra-arterial mechanical thrombectomy (IA; n = 102) with

or without combined IV. Using the perfusion parameter maps as input,

the proposed DCN (mean Dice: 0.287) outperformed the RDF (0.262) and

simple Tmax-thresholding (0.249). The performance of the proposed DCN

was approximately equal using features optimized from the deconvolved
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residual curves (0.286) compared to perfusion parameter maps (0.287), while

using features optimized from the source concentration-time curves (0.296)

provided the best tissue outcome predictions.

KEYWORDS

stroke, ischemic stroke, brain ischemia, deep learning, precision medicine, perfusion
CT, prediction

Introduction

Although stroke remains the third leading cause of death
and disability worldwide, its global burden of disease has
decreased dramatically over the last several years owing to
medical advancements in acute stroke management (Feigin
et al., 2021). In the context of acute ischemic stroke (AIS),
which accounts for approximately 90% of stroke cases among
high-income countries (O’ Donnell et al., 2010; Virani et al.,
2020), these advancements have primarily included: (1) the
validation and introduction of novel therapeutic devices, such
as next-generation stent retrievers (Goyal et al., 2016), and (2)
the refinement of clinical decision rules to expand the use of
these novel devices to new patient populations (Albers et al.,
2018; Desai et al., 2018). With machine learning becoming
increasingly ubiquitous in medical research (Lo Vercio et al.,
2020; MacEachern and Forkert, 2021), recent studies concerning
both aspects of AIS management have explored the benefits of
using supervised classification methods to model the evolution
of the ischemic lesion (Yedavalli et al., 2021).

Our current understanding of the progression of ischemic
stroke is largely informed by computed tomography perfusion
(CTP) and perfusion-weighted magnetic resonance imaging
(PWI). Both modalities use time-resolved imaging in
conjunction with an intravascular contrast agent to visualize
the blood flow through the brain. The temporal signal, or
concentration-time curve, measured in a voxel containing
ischemic tissue will typically show a delayed and prolonged
enhancement, giving some indication of the initial location
and severity of ischemia (Demeestere et al., 2020). For ease of
use, concentration-time curves are normally not interpreted
directly, but rather processed to extract standard temporal
features known as perfusion parameters that represent key
aspects of the patient’s cerebral hemodynamics (Demeestere
et al., 2020). Predetermined thresholds are then applied to
patients’ perfusion (and diffusion in case of MRI) parameter
maps to differentiate the irreversibly damaged “core” tissue
from the potentially salvageable “penumbral” tissue. The typical
progression of AIS is for the infarct core to expand into the
ischemic penumbra over time, with the final infarct volume
depending jointly on the duration, treatment success, and
severity of the stroke (Demeestere et al., 2020). Accordingly,

the primary aim of acute stroke therapy is to reperfuse the
penumbral tissue as immediately and completely as possible.

Large-scale clinical trials (Lansberg et al., 2012; Goyal et al.,
2016; Desai et al., 2018) and medical practitioners (Powers
et al., 2018) use patients’ core and penumbral tissue volumes to
determine whether the potential tissue salvage associated with
the use of a therapeutic device justifies the cost and potential
risks of treatment. For example, among patients who cannot
be treated within 6 h from the onset of AIS, a small infarct
core and comparatively large ischemic penumbra resulting from
a large vessel occlusion predicts that treatment with a stent
retriever device or aspiration catheter, referred to as intra-
arterial mechanical thrombectomy (IA), will lead to improved
clinical outcomes compared to treatment with intravenous tPA
(IV) alone (Powers et al., 2018). Despite the widespread use
of threshold-based core and penumbral tissue volumes for
treatment decision making, this approach has a number of
noteworthy and well-described limitations (Goyal et al., 2020).
Applying the same set of thresholds across the whole brain of all
patients fails to account for patient-specific (Eilaghi et al., 2014;
d’Esterre et al., 2015; Ernst et al., 2015; Bahouth et al., 2018;
Winder et al., 2019) and tissue-specific (Payabvash et al., 2011;
Chen et al., 2019) factors that affect the tissue’s vulnerability to
ischemia. Furthermore, it is difficult to portray the difference in
tissue salvage between several possible therapies using a single
core and penumbral segmentation.

An alternative approach is to directly predict the patient’s
voxel-wise tissue fate (i.e., infarct vs. non-infarct) given a
specific set of treatment conditions using machine learning
models, which are inherently multivariate and well-suited to
large datasets. This paradigm is commonly referred to as “tissue
outcome prediction.” To date, several classical machine learning
architectures have been evaluated for stroke tissue outcome
prediction, including generalized linear models (Kidwell et al.,
2013; Kemmling et al., 2015; Flottmann et al., 2017), nearest-
neighbor approaches (Gottrup et al., 2005), and random
decision forests (McKinley et al., 2017). Generally, comparative
studies show decision forests to lead to the best results among
classical machine learning models (McKinley et al., 2017;
Winder et al., 2019).

In the context of validating novel therapeutic devices, it
has been proposed that tissue outcome predictions could be
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used as a virtual endpoint for in silico clinical trials (Winder
et al., 2021). The ERASER clinical trial, for example, validated
a novel stent retrieval device using random forests to show a
reduced predicted infarct volume for IA treatment compared to
the true IV treatment outcome (Fiehler et al., 2019). Random
decision forests were also used to confirm the non-efficacy
of theophylline as a neuroprotective add-on to IV treatment
following mixed results in randomized clinical trials (Modrau
et al., 2021). Because in silico studies such as ERASER have been
reported to require far fewer prospectively collected datasets,
there is the potential for these tissue outcome prediction models
to accelerate the pace and reduce the cost of developing novel
devices and treatment approaches for AIS patients.

In the context of refining the patient selection criteria for
advanced stroke therapies, such as IA, it has been proposed
that machine learning models could improve patient outcomes
by helping clinicians to make highly individualized treatment
recommendations. To date, the primary focus of tissue outcome
prediction studies has been to establish a “state-of-the-art”
machine learning model considering both the available classical
models (Gottrup et al., 2005; Kidwell et al., 2013; Kemmling
et al., 2015; Flottmann et al., 2017; McKinley et al., 2017)
and more novel “deep learning” models (Nielsen et al., 2018;
Winzeck et al., 2018; Ho et al., 2019; Robben et al., 2020;
Yu et al., 2020; Amador et al., 2022). One major hurdle in
establishing a state-of-the-art deep learning method has been
that machine learning methods are highly data-dependent. As
a result, common performance metrics such as Dice and volume
error are not usually directly comparable between studies. The
ischemic lesion segmentation (ISLES) 2017 challenge (Winzeck
et al., 2018) attempted to address this issue by comparing
multiple tissue outcome prediction models using the same
CTP image data. However, all of the models submitted to
the challenge used deep learning architectures, making it
impossible to determine whether the top-performing models
truly achieve state-of-the-art performance compared to leading
classical machine learning models. Moreover, the number of
datasets provided by the challenge was still rather small for
deep learning applications. Most recent deep learning studies
have primarily used simple linear models (Robben et al., 2020;
Yu et al., 2020) and single-parameter thresholding (Yu et al.,
2020) for comparison, both of which are routinely outperformed
by random decision forests (McKinley et al., 2017; Benzakoun
et al., 2021). Therefore, the potential for deep learning methods
to improve the management of AIS remains to be properly
evaluated using appropriate comparison methods.

