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Medical image segmentation has important auxiliary significance for clinical

diagnosis and treatment. Most of existing medical image segmentation

solutions adopt convolutional neural networks (CNNs). Althought these

existing solutions can achieve good image segmentation performance, CNNs

focus on local information and ignore global image information. Since

Transformer can encode the whole image, it has good global modeling

ability and is e�ective for the extraction of global information. Therefore, this

paper proposes a hybrid feature extraction network, into which CNNs and

Transformer are integrated to utilize their advantages in feature extraction.

To enhance low-dimensional texture features, this paper also proposes

a multi-dimensional statistical feature extraction module to fully fuse the

features extracted by CNNs and Transformer and enhance the segmentation

performance of medical images. The experimental results confirm that the

proposed method achieves better results in brain tumor segmentation and

ventricle segmentation than state-of-the-art solutions.

KEYWORDS

medical image segmentation, deep learning, convolutional neural network,
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1. Background

Medical image segmentation is not only an important step in medical image analysis,

but also an indispensable part of computer-aided diagnosis and pathology research.

With the continuous development of computer vision in recent years, convolutional

neural networks (CNNs), especially fully convolutional networks (FCNs), have made

breakthroughs in the applications of medical image segmentation. For example, they

have been applied to brain Magnetic Resonance Imaging (MRI) (Li et al., 2021), multi-

organ segmentation, and cardiac ventricle (Moeskops et al., 2016; Hesamian et al., 2019).
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FCNs enable end-to-end image semantic segmentation and

have evolved many variants during development, U-Net

(Ronneberger et al., 2015), V-Net (Milletari et al., 2016),

3D U-Net (Çiçek et al., 2016), Res-UNet (Xiao et al.,

2018), density-unet (Li et al., 2018), Y-Net (Mehta et al.,

2018), etc. have been specially proposed for image and

volume segmentation according to various medical imaging

modalities. Existing CNN-based methods have good image

segmentation performance. Due to the limitation of convolution

kernel size, each convolution kernel only focuses on local

information. Therefore, it is difficult for these existing methods

to generate any long-distance dependencies when performing

image segmentation tasks. The ability to construct global

contextual information is crucial for intensive prediction tasks

during medical image segmentation.

To effectively address the issues on global contextual

information, Transformer (Vaswani et al., 2017; Dosovitskiy

et al., 2020) was proposed to handle the issues in sequence-

to-sequence prediction. It uses a completely attention-based

encoder-decoder architecture, which is completely different

from CNN-based methods. A one-dimensional sequence is

taken as input, so Transformer has a powerful modeling

ability, not only in constructing global context information. The

powerful capability, works well for downstream tasks in the case

of large-scale pre-training.

Transformer has been widely used in medical image

segmentation, but it only focuses on building global context

information at all stages. Therefore, its ability to obtain local

information is weakened, and the lack of detailed location

information encoding reduces the distinguishability between

background and target. Various CNN architectures such as U-

Net provide a way to extract low-level visual information, which

can well compensate for the spatial details of Transformer’s

local information.

FIGURE 1

The proposed medical image segmentation method based on multi-dimensional statistical features.

Therefore, considering the above-mentioned advantages,

some studies integrated CNNs and Transformer. For example,

TransUNet (Chen et al., 2021), first used CNNs to extract

local features, and then applied Transformer to global context

modeling. This architecture not only establishes a self-

attention mechanism, but also reduces the loss of local feature

resolution brought by Transformer, making it have better image

segmentation accuracy. However, TransUNet is only a simple

integration of CNNs and Transformer, and there are some

shortcomings in practical applications.

The low-dimensional image texture features mainly

include structural features and statistical features. The

image information contained in these features plays an

important role in semantic segmentation. Chen et al. (2018)

proposed the DeepLabv3+ model by adding an encoder to

the DeepLabv3 (Chen et al., 2017) model to achieve the

extraction and fusion of both shallow and deep image features.

Li et al. (2020) proposed an edge preservation module to

enhance low-dimensional edge features, effectively improving

the performance of semantic segmentation. However, the

above methods are all applied to shallow features or low-

dimensional edge features. Although low-dimensional statistical

features play an importance role in grasping global image

features, only a small percent of existing solutions try to

analyze them.

Therefore, this paper proposes a hybrid feature extraction

network based on CNNs and Transformer. The proposed

network can not only utilize the Transformer’s ability

to construct global contextual information, but can

also use the CNN’s ability to capture local information.

Additionally, in order to use the statistical image features,

this paper designs a multi-scale statistical feature extraction

module to extract statistical image features to improve

segmentation performance.
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FIGURE 2

The proposed hybrid network consisting of CNNs stages and Transformer stage.

