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Multiple sclerosis (MS) is an inflammatory and demyelinating neurological

disease of the central nervous system. Image-based biomarkers, such as

lesions defined on magnetic resonance imaging (MRI), play an important

role in MS diagnosis and patient monitoring. The detection of newly formed

lesions provides crucial information for assessing disease progression and

treatment outcome. Here, we propose a deep learning-based pipeline for

new MS lesion detection and segmentation, which is built upon the nnU-Net

framework. In addition to conventional data augmentation, we employ

imaging and lesion-aware data augmentation methods, axial subsampling

and CarveMix, to generate diverse samples and improve segmentation

performance. The proposed pipeline is evaluated on the MICCAI 2021 MS new

lesion segmentation challenge (MSSEG-2) dataset. It achieves an average Dice

score of 0.510 and F1 score of 0.552 on cases with new lesions, and an average

false positive lesion number nFP of 0.036 and false positive lesion volume

VFP of 0.192 mm
3 on cases with no new lesions. Our method outperforms

other participating methods in the challenge and several state-of-the-art

network architectures.

KEYWORDS

multiple sclerosis, new lesion detection, data augmentation, nnU-Net, MRI,

longitudinal lesion segmentation, biomedical segmentation

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory neurological disease affecting

the central nervous system (CNS). Generally detected in young adults, ages 20–40,

demyelinated lesions in the CNS lead to cognitive and physical disabilities, affecting

vision, learning and memory, musculoskeletal system, and internal organ dysfunctions

(Ghasemi et al., 2017). While MS is not fatal, average life expentancy is 5–10 years lower

than average. TheMcDonald diagnostic criteria (Thompson et al., 2018) for MS provides

guidelines for diagnosing the patient based on the number of lesions, lesion size, and

locations of lesions in the brain and spinal cord. Disease progression for MS patients

is highly varied and unpredictable, therefore, identifying disease trajectories and closely

following them are important for prognosis and treatment decisions.
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Multiple sclerosis is typically diagnosed via the patient

showing symptoms in combination with supporting medical

imaging of the brain. Specifically, the presence of lesions on

brain MRI scans is a predictive image-based biomarker for

MS diagnosis. Common multi-modal brain MRI acquisitions

are composed of T1, T2, fluid-attenuated inversion recovery

(FLAIR) and proton-density modalities. Lesions in the

periventricular, juxtacortical, and infratentorial regions are

presented as hyperintensities on T2-weighted and FLAIR MRI,

or hypointensities on T1-weighted MRI (Filippi et al., 2019).

To monitor the progression of the disease, patients may

take multiple MRI scans at different time points, typically

6–12 months apart. The detection of newly formed lesions

provides crucial information for assessing disease activity

and treatment outcome. Formation of new lesions correlates

with the progression and severity of the disease and is

often complemented with increased symptoms (Weiner et al.,

2000). Manual assessment of these imaging scans can be time

consuming, especially when attempting to identify formations

of new lesions compared to the baseline scan. Automated

detection and segmentation of brain lesions substantially aid

neuro-radiologists in tracking the progression of the disease.

Additionally, state-of-the-art machine learning methods can

provide fast and reliable quantitative information on detected

abnormalities, such as lesion load, lesion number, or even patient

outcome (Tousignant et al., 2019; McKinley et al., 2020).

Recent developments in convolutional neural networks

(CNNs) have shown promising results for image segmentation

tasks (Alzubaidi et al., 2021). The two-dimensional (2D) U-

Net (Ronneberger et al., 2015) and three-dimensional (3D) U-

Net (Çiçek et al., 2016) architectures have been widely adopted

in biomedical image segmentation tasks due to their ability

in incorporating multi-scale spatial context and generalisability

across different biomedical domains. nnU-Net (Isensee et al.,

2021a), a U-Net based medical image segmentation network

which employs a self-adapting framework, has shown excellent

performance in a number of organ segmentation tasks (Isensee

et al., 2021a,b). nnU-Net stands for “no new U-Net.” Its strong

performance across a variety of datasets is not due to a new

network architecture, but rather to automating the process of

manual configuration of setting up a neural network. nnU-Net

configures its network and pipeline subject to dataset properties

and available GPU memory budget, maximizing the training

patch size which the GPU memory will allow.