Compared to classical machine learning, deep learning
is unique in that it does not only perform tissue outcome
prediction, but can also optimize the feature extraction needed
for this task. Since the calculation of perfusion parameter maps
can be seen as a form of handcrafted feature extraction, a few
studies have proposed to apply deep learning models directly
to the concentration-time curves of patients’ MR perfusion

(Ho et al., 2019) or CT perfusion (Robben et al., 2020;
Amador et al., 2022) datasets instead of the typical perfusion
parameter maps. Although the classical perfusion parameters
(CBF, CBV, MTT, Tmax) represent meaningful hemodynamic
properties to clinicians, whether or not they are the ideal
features for tissue outcome prediction and contain all valuable
information captured in time-resolved perfusion scans has not
been well-studied to date. From this perspective, allowing deep
learning models to optimize their own temporal features in
a fully data-driven manner may enable them to make better
tissue outcome predictions. Furthermore, learning directly from
source perfusion data can eliminate the need to perform
complex perfusion image processing, including deconvolution
with an arterial input function (AIF). In theory, deconvolution
is a necessary step that corrects the concentration-time curves
for confounding factors such as the rate and amount of contrast
injection and the patient’s unique cardiac output function
(Fieselmann et al., 2011). In practice, however, deconvolution
is not as straightforward as it sounds, as it is highly dependent
on the selection of the arterial input function (AIF) and more
generally is an ill-posed problem that requires considerable
regularization. This is likely the reason why it has been
suggested that deep learning models using source CTP data
may outperform those using deconvolved data (Robben et al.,
2020; Amador et al., 2022). As of yet, the predictive value
of conventional perfusion parameters and temporal features
optimized using deep convolutional networks (with and without
deconvolution) has not been formally compared for the task
of lesion outcome prediction. Understanding how to use
perfusion data optimally for deep learning remains an important
consideration for developing state-of-the-art tissue outcome
prediction models and, ultimately, improving the management
of AIS.

Therefore, the aims of this study were to: (1) validate that
deep learning provides the best results for predicting tissue
outcomes from the acute CT perfusion images of ischemic
stroke patients compared to classical machine learning models,
and (2) compare tissue outcome predictions using perfusion
parameter maps and raw perfusion data before and after
deconvolution with an arterial input function.

Materials and methods

Patient data and image acquisition

Data was retrospectively collected from 145 acute ischemic
stroke patients recruited for the ERASER thrombectomy study
(Fiehler et al., 2019) or otherwise treated at the University
Medical Center Hamburg-Eppendorf, Germany, from 2015 to
2019. The inclusion criteria were: (1) unilateral ischemic stroke
due to anterior large vessel occlusion with a known time of
symptom onset; (2) baseline CTP imaging acquired within
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12 h of stroke symptom onset; (3) follow-up non-contrast CT
(NCCT) imaging acquired within 72 h of symptom onset; (4)
treatment within 24 h of symptom onset comprising either
intravenous thrombolysis alone (IV; n = 43) or intra-arterial
mechanical thrombectomy (IA; n = 102) with or without
combined IV; and (5) absence of hemorrhage and prior stroke.
Baseline and follow-up imaging were collected with voxel sizes
of 0.45 × 0.45 × 5 mm and, for the baseline CTP, a temporal
resolution of 1.6–1.8 s. Patient characteristics are presented in
Table 1.

Image processing

Admission computed tomography perfusion
analysis

Patients’ acute CTP imaging was processed using the
AnToNIa software (Forkert et al., 2014). First, the temporal
mean intensity projection of the first three timepoints
was computed, which we refer to as the baseline average
image. Second, patient motion was corrected using 3D rigid
registrations minimizing the mean squared difference between
each timepoint of the CTP data and the baseline average image.
Third, a baseline signal correction was performed by subtracting
the baseline average image from each timepoint. Finally, the
temporal resolution of the data was interpolated to one second
and smoothed using a B-spline approximation. The data at this
point in processing is referred to as the concentration-time
curves (CTC) in the following.

The CTCs were deconvolved with an automatically
computed arterial input function (Winder et al., 2020) using
block-circulant singular value decomposition and a truncation
threshold of 15% (Kjølby et al., 2006). The resulting residual
curves (RC) were analyzed to generate perfusion parameter
maps of cerebral blood flow (CBF), cerebral blood volume
(CBV), mean transit time (MTT), and time-to-maximum
(Tmax) using standard equations detailed in a previous work
(Forkert et al., 2014). Additionally, a brain tissue mask was
generated from the baseline average image by applying the
following automatic segmentation pipeline: Gaussian blurring,
binary thresholding in the range (1, 100) HU, erosion by a
5 × 5 × 1 kernel, connected component analysis keeping
only the largest connected component, and then dilation by a
5 × 5 × 1 kernel. This mask was further refined into separate
left- and right- hemisphere masks using a published method to
define the hemispheric fissure (Forkert et al., 2014).

Follow-up non-contrast computed
tomography analysis and registration

The tissue infarct on each follow-up NCCT scan was
segmented using a semi-automatic region growing approach
with the AnToNIa (Forkert et al., 2014) and ITK-SNAP
(Yushkevich et al., 2006) software tools. This task was performed

by a domain expert with more than a decade of experience
in stroke image analysis. The follow-up infarct segmentation
was aligned to the processed CTP imaging using a rigid
transformation, which was computed by registering the NCCT
image to the baseline average image using the SimpleITK (Beare
et al., 2018) and ANTs (Avants et al., 2011) software packages.
Finally, to correct for changes in CSF distribution due to
swelling, the follow-up infarct segmentation was masked with
the acute brain tissue mask.

Data preparation for machine learning
Each of the datasets used for model training and evaluation

[concentration-time curves (CTC), deconvolved residual
curves (RC), deconvolution-based perfusion parameters, and
the ground-truth lesion] were masked using the ipsilateral
hemisphere mask and then resampled to an in-slice spatial
resolution of 0.45 × 0.45 mm2. To accommodate model
operations requiring a fixed input shape, the resulting single-
hemisphere images were padded to an in-slice size of 480 × 320
pixels and, for CTC and RC data, cropped to a 32-timepoint
region of interest. For the CTC data, the temporal region of
interest was calculated on a per-patient basis as follows: First,
the contrast arrival time was estimated by selecting the first
timepoint at which the mean enhancement (of all voxels within
the brain tissue mask) was greater than 115% of the baseline
image enhancement. Next, the temporal region of interest was
centered on the timepoint with the maximum mean image
intensity within the 40 s following contrast arrival. The RC, for
which there was no global delay associated with the arrival of
the contrast bolus (due to the correction with the arterial input
function), were simply cropped to the first 32 timepoints. In all
cases where the temporal region of interest extended beyond
the beginning or end of the image, each curve was padded to the
necessary length using the mean of the first three or last three
existing timepoints, respectively.