2. Related work

2.1. Semantic segmentation network

In the past few years, CNNs have been used as the

main framework for various computer vision tasks, especially

in semantic segmentation. The mainstream medical image

segmentation methods use the encoder-decoder structured FCN

and U-Net. U-Net++ (Zhou et al., 2018) designs more dense

skip connections based on U-Net. Res-UNet (Xiao et al., 2018)

introduces a residual module in ResNet (He et al., 2016), and

designs a deeper network for feature extraction.

In the past 2 years, Vision Transformer (ViT) (Dosovitskiy

et al., 2020) has demonstrated its powerful modeling capability

in computer vision tasks. ViT splits the source image into

patches and uses these patches to perform self-attention

operations. The Swin Transformer (Liu et al., 2021) uses the

shift idea to calculate the attention of different windows and

layer the corresponding feature maps. MedT (Valanarasu et al.,

2021) improves gated self-attention and applies Transformer to

medical image segmentation.

Some recent solutions try to use the advantages of CNN

and Transformer by integrating the two architectures as a new

backbone network. The CMT (Guo et al., 2022) block consists of

a depthwise convolution-based local perception unit and a light-

weight transformer module. CoAtNet (Dai et al., 2021) fuses the

two frameworks based on MBConv and relative self-attention.

TransUNet (Chen et al., 2021) first fuses the U-shape structure

of Transformer and U-Net and applies Transformer to medical

image segmentation.

2.2. Statistical features

Statistical features as low-dimensional texture features play

a key role in improving semantic segmentation performance.

Many existing solutions exploit the texture information of

statistical features. Simonyan et al. (2013) applied Fisher vector

layers to enhance features using handcrafting.Wang et al. (2016)

first proposed learnable histograms for semantic segmentation

and object detection. Zhu et al. (2021) proposed a texture

FIGURE 3

The proposed Texture Statistics Extraction Module. It is used to

extract statistics at di�erent stages.

enhancement module and a pyramid texture extraction module

to extract image texture features for the enhancement of

semantic segmentation performance.

3. Method

3.1. Semantic segmentation network

A medical image segmentation method is proposed based

on multi-dimensional statistical features as shown in Figure 1.

This method integrates CNNs and Transformer into the feature

extraction network, and designs a texture statistics extraction

module (TSEM) for the extraction and fusion of multi-

dimensional statistical features.

3.2. Hybrid network

The proposed hybrid feature extraction network aims to

utilize the advantages of CNNs and Transformer to achievemore
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TABLE 1 Comparison of segmentation metrics on BraTS2018.

BraTS2018
WT TC ET Average

Dice HD Dice HD Dice HD Dice HD

Myronenko 90.40 4.483 85.90 8.278 81.40 3.805 85.90 5.500

U-Net++ 88.96 5.327 84.65 8.535 79.49 4.285 84.36 6.049

CENet 89.53 5.271 84.31 8.493 79.95 4.379 84.60 6.193

D. Zhang 89.60 5.733 82.40 9.270 78.20 3.567 83.40 6.190

TransUNet 90.25 4.390 87.19 5.539 80.41 3.731 85.95 4.553

Proposed 90.45 4.923 86.96 5.327 81.53 3.279 86.31 4.510

Bold font represents the best result.

TABLE 2 Comparison of segmentation metrics on medical

segmentation decathlon.

Cardiac Dataset IoU Dice HD

U-Net 90.07 93.86 1.7414

U-Net++ 90.55 94.38 1.7197

CENet 90.23 94.17 1.7682

TransUNet 90.67 94.54 1.7300

Proposed 91.30 94.86 1.6772

Bold font represents the best result.

accurate segmentation tasks. As shown in Figure 2, the proposed

hybrid network is divided into five stages.

Stem is the first stage. CNNs and Transformer alternate

in the remaining four stages. At the beginning of each stage,

downsampling is applied to decrease feature map size and

increase the number of channels. Additionally, the proposed

network refers to the residual connection of ResNet and

performs shortcuts at each stage.

Specifically, stem as the first stage contains two layers

of simple 3×3 convolution. CNNs stage is the second stage,

because the feature map is too large at this moment and not

suitable for using Transformer in global feature extraction. The

CNNs stage uses a Depthwise Separable Convolution block

(DSConv) (Howard et al., 2017) to reduce the amount and

size of model parameters. There is a 1×1 convolution layer

before and after DSConv to change the feature map size and

the number of channels. The third stage is the Transformer

stage, which extracts global features after CNNs. The proposed

network adopts a lightweight multi-head self-attention.

In the original self-attention module, the input X ∈

R
C×H×W is linearized to query Q ∈ R

n×dk , key K ∈ R
n×dk ,

and value V ∈ R
n×dv , where n = H × W is the number of

patches, d, dk, dv represent input, key, and value’s dimension.

The self-attention output is obtained by the following formula.