Nevertheless, there are still several challenges in applying

these methods to brain image segmentation tasks, such as for

MS lesion segmentation. The first challenge is the scarcity of

data and annotation. Most of the public MS lesion datasets,

such as the 2016 MSSEG (Commowick et al., 2018) and the

2015 ISBI MS (Carass et al., 2017) datasets, only contain images

from a dozen of subjects. In a field where data diversity is

paramount, data augmentation methods become critical tools

to boost model performance. The second challenge is the class

imbalance problem. In MS lesion segmentation, almost all of the

foreground voxels represent healthy brain tissues and the lesions

only constitute for a minority of the voxels. This means that

the deep learning models tend to learn from the healthy tissues

instead of the lesions of interest. In an attempt to allow the

network to learn features from underrepresented classes, patches

which contain the underrepresented class are often oversampled

(Rahman and Davis, 2013). Despite oversampling strategies, the

class imbalance problem is amplified even more when working

with longitudinal MS data, where the objective is to detect new

lesions. New lesions to detect in follow-up scans can make up as

little as 0.01% of the 3D image volume.

There is still room for improvement for current lesion

segmentation methods in detecting small lesions and tracking

their temporal trajectories in disease progression. Commowick

et al. (2018) finds that lesion detection rates fall significantly

as lesion volumes decrease, resulting in false negative results

in automated segmentation. This forms a critical challenge

when newly formed lesions need to be considered for MS

progression monitoring, which these lesions are often small and

hard to detect.

In this paper, we propose a deep learning pipeline for new

MS lesion segmentation. The developed pipeline is built upon

the nnU-Net framework and we incorporate multiple brain-

image preprocessing steps as well as imaging and lesion-aware

data augmentation techniques. We evaluate the pipeline on the

MSSEG-2 challenge dataset (Commowick et al., 2021a), which

demonstrates promising results for both new lesion cases and

no new lesion cases.

2. Methods

2.1. Related works

2.1.1. Deep learning for MS lesion segmentation

There have been contributions to machine learning methods

specifically for MS lesion segmentation. Numerous methods

were developed following the 2015 ISBI Longitudinal Multiple

Sclerosis Lesion Segmentation Challenge (Carass et al., 2017).

Valverde et al. (2017) employed a cascade of two 3D patch-wise

CNNs, where the first CNN proposed candidate lesion voxels

and the second one reduced falsely classified voxels. Birenbaum

and Greenspan (2017) developed a multi-view longitudinal

CNN and utilized priors about lesion intensities and spatial

distribution to extract candidate lesions. Similar to Valverde

et al., and Birenbaum et al. also used 3D patches for model

training. Contrary to patch-based training, Aslani et al. (2019)

proposed a multi-branch CNN which takes whole slices of the

brain as input. Three 2D ResNets were separately trained for the

axial, sagittal, and coronnal planes, the outputs of which were

fused to generate a final 3D segmentation. Zhang et al. (2019)

developed a fully convolutional densely connected network
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(Tiramisu) using a 2.5-dimensional input where slices were

stacked from three anatomical planes, providing both global and

local context in segmentation.

Transformer networks are now a widely adopted network

model for both natural language processing and computer

vision tasks due to their self-attention mechanisms. The Vision

Transformer (ViT) (Dosovitskiy et al., 2021) showcased that

a pure transformer applied on sequences of image patches

can achieve competitive image classification performance.

Consequently, a multitude of transformer-based frameworks for

medical image segmentation have been proposed. The majority

of these models utilize CNNs in conjunction with transformers,

taking advantage of both local and global context information

extraction. TransBTS performs 3D CNN encoding followed

by a transformer for global feature modeling in multi-modal

brain tumor segmentation (Wang et al., 2021). TransUNeT

employs a hybrid CNN-Transformer architecture for multi-

organ abdominal image segmentation (Chen et al., 2021).