For model training, each feature was independently re-
centered and re-scaled to have a mean value of zero and a
standard deviation of one, computed across the entire training
data (including all timepoints for spatiotemporal features) for
that model. For model testing, features were re-centered and
rescaled using the same parameters that were applied to the
model’s training data.

Tissue outcome prediction methods

Multiple tissue outcome prediction methods were
implemented and evaluated in this study. Although each
method was unique with respect to its implementation details,
which are described in the following subsections, all of the
methods were evaluated according to a common process:
model training, model testing, binarization, and statistical
evaluation. The purpose of training was to optimize a model’s
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TABLE 1 Patient characteristics.

All patients IA patients IV patients p (IA vs. IV)

N, number of patients 145 102 (70%) 43 (30%) –

Mean age (SD), years 71.18 (12.14) 70.61 (12.41) 72.53 (11.50) 0.385

Median NIHSS (IQR) 16 (6) 16 (6) 17 (6) 0.425

Sex, % female 43.45 49.02 30.23 0.037*

Median symptom onset to imaging (IQR), minutes 172 (146) 172 (140) 118 (162) 0.081

Mean ground truth lesion volume (SD), ml 74.59 (100.7) 55.64 (74.37) 117.5 (134.9) 0.005*

Successful reperfusion (TICI ≥ 2B) – 78% – –

Complete reperfusion (TICI = 3) – 26% – –

IA indicates treatment with intra-arterial mechanical thrombectomy with or without thrombolysis, while IV indicates treatment with thrombolysis only.
*Indicates statistical significance at alpha ≤ 0.05.

internal weights such that, given acute perfusion data for one
or more voxels, the model would assign each voxel a value in
the continuous range [0, 1] corresponding as closely as possible
to the voxel’s known tissue outcome of either infarct (1) or
non-infarct (0). During testing, patient datasets not used during
training were analyzed in their entirety by the trained model
to generate a 3D map of probabilistic tissue outcomes for each
patient. In the binarization step, each of these probabilistic
3D maps was thresholded to create a binary (infarct/non-
infarct) lesion segmentation that could be compared directly
to the ground-truth lesion segmentation in the final statistical
evaluation step. For Tmax thresholding, which is not a machine
learning method and has no associated model, patients’ Tmax
maps were used in lieu of the maps typically produced by
model testing and threshold optimization was performed as
described below.

The different tissue outcome prediction models were
separately applied and evaluated using only the patients treated
with intra-arterial mechanical thrombectomy (IA), and then
using only the patients treated with intravenous thrombolysis
(IV). This approach guarantees functionally independent
predictive models for different treatment approaches, which is
important for many potential applications of tissue outcome
prediction such as treatment efficacy analysis (Fiehler et al.,
2019; Winder et al., 2021). The deep learning models are also
visualized in Figure 1.

Optimal time-to-maximum thresholding
The first approach evaluated in this work was a simple Tmax

thresholding that was meant to serve as a clinically easy-to-
implement baseline comparison method. More precisely, voxels
were predicted as infarct only if their Tmax exceeded a given
threshold value. To determine which threshold value produces
the most accurate segmentations of the ground-truth infarct,
120 different threshold values ranging from 0 to 24 s at an
interval of 0.2 s were used to binarize every patient’s Tmax map.
To avoid using knowledge of a patient’s ground truth infarct to
optimize the binary thresholding of their own Tmax map, we
employed a leave-one-out approach. In essence, for each patient,

the mean Dice similarity metric comparing the binarized Tmax
segmentation to the ground-truth infarct was computed over
all other patients from the same treatment group at each of
the 120 threshold values. The threshold value that maximized
the leave-one-out Dice value for each patient was then used to
binarize the patient-individual Tmax map, producing the final
tissue outcome prediction.

Random decision forest
A random forest classifier representing a classical machine

learning approach served as a secondary comparison method.
The classifier was implemented using the random decision forest
(RDF) regressor distributed in the alglib1 software package. Each
forest comprised 100 trees and the single hyperparameter r
(the proportion of the total training instances used to fit an
individual tree) was set to 0.5.

The input to the RDF consisted of the four perfusion
parameters (CBF, CBV, MTT, and Tmax) associated with each
individual voxel sampled from within the ipsilateral hemisphere
mask. To balance the class labels in the training data, we
selected voxels for training on a per-patient basis using stratified
random undersampling, whereby all voxels from the minority
class (typically infarct) were sampled alongside an equal number
of randomly selected voxels from the majority class (typically
non-infarct). The importance of this step is more thoroughly
described in a previous publication (Winder et al., 2019).
Previous studies also suggest that, because the RDF does not
consider a voxel’s spatial context, the resulting binary infarct
segmentations are prone to noise and typically benefit from
additional filtering steps (Winder et al., 2019). Accordingly,
we applied in-slice morphological closing using a 3 × 3
voxel kernel followed by a connected component analysis to
remove any components consisting of less than 10 voxels before
continuing with any other processing. To justify including
this additional filtering step only for the RDF model, we
also compared each model with and without noise-reduction

1 https://www.alglib.net
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FIGURE 1

Network diagram of the four deep learning classifiers used in this study. Each colored pathway illustrates the flow of information for a different
model. Abbreviations and acronyms are as follows: CTP, computed tomography perfusion imaging; CBF, cerebral blood flow; CBV, cerebral
blood volume; MTT, mean transit time; Tmax, time to maximum of the residual curve; conv, convolution.
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filtering as reported in Section “Applying filters for noise
reduction” below.

UNet with perfusion parameters (Param-UNet)
As a deep learning alternative to the random forest model,

we constructed a 2D UNet (Ronneberger et al., 2015) with minor
modifications (see Figure 1). The input to the model consisted
of the four perfusion parameter maps (CBF, CBV, MTT, and
Tmax) representing a single image slice. The intermediate
layers were implemented according to the original publication
(Ronneberger et al., 2015) with the following exceptions: at
each convolutional layer, zero-padded convolutions were used
to maintain a consistent image size and a weak L2 kernel
regularizer (having a factor of 0.5e-4) was used to discourage
overfitting. The terminal layer, a 1 × 1 convolution with softmax
activation, structured the output of the model as a map of
probabilistic voxel-wise tissue outcomes with dimensions equal
to the input image slice.

Model weights were trained using the Adam optimizer
(α = 0.0005; β1 = 0.975; β2 = 0.999; ε = 0.08) (Kingma and Ba,
2017) and the soft Dice loss function. Specifically for training,
image slices that did not have any infarct voxels in their
corresponding ground-truth lesion segmentation were omitted,
as the Dice loss function is not mathematically defined in this
case. In the following, we refer to models using this architecture
as Param-UNet.