Atten (Q,K,V) = Softmax

(

QKT

√

dk

)

V (1)

In order to reduce the overhead, the proposed network uses

a k×k depthwise convolution with a stride of k to reduce the

dimensions of K, V , ie K′ = DSVConv (K) ∈ R

n
k2
×dk and

V ′ = DSVConv (V) ∈ R

n
k2
×dv , so the lightweight attention

output is obtained by the following formula.

Atten (Q,K,V) = Softmax

(

QK′T

√

dk

)

V ′ (2)

The CNNs and Transformer operations in the second and

third stages are repeated in the subsequent fourth and fifth

stages. Additionally, each stage is repeated L times. Stages 1 to

5 of the proposed network are were repeated 2, 2, 4, 2, and 8

times, respectively.

3.3. Texture statistics extraction module

The image texture information contains local structural

features and global statistical properties. For poorly visualized

images, the global statistical features are more suitable for

segmentation. To effectively utilize statistical image features, a

texture statistics extraction module (TSEM) is proposed. TSEM

extracts statistical image features by encoding feature maps, as

shown in Figure 3.

Given an input feature map X ∈ R
C×H×W , the input is

divided into three branches for multi-scale feature encoding.

One branch is first processed by global average pooling to obtain

channel average features, and then multiplied with the input

feature map X ∈ R
C×1×1 to obtain the final output feature map.

Another branch first average pooling on one channel to obtain

the feature map X ∈ R
1×H×W , and then multiplies it with the

input feature map X ∈ R
C×H×W to obtain the output feature

map. The last two input feature maps are multiplied to obtain

the output feature map of this module.
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FIGURE 4

Comparison of the proposed method and other state-of-the-art methods on BraTS2018.

FIGURE 5

Comparison of the proposed method and other state-of-the-art methods on the Cardiac Dataset.
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3.4. Loss function

To achieve the end-to-end training effect, a fusion loss

function Lfusion is used to optimize the proposed method in the

training process, training segmentation prediction and ground

truth (GT). The loss function uses BCEDiceLoss, which is

composed of binary cross entropy loss (BCELoss) and dice loss.

The formula is given as follows:

Lfusion =
∑

(

0.5 ∗
(

−y log
(

ŷ
)

−
(

1− y
)

log
(

1− ŷ
))

+

(

1−
2|y ∩ ŷ|
∣

∣y
∣

∣+
∣

∣ŷ
∣

∣

))

(3)

Where y represents GT and ŷ represents the network

prediction result.

4. Experiments

4.1. Datasets

To verify the effectiveness of the proposed method,

BraTS2018 (Menze et al., 2014; Bakas et al., 2017, 2018) and

the cardiac segmentation dataset in the medical segmentation

(Antonelli et al., 2022) decathlon are used as training and

testing datasets in the experiments. The BraTS2018 dataset

has 285 annotated brain tumor magnetic resonance imaging

(MRI) cases, and each case has four different modalities,

namely Flair, T1, T1ce, and T2. This dataset needs to segment

three different brain tumor regions, which are Whole Tumor

(WT), Tumor Core (TC), Ehance Tumor (ET). The decathlon

TABLE 3 Comparison of the model size and flops cost.

Model Input size Parameter(M) FLOPS(G)

U-Net 3, 224, 224 39.40 55.84

U-Net++ 3, 224, 224 9.34 34.65

TransUNet 3, 224, 224 105.32 38.52

MedT 3, 224, 224 1.60 21.24

Proposed 3, 224, 224 37.25 15.24

Bold font represents the best result.

cardiac segmentation dataset contains 20 annotated mono-

modal MRI cases, and this dataset requires the segmentation of

the left atrium.

4.2. Experimental details

The model frameworks in this paper are all implemented

based on Pytorch. The image size and batch size of the input

BraTS2018 dataset are 240*240 and 8, respectively. The image

size and batch size of the input cardiac dataset are 320*320 and 8,

respectively. Four Tesla P100 GPUs were used in training. Adam

(Kingma and Ba, 2014) is the optimizer used in this paper, and all

parameters are set as default. The initial learning rate and weight

decay for model training are 1e-3 and 1e-5, respectively.

4.3. Comparative experiments

To verify the efficiency of the proposed model framework,

three most common metrics used in medical image

segmentation, IoU score, Dice score and Hausdorff score

(HD) are used. The corresponding formulas are given:

IoU =
Y ∩ Ŷ

Y ∪ Ŷ
(4)

Dice =
2
∣

∣

∣
Y ∩ Ŷ

∣

∣

∣

|Y| +
∣

∣

∣
Ŷ
∣

∣

∣

(5)

Where Y represents GT and Ŷ represents the network

prediction result.