UNETR implements a pure transformer encoder based on

ViT in combination with resolution-wise convolutions and a

deconvolutional layer for decoding the image back into the

original dimension (Hatamizadeh et al., 2022). It performs

competitively with state-of-the-art methods in multi-organ CT

and MRI brain tumor segmentation tasks.

2.1.2. Data augmentation

Data augmentation can be classified into four categories:

affine transformations, elastic transformations, intensity

alterations, and incorporation of synthetic data. Affine

transformations include flipping, rotation, scaling, and shearing

of the image. Affine transformations do not drastically change

the shape characteristics of the abnormal region with respect

to its surrounding tissue. Elastic transformations generate a

displacement grid with random displacements, which is used

to deform individual voxels of the input image (Çiçek et al.,

2016). The non-linear transformations alter the boundaries

of the abnormal region with respect to its surrounding tissue,

producing diverse samples. Intensity alterations introduce

Gaussian noise, Gaussian blurring, sharpening, salt and pepper

noise, and gamma augmentation etc. to improve model

robustness against intensity distribution shift, which concerns

imaging scans acquired from different scanner models, scanner

acquisition parameters, or scanner strengths. Synthetic data

augmentation utilizes generative models or MixUp (Zhang

et al., 2018) techniques to generate new samples. For example,

generative adversarial networks (GANs) (Goodfellow et al.,

2014) were introduced for data augmentation in biomedical

image segmentation (Shin et al., 2018; Sandfort et al., 2019;

Hong et al., 2021). MixUp (Zhang et al., 2018) and related

methods such as MixMatch (Berthelot et al., 2019) and CutMix

(Yun et al., 2019) designed specific operations on two or more

images to generate new samples. For brain lesion images, a

lesion-aware augmentation method, CarveMix (Zhang et al.,

2021), was proposed to combine two brain MRI scans to

increase training data diversity. CarveMix randomly extracts

lesion regions on the sagittal plane from one image and overlays

them onto a target image (Zhang et al., 2021).

2.2. Proposed pipeline

The proposed pipeline consists of a brain image

preprocessing step, followed by nnU-Net (Isensee et al.,

2021a) for lesion segmentation, which is trained with imaging

and lesion-aware data augmentation. An overview of the

pipeline is presented in Figure 1.

2.2.1. Preprocessing

Skull is stripped using an atlas-based brain extraction

tool (Doshi et al., 2013) followed by N4 bias field correction

(Tustison et al., 2010). This is implemented using the MSSEG-

2 longitudinal preprocessing script on Anima1 provided by the

challenge organizers. In addition, as the segmentation problem

concerns imaging scans taken at different time points, we also

perform intra-subject image registration so that scans of the

same subject can be aligned and new lesions can be better

differentiated. Since new lesions are defined on the follow-up

scan, we register the baseline scan to the space of the follow-

up scan. Affine image registration is performed, followed by

free-form deformation, implemented using the MIRTK toolbox

(MIRTK, 2021) using normalized mutual information as the loss

function. Free-form deformation assists lesion segmentation in

two ways: (1) brain structures, such as gyri, ventricles etc., are

better registered; (2) lesions which slightly grow between scans

are elastically registered so that the subsequent segmentation

network can focus more on newly formed lesions.

2.2.2. Segmentation network

We adopt nnU-Net (Isensee et al., 2021a) as the

segmentation network, with a two-channel input: preprocessed

baseline scan and preprocessed follow-up scan. The output of

the network is a binary 3D prediction of new lesions which

have formed in the follow-up scan. The network consists of six

resolution levels, formed from contracting and expanding paths.

On the contracting path, each resolution level consists of two

convolutional layers, each with a 3 × 3 × 3 convolution kernel,

followed by instance normalization and LeakyReLU operation.

At the start of each resolution level, the first convolution has a

stride of (2,2,2), which effectively downsamples the feature map.

At the lowest resolution level, the first convolution has a stride

of (2,1,2).