UNet with residual curves (RC-Simple,
RC-Causal)

To investigate whether the perfusion parameters typically
computed and used in the clinical routine contain all predictive
temporal information that is measured by CTP datasets for
machine learning, we implemented additional models that are
able to learn temporal features directly from the deconvolved
residual curves (RC). Compared to the Param-UNet model,
these models replaced the input layer corresponding to the
perfusion parameter maps with a temporal processing block
(Figure 1) that acted as a trainable feature extractor over the RC
data. Otherwise, the models were identical.

Within the temporal processing block, each voxel’s RC was
independently processed using one of the two 1D convolutional
architectures evaluated in this work. Both architectures reduced
each RC, originally having 32 timepoints, to a set of eight
temporal features (a feature vector). Spatial maps of resulting
feature vectors (analogous in structure to the typical perfusion
parameter maps CBF, CBV, MTT, and Tmax) were then
provided as input features to the UNet. The temporal processing
blocks were trained in tandem with the UNet, each having
a single set of weights optimized over all RCs present in the
model’s training data.

The first convolutional architecture used for the temporal
processing block was inspired by the structure of the UNet.
It contains three pairs of 1D convolutional layers with a

max pooling layer using a factor of two between each pair.
Each convolutional layer was configured to use un-padded
convolutions with a kernel width of 3 and ReLu activation.
The number of filters for each pair of convolutional layers
is 32, 16, and 8, respectively, which results in the output of
the final convolutional layer generating eight temporal features
(Figure 1). In the following, we refer to models using this
architecture as RC-Simple.

Although UNet-inspired architectures are well-validated
and widely used for computer vision problems, they are
generally used to interpret spatial rather than temporal data.
There is evidence that data representing temporal sequences
may be better analyzed using more specialized architectures
such as dilated causal convolutions (van den Oord et al., 2016),
especially for feature extraction within a larger spatiotemporal
model (Castro et al., 2021). Thus, the second convolutional
architecture used for the temporal processing block was a
sequence of five 1D causal convolutional layers. These layers
were configured with 8 filters, a kernel width of 2, ReLu
activation, and dilation rates corresponding to increasing
powers of 2 with network depth (1, 2, 4, 8, and 16). For
1D sequences, causal convolution is functionally equivalent to
normal convolution except that the output is shifted so that
each of its elements depends only on inputs corresponding to
earlier timepoints. Because of this property, only the last element
in the output of the fifth causal convolutional layer combines
information from all 32 timepoints of the input RC. This last
element, a vector of eight features computed from the entire RC,
was therefore isolated as the output of the temporal processing
block (Figure 1). In the following, we refer to models using this
architecture as RC-Causal.

UNet with concentration time curves
(CTC-Causal)

In theory, RCs should be better suited for tissue outcome
prediction because unwanted signal caused by inter-patient
differences related to the contrast injection protocol and cardiac
output function is removed by deconvolution with the arterial
input function (AIF) (Fieselmann et al., 2011). However,
as previously mentioned, deconvolution itself is an ill-posed
problem and can be highly dependent on the AIF definition.
To investigate the reported effects of deconvolution, we trained
models identical in structure and function to the RC-Causal
model, only using the cropped and centered CTCs instead of
the deconvolved RCs as input. We will refer to these models as
CTC-Causal in the following.

Model evaluation

Within each treatment group, a patient-level fivefold cross-
validation scheme was used to allow for the prediction of every
patient’s follow-up infarct segmentation while still maintaining
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independent training and testing sets. The folds for this cross-
validation approach were assigned once and applied consistently
across every tissue outcome prediction method to allow for a fair
comparison of the results. For training the deep learning models
(Param-UNet, RC-Simple, RC-Causal, and CTC-Causal), a
validation set was constructed by sampling patients from the
training set, resulting in a final data allocation of 68% for
training, 12% for validation, and 20% for testing. To prevent
overfitting, training was terminated after the validation loss
failed to improve for eight consecutive epochs. At this point,
the model weights corresponding to the epoch with the lowest
validation loss were restored.

For the RDF and each of the deep-learning based methods,
the optimal threshold for binarizing the tissue outcome
prediction maps may differ by model (i.e., 0.5 may not be the
best threshold in all cases) (Guo et al., 2017). To determine the
optimal threshold, each of a model’s tissue outcome predictions
was binarized at thresholds ranging from 0 to 1 using intervals
of 0.01 and compared to the corresponding ground-truth tissue
infarct using the Dice metric. The optimal threshold was then
calculated using the same leave-one-out optimization method
described for Tmax thresholding in Section “Optimal time-to-
maximum thresholding.”

For all of the implemented tissue outcome prediction
methods, the Dice value comparing each predicted lesion
segmentation (binarized at its optimal threshold) to its
corresponding ground-truth infarct was recorded as a measure
of the model’s performance. Additionally, we computed the area
under the receiver operating characteristic curve (ROC-AUC)
as a threshold-independent performance metric and the volume
error of the binarized prediction as a metric of particular interest
to clinicians. For each method, each patient’s empirical ROC
curve was constructed using the voxel-wise false positive rate
and mean true positive rate computed between the ground-truth
and predicted lesions binarized about a series of 100 threshold
values. The final ROC curve for each method was computed as
the average of the corresponding individual patient curves.

Statistical analysis

All statistical tests were performed in IBM SPSS 25 using an
alpha of 0.05 to define significant results. Patient characteristics
were compared between the IA and IV patient groups using
an independent samples t-test, Mann–Whitney U test, or chi-
squared test, as appropriate.

For each tissue outcome prediction method, the Dice values
obtained with and without applying the noise-reduction filtering
described in Section “Random decision forest” were compared
using a paired t-test and the Sidak correction to maintain a
family-wise error rate of 0.05.

The tissue outcome prediction methods were statistically
compared using the Dice values, ROC-AUC, volume errors,

and absolute volume errors of their predictions (pooled
between the IA and IV patient groups) using repeated-measures
ANOVAs. For each outcome measure, Mauchly’s sphericity
test was performed and, if significant, the Greenhouse-Geisser
correction was applied to the corresponding ANOVA. In the
event of a significant ANOVA, post-hoc pairwise comparisons
using the Sidak correction were also performed.

For each deep learning method capable of learning
temporal features (RC-Simple, RC-Causal, CTC-Causal), maps
of the eight convolutionally optimized temporal features were
correlated to each of the four perfusion parameter maps
using Spearman’s rank correlation coefficient. Spearman’s rho
values reported in this study were computed from the pooled
foreground voxels of all testing datasets (from both the IA and
IV treatment groups).

Results

Patient characteristics

Descriptive statistics for the patient sample used in this
work, both pooled and by patient group, are shown in Table 1.
The prevalence of female patients was significantly greater in the
IA patient group (49%) compared to the IV patient group (30%;
p = 0.037). However, no significant differences were identified
between the groups with respect to age, NIHSS at admission, or
symptom onset to imaging times. The optimal Tmax threshold
for both patient groups was independently determined to be
7.2 s.