H(A,B) = max

(

max
a∈A

{

min
b∈B

∥

∥a− b
∥

∥

}

, max
b∈B

{

min
a∈A

∥

∥b− a
∥

∥

})

(6)

Where A =
{

a1, a2, ..., ap
}

,B =
{

b1, b2, ..., bq
}

represents

the pixels of the prediction result and GT. ‖·‖ represents the

norm between A and B.

This paper conducts comparative experiments with state-

of-the-art image segmentation frameworks on the BraTS2018

and cardiac segmentation datasets. These frameworks include

TABLE 4 Ablation experiment results on BraTS2018.

BraTS2018
WT TC ET Average

Dice HD Dice HD Dice HD Dice HD

C-C-C-C 88.31 5.322 86.32 5.531 80.68 4.293 85.10 5.049

T-T-T-T 88.15 5.514 86.19 6.681 80.64 4.450 84.99 5.548

C-T-C-T 89.04 5.357 86.91 5.554 80.91 3.315 85.32 4.742

Proposed 90.45 4.923 86.96 5.327 81.53 3.279 86.31 4.510

Bold font represents the best result.
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FIGURE 6

Visual results of ablation experiments on BraTS2018.

FIGURE 7

Performance comparison before and after adding TSEM.

2D CNN, 3D CNN segmentation frameworks (Ronneberger

et al., 2015; Myronenko, 2018; Zhou et al., 2018; Gu et al.,

2019; Zhang et al., 2020) and partial Transformer segmentation

framework (Chen et al., 2021). The corresponding experimental

results obtained by each method are shown in Tables 1, 2, and

the visualized results are shown in Figures 4, 5. The number of

parameters and computation cost are compared, as shown in

Table 3.

According to the comparison results, the proposed

segmentation framework obtains better scores and achieves

a more significant performance improvement compared

with state-of-the-art segmentation models. The proposed

segmentation model achieves an average Dice of 86.31% on

the BraTS2018 dataset and an average Dice of 94.86% on the

medical segmentation decathlon, which are better than other

state-of-the-art segmentation models.
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According to the visualized results shown in Figure 4,

the proposed method significantly improves the refinement of

tumor and its texture features by using TSEM. Compared

with other state-of-the-art, the model developed based on the

integration of CNNs and Transformer has achieved better results

in the context feature extraction and statistical feature fusion,

and provides a reference for medical image segmentation of

brain tumors and hearts. According to Table 3, the proposed

method also has the lowest flops.

4.4. Ablation experiments

In order to further verify the importance and practical

contribution of the backbone network used in this paper and the

designed modules, the relevant ablation experiments are carried

out. The index comparison of ablation experiments is shown in

Table 4, and the experimental results are shown in Figures 6, 7.

This paper uses a fully convolutional layer as the Baseline for

segmentation, and then replaces the backbone network blocks

one by one for experiments. The experiments cover the full

convolution network of C-C-C-C, the full transformer network

of T-T-T-T, the hybrid network of C-T-C-T, and the TSEM

is finally. The corresponding indicator values are shown in

Table 4. The proposed module can improve the segmentation

performance of baseline to a certain extent. After adding TSEM

to the baseline, the corresponding improvement is the most

obvious.

According to Table 4, the average Dice of the full

Transformer is slightly lower than the result of the full

CNN. The C-T-C-T result of the integration of CNNs

and Transformer is significantly improved, confirming the

effectiveness of the proposed hybrid network. After adding

TSEM, the corresponding performance is further improved, the

Dice of WT is increased by 1.41%, and the average Dice is

increased by 0.99%.

Figure 6 shows the visualized brain tumor segmentation

results obtained by each method in ablation experiments.

After the backbone network becomes a hybrid network, the

segmentation performance is further improved. After adding

the texture statistics extraction module, the brain tumor

edges after segmentation are significantly better, and the

involved edges regions are closer to the actual situation

compared with the segmentation result obtained by the

hybrid network.

To further verify the role of TSEM, an intermediate

experimental procedure is added. As shown in Figure 7, the

area of interest in the feature map is concentrated and accurate

after adding TSEM. Before adding TSEM, the feature map

is mainly concentrated in the segmented area. Therefore, the

proposed TSEM is conducive for the network to paying more

attention to the segmented area and can effectively improve

segmentation results.

5. Conclusion

This paper proposes a medical image segmentation method

based on multi-dimensional statistical features. It consists of

a hybrid feature extraction network and a multi-dimensional

statistical feature extraction module. The hybrid feature

extraction network is composed by CNNs and Transformer,

and the lightweight processing is adopted to adapt to practical

application scenarios. The multi-dimensional statistical feature

extraction module is used to strengthen low-dimensional image

texture features and enhance medical image segmentation

performance. Experimental results show that the proposed

medical image segmentation method achieves excellent results

on brain tumor and heart segmentations.
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