1 Anima scripts: RRID:SCR_017072, https://anima.irisa.fr.
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FIGURE 1

The proposed 3D framework for multiple sclerosis new lesion detection and segmentation. Framework comprises of brain extraction and N4

bias correction (Pre), intra-subject registration (Reg), imaging and lesion-aware data augmentations (Aug+), and nnU-Net. The pipeline takes

input the baseline and follow-up FLAIR MRI scans, and outputs the proposed binary segmentation for new lesions.

On the expanding path, each resolution level consists of two

convolutional layers with a 3×3×3 convolution kernel, followed

by instance normalization and LeakyReLU operations, followed

by an additional transposed 2 × 2 × 2 convolution operation.

The transposed convolution has a stride of (2,1,2) at the lowest

resolution level, and a stride of (2,2,2) at all other resolution

levels. By utilizing skip connections, features extracted from the

contracting path are concatenated with features at the expanding

path at their respective resolution level. The network uses

32-dimensional features maps at the highest resolution layer,

which is increased to 320 feature maps at the lowest resolution

layer. Please refer to Figure 2 for a graphical representation of

the architecture.

2.2.3. Hyperparameters and implementation
details

We implement the 3D full-resolution U-Net model of nnU-

Net, using the 3d_fullres configuration, utilizing PyTorch.

A single NVidia Tesla T4 GPU with 16GB RAM is used. Due

to the GPU memory limit, 3D patches of size 128×112×160

are extracted from the original 3D images for model training.

Patches are drawn randomly from the image with a 67%

probability, and are ensured to include the lesion region with

a 33% probability. The network is trained using a combination

of Dice and cross-entropy loss, formulated as,

L = −
2

|K|

∑

k∈K

∑
i∈I ŷi(k)yi(k)∑

i∈I ŷi(k) + yi(k)
−

∑

i∈I

∑

k∈K

yi(k) log ŷi(k) (1)

where k denotes the class, K denotes the number of classes

(K = 2 in our method), i denotes a given voxel, I denotes

the set of voxels over the image, ŷ is the softmax output of the

segmentation network, y is the one-hot encoding of the ground

truth label for the new lesions, and subscript i(k) is the number

of voxels in the training patch for class k.

We use the stochastic gradient descent optimizer with

Nesterov momentum of 0.99, an initial learning rate of 0.01, a

polynomial learning rate decay and a batch size of 2 patches.

When developing themodel on the training data, five-fold cross-

validation is used. Each model is trained for 1,000 epochs. After

training, for each fold, we select the model which produces the

highest Dice score. For inference, we ensemble segmentation

outputs from the five models from each fold. No post-processing

step is applied.

2.2.4. Imaging and lesion-aware data
augmentation

Incorporation of data augmentation methods increases

model generalizability and robustness, and decreases overfitting.

We utilize multiple data augmentation techniques, including

the default augmentations that nnU-Net provides in the

batchgenerators data augmentation framework (Isensee et al.,

2020). These augmentations includemirroring, rotating, scaling,

channel translation to simulate registration errors, elastic

deformations, linear downsampling, brightness and contrast

augmentation, gamma augmentation, Gaussian and Rician noise

augmentation, and random cropping.
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FIGURE 2

The 3D nnU-Net architecture for segmenting new lesions. It contains six resolution levels formed from contracting and expanding paths, and

skip connections to recover fine-grain detail from the contracting path. The input to the network is a pair of baseline image and follow-up

image. The output is the prediction of the new lesions.

In addition to these augmentations, inspired by Kamraoui

et al. (2021, 2022), we introduce axial subsampling to simulate

the image acquisition process on the axial plane. Brain MRI

typically acquires a stack of 2D image slices in the axial plane to

form a 3D volume, which can be of a high resolution within the

axial plane but subject to low resolution across the plane (Chai

et al., 2020). Axial subsampling augmentation is performed by

applying a median filter of size [1 × 1 × n] where n ∈ 2, 3, 4

to the axial image slices. This effectively blurs the image in the

sagittal and coronal planes. Figure 3A illustrates an example of

axial subsampling.