Applying filters for noise reduction

The mean Dice values for each model with and without
the noise-reduction operations described in Section “Random
decision forest” are displayed in Table 2. Noise-reduction
significantly improved the Dice values observed from the
RDF method [95% Confidence Interval of the difference
(CID) = 0.022–0.037; p < 0.001]. For the other methods,
however, the effect of this was either insignificant (Tmax
thresholding: p = 0.861; CTC-Causal: p = 0.301) or of negligible
effect size (Param U-Net: CID = −0.002 to −0.005, p < 0.001;
RC-Simple: CID = 0.000 to 0.002, p < 0.001; RC-Causal:
CID = 0.000 to 0.002, p = 0.034). Accordingly, the following
statistics are reported for the RDF with noise reduction and all
other models without.

Comparing tissue outcome prediction
methods

Mean values for the Dice, ROC-AUC, and infarct volume
errors for each tissue outcome prediction method are presented
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TABLE 2 Mean Dice value for each tissue outcome prediction method with and without applying additional filtering operations to each tissue
outcome prediction for the purpose of noise reduction.

Tmax thresholding Random decision forest Param-UNet RC-Simple RC-Causal CTC-Causal

Noise-removal post-processing 0.248 (0.217) 0.262 (0.213) 0.284 (0.229) 0.277 (0.228) 0.286 (0.229) 0.297 (0.235)

No noise-removal post-processing 0.249 (0.214) 0.233 (0.199) 0.287 (0.229) 0.276 (0.228) 0.286 (0.228) 0.296 (0.234)

Bold cells indicate the models chosen to represent each architecture in subsequent analyses.
Abbreviated model names correspond to: Tmax thresholding, random decision forests (RDF), deep learning from perfusion parameter maps (Param-UNet), deep learning from
deconvolved residual curves with convolutional (RC-Simple) or causal convolutional (RC-Causal) feature extraction, and deep learning from source concentration-time curves
(CTC-Causal).

TABLE 3 Mean values and (standard deviations) for the Dice values, area under the ROC curve (AUC), volume errors, and absolute volume errors of
each tissue outcome prediction method.

Total IA patients IV patients

Dice Tmax thresholding 0.249 (0.214) 0.217 (0.204) 0.324 (0.220)

Random decision forest 0.262 (0.213) 0.206 (0.188) 0.300 (0.211)

Param-UNet 0.287 (0.229) 0.252 (0.217) 0.369 (0.240)

RC-Simple 0.276 (0.232) 0.259 (0.220) 0.314 (0.244)

RC-Causal 0.286 (0.228) 0.260 (0.219) 0.346 (0.240)

CTC-Causal 0.296 (0.234) 0.264 (0.211) 0.384 (0.264)

ROC-AUC Tmax thresholding 0.693 (0.320) 0.690 (0.301) 0.698 (0.362)

Random decision forest 0.740 (0.125) 0.741 (0.120) 0.737 (0.140)

Param-UNet 0.773 (0.146) 0.781 (0.147) 0.768 (0.144)

RC-Simple 0.764 (0.184) 0.770 (0.186) 0.767 (0.182)

RC-Causal 0.768 (0.153) 0.783 (0.147) 0.747 (0.167)

CTC-Causal 0.791 (0.142) 0.786 (0.133) 0.802 (0.159)

Volume error (ml) Tmax thresholding 83.8 (95.1) 93.2 (85.1) 61.42 (113.54)

Random decision forest 48.2 (98.5) 48.8 (83.5) 46.5 (128.5)

Param-UNet 53.6 (100.0) 53.8 (88.1) 53.1 (124.9)

RC-Simple 66.4 (141.8) 48.1 (82.1) 109.9 (223.5)

RC-Causal 58.8 (122.4) 36.5 (85.5) 111.8 (172.4)

CTC-Causal 48.5 (93.6) 50.1 (89.0) 44.7 (104.8)

Abs. volume error (ml) Tmax thresholding 107.8 (66.4) 108.6 (64.1) 106.0 (72.4)

Random decision forest 86.6 (66.9) 76.4 (59.0) 110.9 (78.4)

Param-UNet 89.1 (70.1) 81.2 (63.6) 107.8 (81.3)

RC-Simple 106.3 (114.7) 72.4 (61.5) 186.8 (163.1)

RC-Causal 97.1 (94.8) 68.4 (62.7) 165.2 (120.8)

CTC-Causal 77.4 (71.5) 76.7 (67.1) 78.8 (81.7)

IA indicates treatment with intra-arterial mechanical thrombectomy with or without thrombolysis, while IV indicates treatment with thrombolysis only.
The values corresponding to the best model performance for each performance metric are shown in bold.
Abbreviated model names correspond to: Tmax thresholding, random decision forests (RDF), deep learning from perfusion parameter maps (Param-UNet), deep learning from
deconvolved residual curves with convolutional (RC-Simple) or causal convolutional (RC-Causal) feature extraction, and deep learning from source concentration-time curves
(CTC-Causal).

in Table 3. The methods differed significantly with respect
to the Dice values of their predictions (p < 0.001) with all
deep learning models outperforming Tmax thresholding (RC-
Simple: p = 0.034; RC-Causal, CTC-Causal, and Param-UNet:
p < 0.001). The top-performing deep learning models, Param-
UNet and CTC-Causal, also outperformed the random decision
forest (p < 0.001 and p = 0.022, respectively). The CTC-Causal
model led to the best mean Dice (0.296) but this difference
was not statistically significant compared to other deep learning
models. The binarized lesion predictions generated by each

tissue outcome prediction method, for a patient from each
treatment group, are shown in Figure 2. Notable qualitative
observations include the greater spatial coherence of the deep
learning methods compared to Tmax thresholding and the RDF,
as well as an apparently greater specificity for the CTC-Causal
model compared to the RC-Causal model.

The methods also differed significantly with respect to the
ROC-AUC values (p < 0.001). Similar to the trend observed for
the Dice values, Tmax thresholding produced significantly lower
ROC-AUC values compared to the RDF (p < 0.001), which
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FIGURE 2

Follow-up non-contrast CT imaging with superimposed ground-truth lesion segmentation (red) and tissue outcome prediction (blue). An AIS
patient treated with intraarterial mechanical thrombectomy (IA) is shown in the top row while another treated with intravenous tPA (IV) is shown
in the bottom row. A different tissue outcome prediction method is shown in each column. For both patients, the individual slice with the
greatest cross-sectional ground truth area is shown. Dice values for each (3D) tissue outcome prediction are, clockwise from the top-left, 0.45,
0.40, 0.54, 0.20, 0.48, 0.75, 0.73, 0.56, 0.70, 0.60, 0.24, and 0.53. Abbreviated model names correspond to: Tmax thresholding, random decision
forests (RDF), deep learning from perfusion parameter maps (Param-UNet), deep learning from deconvolved residual curves with convolutional
(RC-Simple) or causal convolutional (RC-Causal) feature extraction, and deep learning from source concentration-time curves (CTC-Causal).

in turn produced lower ROC-AUC values compared to any of
the deep learning models (p < 0.001 in all cases). However,
there were no significant differences between the deep learning
models in this respect. The ROC curves for each tissue outcome
prediction method are shown in Figure 3.

Finally, the volume error and absolute volume error also
differed significantly between models (p < 0.001 in both cases).
Although all tissue outcome prediction methods tended to
overestimate the follow-up infarct volume based on the mean
volume error, Tmax thresholding overestimated the infarct
volumes by the greatest margin (pairwise comparisons to RC-
Simple: p = 0.712; RC-Causal: p = 0.016; RDF, Param-UNet,
and CTC-Causal: p < 0.001). Tmax thresholding also produced
the greatest mean absolute volume error, which was statistically
significant in comparison to the RDF, Param-UNet, and CTC-
Causal models (p < 0.001). The CTC-Causal model produced
small mean absolute volume errors compared to the RC-Simple
model, but once again did not reach statistical significance
(p = 0.057). Bland–Altman plots of the predicted lesion volumes
for each model are shown in Figure 4.

For the deep learning models that derived their own
temporal features (RC-Simple, RC-Causal, and CTC-Causal),
the correlations between their unique feature maps and each of
the four conventional perfusion parameter maps (CBF, MBV,
MTT, Tmax) are shown in the Supplementary Figure 1. All
correlations shown are statistically significant with p < 0.001.
The feature maps for the CTC-Causal model are visualized in

Supplementary Figure 2 for the same two patients previously
shown in Figure 2. Notably, models that utilize residual curve
data (RC-Simple, RC-Causal) derive several features directly
correlated to CBF/CBV and inversely correlated to MTT/Tmax
(or vice-versa), which corresponds with the known profile
of cerebral infarction (Demeestere et al., 2020). While many
features learned directly from CTC bear a visual resemblance
to conventional perfusion parameters, they show noticeably
weaker correlations compared to features derived from residual
curves, which suggests a unique organization of the relevant
temporal information.

Discussion

The main finding of this work was that the deep learning
model that automatically derived temporal features directly
from the concentration-time curves of patients’ acute CTP
imaging (CTC-Causal) produced the best Dice values and
absolute volume errors. Considering all metrics, the machine
learning models using the raw concentration-time curves
for tissue outcome prediction trended toward better results
compared to using deconvolved CTP datasets (RC-Causal
and RC-Simple) despite not reaching statistical significance.
Additionally, tissue outcome predictions computed using
deconvolution-based perfusion parameter maps (Param-UNet)
were not significantly better than any made from learned
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FIGURE 3

Receiver operating characteristic (ROC) curves for each of the tissue outcome prediction methods. Abbreviated model names correspond to:
Tmax thresholding, random decision forests (RDF), deep learning from perfusion parameter maps (Param-UNet), deep learning from
deconvolved residual curves with convolutional (RC-Simple) or causal convolutional (RC-Causal) feature extraction, and deep learning from
source concentration-time curves (CTC-Causal).

temporal features. All deep learning methods outperformed
the random decision forest, which in turn outperformed
simple Tmax thresholding, by measure of the methods’ ROC-
AUC values.

Performance of deep learning

Although several deep learning methods for stroke tissue
outcome prediction have already been published (Nielsen et al.,
2018; Winzeck et al., 2018; Ho et al., 2019; Robben et al.,
2020; Yu et al., 2020; Amador et al., 2022), this is among
the first to demonstrate their state-of-the-art performance
compared to the leading methods currently employed in
both research (decision forests) and clinical practice (Tmax
thresholding). Our observation that the CTC-Causal and
Param-UNet deep learning models both produced better Dice
and ROC-AUC values than either of the previously mentioned
comparison methods indicates that deep learning may indeed
play an important role in the future management of AIS by
enabling researchers and clinicians to make more accurate
tissue outcome predictions. Furthermore, the approximately

equivalent performance of the CTC-Causal and Param-UNet
models suggests that deep learning could also be used to
improve the speed and objectivity of tissue outcome prediction
by eliminating the need for AIF selection and deconvolution.
The advantages of deep learning are not as immediately
obvious from the observed volume errors, which must be
interpreted with the understanding that the predicted lesion
volume does not consider the location of the predicted lesion.
In the most extreme case, a model could predict the correct
number of infarct voxels entirely outside the ground-truth lesion
segmentation, producing both a Dice value and a volume error
of zero. As a result, the clinical utility of a method must be
interpreted considering both the volume error and Dice or
ROC-AUC in conjunction. Although the RDF trended toward
the lowest volume errors, its relatively worse performance
compared to deep learning for all other metrics suggests that
deep learning is overall more performant.

Comparing the predictive accuracy of the tissue outcome
prediction methods in this study to previously published
studies is complicated by a number of factors. Specifically,
the performance of a model depends not only on its
architecture, but also on the data used for training and
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FIGURE 4

Bland–Altman plots for the predicted infarct volumes of each tissue outcome prediction method. Dark markers and lines represent patients
treated with intravenous tPA (IV) alone, while light markers and lines represent patients treated with intra-arterial mechanical thrombectomy (IA)
with or without combined IV. Abbreviated model names correspond to: Tmax thresholding, random decision forests (RDF), deep learning from
perfusion parameter maps (Param-UNet), deep learning from deconvolved residual curves with convolutional (RC-Simple) or causal
convolutional (RC-Causal) feature extraction, and deep learning from source concentration-time curves (CTC-Causal).

testing as well as the performance metric being evaluated.
In the context of the Dice metric, for example, it is much
easier to obtain a high Dice value from large ground
truth lesions compared to small lesions. This may partially
explain the observed trend, albeit not statistically significant,
toward better Dice values for the IV cohort compared to
the IA cohort. Additionally, lower performance metrics are
expected for datasets with greater unexplained variance.
Possible sources of unexplained variance in the current
study include differences in image acquisition hardware
and protocol between medical centers, the time elapsed
between acute and follow-up imaging, patients’ acute infarct
volume and collateral status, and the time and rate of
successful or complete reperfusion following treatment.
Without controlling for such factors, the performance
metrics published in different tissue outcome prediction
studies are not directly comparable. The free and easily
accessible RDF implementation distributed with the alglib
software library could act as a common point of comparison
between tissue outcome prediction studies, providing some
insight into the difficulty of the stroke tissue outcome
prediction problem based on the datasets used. Therefore,
although many previous deep learning studies do report
better performance metrics compared to the current
study, we are confident that this disparity is not due to

serious errors or flaws in the design of the proposed deep
learning methods since the Param-UNet and CTC-Causal
models significantly outperformed the RDF according to
every performance metric when the training and testing
data was controlled.

Effects of deconvolution and auxiliary
inputs

Considering the widely acknowledged importance of
deconvolution in clinical perfusion image analysis (Fieselmann
et al., 2011), it is somewhat counterintuitive that the highest
Dice values observed in this study were produced by the CTC-
Causal model. To date, few other studies have attempted to
predict stroke tissue outcomes using features extracted directly
from a patient’s non-deconvolved concentration-time curves
(CTC). However, the findings of these studies generally agree
with the current results. For example, Ho et al. (2019) proposed
a deep convolutional neural network for stroke outcome
prediction using CTCs from MR perfusion imaging. Although
Ho et al. (2019) used regression and instance-based methods
for comparison while the current study used random decision
forests, both studies found that the CTC-based deep learning
model produced significantly higher ROC-AUC values than
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their respective comparison methods trained using perfusion
parameter maps. From their experiment, Ho et al. (2019)
concluded that deep learning models that use CTC data benefit
from both the ability to perform a deconvolution-free analysis
and the ability to learn temporal features much greater in
complexity than traditional perfusion parameters. However, Ho
et al. (2019) did not train equivalent deep learning models using
residual curves (RCs) or deconvolved perfusion parameters to
fully justify these claims. Although the current study’s CTC-
Causal model produced greater Dice values than the RC-Causal
model, which supports the notion that there is a benefit to
deconvolution-free analysis, the relatively similar performance
of the Param-UNet, RC-Causal, and RC-Simple models suggests
that a more complex analysis of the RCs does not necessarily lead
to temporal features that are more predictive than the perfusion
parameter maps.

In a CT perfusion study, Robben et al. (2020) specifically
compared CTCs and deconvolved RCs as the input to a 3D
deep convolutional neural network for predicting stroke tissue
outcomes. Robben et al. (2020) found that their model produced
significantly greater Dice values using the CTCs as compared
to the RCs. However, rather than considering their CTC-
based model a form of deconvolution-free analysis, Robben
et al. (2020) included the arterial input function (AIF) as an
input feature and hypothesized that their model was able to
perform an implicit deconvolution of the CTC data (although
this was never fully evaluated). Because the differences between
the CTC-Causal and RC-Causal models of the current study
did not reach statistical significance, the results of Robben
et al. (2020) raise the question of whether CTC-based deep
learning methods require knowledge of the AIF, or some other
means of controlling for inter-patient variability, to significantly
outperform equivalent models based on RC data.

Therefore, it remains to be determined how including
information about the contralateral hemisphere, the AIF, or
potentially a combination of the two affects the performance
of these CTC-based deep learning models. In a similar vein,
patient-specific clinical factors such as age, sex, baseline NIHSS
score and ASPECTS, rtPA administration, and hyperglycemia
(Eilaghi et al., 2014), dehydration (Bahouth et al., 2018), time-
to-scan and time-to-treatment (d’Esterre et al., 2015), collateral
status (Ernst et al., 2015), as well as tissue specific factors such as
distance to the ischemic core (Winder et al., 2019), brain region
(Payabvash et al., 2011), and myelination (Chen et al., 2019)
are all known to affect the tissue’s vulnerability to infarction.
Many machine learning models combine this tabular data with
imaging features to improve the accuracy of the resulting tissue
outcome predictions (Winder et al., 2019; Robben et al., 2020).
At present, however, the question of which non-imaging features
to include and how best to integrate them does not seem to
have a definite answer, especially for deep learning methods.
Nevertheless, we believe that including clinical parameters will

likely benefit all models proportionally such that the main
findings of this work still hold true.

Current and future applications of
machine learning-based stroke tissue
outcome prediction

An ensemble of machine learning-based stroke tissue
outcome prediction methods can be used to model the evolution
of an acute ischemic stroke under multiple different treatment
conditions. Applied to a population of patients, such an
ensemble of machine learning models trained on a rather small
set of datasets could help to determine if a novel treatment
devices or therapy has the potential for a full-scale clinical
trial based on its predicted tissue salvage. This is referred to
as in silico treatment efficacy analysis (Winder et al., 2021).
Applied to individual patients, a similar ensemble could help
clinicians to understand how a particular case of stroke will
evolve without medical intervention and then balance the
potential tissue salvage of different treatment options with their
respective financial costs and health risks. These two potential
applications of stroke tissue outcome prediction are alike in that
both require highly accurate predictive algorithms, but they are
also quite distinct in terms of the practical and administrative
barriers that must be overcome to use them in the clinical
setting.

Health Canada and the U.S. Food and Drug administration
(FDA) regulate which medical software can be used directly
in the clinical environment, but neither entity currently
provides a framework for the approval of continuously learning
artificial intelligence methods. As a result, machine learning-
based stroke tissue outcome prediction has, historically, only
been applied to in silico treatment efficacy analysis for pre-
clinical pilot studies (Fiehler et al., 2019). In this context,
considering the rapid development of novel thrombectomy
devices (Munoz et al., 2022) and the large number of
proposed neuroprotectant drugs (Frank et al., 2022), there is
inherent value in the development of reliable tissue outcome
prediction pipelines that can be constructed quickly with
minimal manual processing. Additionally, CTP imaging is
significantly more accessible compared to perfusion-weighted
MRI in North America (Demeestere et al., 2020), but
also more difficult to process due to its worse signal-to-
noise ratio, making tissue outcome prediction from CTP
data an important research topic. For these reasons, a
valuable future study may be to validate whether the
proposed CTC-Causal architecture is viable for in silico
treatment efficacy analysis or requires further development.
Alternatively, in the context of tissue outcome prediction
as a clinical decision aid, it is important to note that
the FDA is currently collaborating with researchers and
clinicians to develop a framework for the approval of
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artificial intelligence and machine learning-based software (US
Food and Drug Administration [FDA], 2021). Elements of
software development such as data preprocessing and classifier
design are important considerations of this collaborative
effort. Therefore, the current value of the proposed deep
learning architecture is not that it can be applied to clinical
tasks in its existing state, but rather that it provides a
way to improve the accessibility of CTP-based stroke tissue
outcome prediction and highlights the need to consider
deep-learning based feature extraction in the emerging FDA
regulatory guidelines.

In future studies, it should be investigated how best to
integrate tabular and auxiliary spatial variables, including those
listed in Section “Effects of deconvolution and auxiliary inputs,”
into deep learning models. For those clinical variables which are
derived from patients’ acute imaging, such as baseline ASPECTS
and collateral status, there is the potential for deep learning
to extract the information automatically. To explicitly enforce
that a model learns these features, it would be possible to use
a multi-output model that predicts both ASPECTS/collateral
status and tissue outcome simultaneously. Similarly, relevant
variables that are not normally known before treatment, such as
reperfusion time, could be included as model input features to
help clinicians plan for contingencies such as treatment delays
or triage to primary care centers with thrombectomy resources
(Kemmling et al., 2015). Overall, including these additional
relevant variables in the tissue outcome prediction models is
likely to improve their accuracy in predicting the final infarct,
which is important for any prospective clinical application.

In addition to predicting the final infarct, stroke tissue
outcome prediction methods could also theoretically be used to
predict other clinically relevant stroke outcomes. For instance,
predicted infarct segmentations could be combined with a
lesion symptom mapping approach to predict patients’ specific
functional deficits (for example, NIHSS sub-scores) from their
acute imaging (Rajashekar et al., 2022). Using deep learning,
a particular model trained to predict tissue outcomes could
be extended to also predict functional outcomes, absorbing
the role of lesion symptom mapping. The feasibility of this
idea is supported in part by a recent pre-print that describes
a deep learning model capable of reliably predicting patients’
ordinal mRS from tabular and diffusion-weighted MR imaging
data (Herzog et al., 2022). Finally, stroke tissue outcome
prediction models might be easily adapted to predict post-
stroke complications such as life-threatening malignant edema.
A large final infarct volume is itself a predictor of malignant
edema, but malignant edema and ischemic infarct growth also
share several common neuroimaging predictors, including poor
collateral status and low venous blood flow (Zhang et al., 2022).
Considering these similarities, extending a deep learning model
trained for tissue prediction to also estimate the likelihood of
malignant edema could be a valuable experiment.

Limitations

There are several limitations of this study that should be
highlighted. First, this study utilized retrospective patient data,
meaning that it was not possible to exercise complete control
over factors such as patient age, sex, and the time of their
acute and follow-up imaging. Statistics for these factors are
reported, if available, in Table 1 to indicate potential sources
of variability and bias. Significant differences between the IA
and IV cohorts do not introduce bias into a comparison of
different model architectures, considering that each architecture
was trained and evaluated on the same patient data. However,
any comparison between one model trained on the IA cohort
and another model trained on the IV cohort would be subject
to this bias, which limits the applicability of the models in their
current state to tasks such as in silico treatment efficacy analysis
(Winder et al., 2021). Furthermore, our models are agnostic to
potentially relevant clinical variables such as those listed at the
end of Section “Effects of deconvolution and auxiliary inputs”
and, as mentioned in Section “Current and future applications
of machine learning-based stroke tissue outcome prediction,”
further experimentation is required to integrate these variables.

Second, the results of this study are, strictly speaking, only
valid for patients meeting our relatively restrictive inclusion
criteria. Thus, it remains speculative if the results will hold true
for patients experiencing posterior circulation ischemic stroke
(20–25% of ischemic stroke) (Merwick and Werring, 2014),
hemorrhagic transformation (∼8%) (Spronk et al., 2021), an
unknown symptom onset time (14%) (Mackey et al., 2011), or
a symptom onset to treatment time greater than 24 h. Among
the patients with an unknown symptom onset time, those
experiencing wake-up stroke have been shown to especially
benefit from fast and correct CTP analysis (Ajčević et al., 2020),
so that a future investigation concerning the reliability of stroke
tissue outcome prediction for wake-up stroke is warranted.

Third, because this study utilized real medical images,
neither a patient’s AIF nor the boundary of their follow-
up infarct lesion could be determined with perfect accuracy.
We attempted to mitigate sources of error related to the
AIF determination by employing an automatic AIF definition
method that consolidates hemodynamic information from
multiple voxels to reduce noise while preserving important AIF
shape characteristics (Winder et al., 2020). We also employed
a semi-automatic region growing approach to reduce the
subjectivity of the follow-up infarct segmentations. However,
because of the coarse slice thickness of follow-up imaging
(5 mm), the boundary of the infarct segmentation may not be
ideal after resampling to the patient’s acute image space. One
potential solution to address these inaccuracies would be to
use fuzzy logic-based segmentation or image enhancement to
refine the boundary of the infarct segmentation. Efficient so-
called fuzzy image preprocessors have recently been proposed
that run in real-time, adding negligible computational overhead
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to the image preprocessing pipeline, and have proven effective
on difficult segmentation tasks related to diabetic retinopathy
(Jamal et al., 2012; Versaci et al., 2015).

Fourth, all follow-up imaging was acquired within the first
few days post-ictus, which roughly coincides with the period
of greatest post-stroke inflammation (Lansberg et al., 2001).
As a result, the follow-up segmentation may overestimate the
final infarct volumes. However, neuroinflammation may also
play an appreciable role the in pathogenesis of acute ischemic
stroke, making the subacute ischemic lesion as valuable as a
target for prediction as the chronic ischemic lesion (Pluta et al.,
2021). Furthermore, ischemic stroke lesions typically continue
to evolve even in the chronic phase, which makes restricting the
time window for follow-up imaging to a narrow range of dates
an important consideration for curating a dataset (Merwick and
Werring, 2014; Goyal et al., 2020; Pluta et al., 2021). Considering
that the range of dates for which follow-up imaging can be
acquired in the chronic phase of ischemic stroke is typically
very large, filtering a dataset to include only early follow-up
imaging within a narrow time window may, in some cases, make
it easier to train accurate machine learning models. Changes in
cerebrospinal fluid (CSF) distribution due to edema between
the time of acute and follow-up imaging may also affect the
images’ co-registration, causing some of the follow-up infarct
to eclipse regions of CSF on the acute imaging and, therefore,
be impossible to predict as infarct. To mitigate this error for
minor swelling, we masked the registered follow-up infarct
segmentation with the acute brain tissue mask during our image
preprocessing. Furthermore, no severe swelling or hemispheric
midline shifts were observed on follow-up imaging.

Finally, the models developed in this study were validated
internally using a fivefold cross validation due to the
relatively small number of available patient datasets. However,
an external validation would better represent the models’
performance in an applied clinical setting. Therefore, while
the current study may be valuable in informing the design
of future deep learning algorithms for stroke tissue outcome
prediction, any such method that is developed for clinical
use will require significantly more training data and rigorous
external validation.

Conclusion

Deep learning for tissue outcome prediction in acute
stroke patients can outperform both threshold-based and the
leading traditional machine learning method (random decision
forests). Furthermore, spatiotemporal deep learning models
using CT perfusion concentration-time curves perform as
well as, and even insignificantly better, compared to using
deconvolved residual curves or perfusion parameter maps,
thereby eliminating the requirement for deconvolution. Overall,

the best performance was achieved by the proposed CTC-
Causal model, which used a causal temporal network for feature
extraction in conjunction with the (non-deconvolved) CTP
concentration-time curve data.
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SUPPLEMENTARY FIGURE 1

Spearman’s Rho values for the correlation of each
convolutionally-derived feature map with the four traditional perfusion
parameters. RC, residual curve; CTC, concentration-time curve; CTP,
computed tomography perfusion imaging; CBF, cerebral blood flow;
CBV, cerebral blood volume; MTT, mean transit time; Tmax, time to
maximum of the residual curve; Abbreviated model names correspond
to deep learning from: deconvolved residual curves with convolutional
(RC-Simple) or causal convolutional (RC-Causal) feature extraction, and
deep learning from source concentration-time curves (CTC-Causal).

SUPPLEMENTARY FIGURE 2

Visualization of the convolutional features learned for the deep learning
model trained from source concentration-time curves (CTC-Causal).
Learned feature maps are normalized to the range [0, 1] for visualization.
Traditional perfusion parameters are shown for comparison. CTP,
computed tomography perfusion imaging; CBF, cerebral blood flow;
CBV, cerebral blood volume; MTT, mean transit time; Tmax, time to
maximum of the residual curve. Features 3 and 5 of the IV model
contain no non-zero values for the patient shown. Other feature maps,
which appear mostly black, typically have only a small handful of
high-intensity voxels, which may not appear in the image slice shown.
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