Finally, to increase the diversity of lesion images, a lesion-

aware data augmentation method, CarveMix (Zhang et al.,

2021), is used. CarveMix extracts a 3D region of interest

(ROI) according to the lesion location and shape from

one subject and mixes it with the brain image of another

subject, thus creating augmented training samples. To increase

diversity in augmentation, the lesion-aware ROI is generated by

thresholding the distance transform of the lesion using a random

threshold (Zhang et al., 2021). A synthetic image,X, and its label,

Y, is generated by,

X = Xi ⊙Mi + Xj ⊙ (1−Mi) (2)

Y = Yi ⊙Mi + Yj ⊙ (1−Mi) (3)

where {Xi, Yi} denotes one pair of image and label, {Xj,

Yj} denotes a second pair of image and label, Mi denotes

the binary mask of the ROI, and ⊙ represents voxel-wise

multiplication. We randomly select two subjects for CarveMix

augmentation when training. Incorporation of CarveMix data

augmentation increases the total volume which the lesion

class covers in an image, thus reducing the effect of class

imbalance caused from the foreground class making up a small

percentage of the overall image. Figure 3B illustrates an example

of CarveMix augmentation.

3. Results

3.1. Data

We evaluate the pipeline on the MICCAI 2021 MS new

lesion segmentation challenge dataset (MSSEG-2) (Commowick

et al., 2021a), which provides 3D FLAIR images of 100 MS

patients. The images were acquired from 15 different scanners,

six of them 1.5T and nine of them 3T, including three GE

scanners, six Philips scanners, and six Siemens scanners. Dataset

scanner information can be found at the MICCAI 2021MSSEG-

2 challenge demographics data (Commowick et al., 2022). The

images have varying image size and voxel spacing, which we

resample to the median spacing of the dataset, 0.977 × 0.977 ×

0.530mm3, before model training. Each patient was scanned

twice, with 1–3 years between the two time points, constituting

for a total of 200 images. Only new lesions at the second time

point were annotated. Existing lesions, growing or shrinking

lesions were not delineated. Each patient was annotated by

four neuroradiologist and one consensus new lesion mask was

provided. We use the consensus lesion masks as ground truth

for model training and evaluation.

The dataset has been partitioned into 40 training and 60 test

subjects by the challenge organizers. Of the 40 training subjects,

11 of them do not exhibit new lesions, which are referred to as

“no-new lesion cases.” We exclude these 11 no-new lesion cases
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FIGURE 3

Imaging and lesion-aware data augmentations applied on the MSSEG-2 training set. (A) Example of axial subsampling (n = 4) to simulate the

blurring in image acquisition. (B) Example of the CarveMix augmentation. Lesions from subject B are carved out and fused onto scan from

subject A. Contours delineate lesion labels.

from the training set, utilizing the remaining 29 cases for model

training. Of the 60 test subjects, 28 of them do not exhibit new

lesions. We use all 60 subjects for testing.

3.2. Evaluation metrics

The method is evaluated using the Anima analyzer

tool’s animaSegPerfAnalyzer2 function, provided by the

MSSEG-2 challenge organizers in order to provide a fair

comparison with other participating methods. In line with

the MSSEG-2 evaluation, we use the default configuration of

animaSegPerfAnalyzer, which excludes lesion volumes

smaller than 3mm3. The performance is evaluated separately for

patients with new lesions and those with no-new lesions on the

test set. For the new lesion cases, we report new lesion detection

and segmentation performance, true positive lesion count, false

positive lesion count, and false negative lesion count; for the

no-new lesion cases, we calculate the number of new lesions

detected (false positive lesions) and the volume of these false

positive lesions.

3.2.1. Performance on new lesion cases

New lesion detection performance is evaluated using the F1
score. The F1 score measures how many lesions are correctly or

incorrectly detected, regardless of the precision of its contours.

2 Anima scripts: RRID:SCR_017072, https://anima.irisa.fr.

It is formulated as,

F1 = 2
SL · PL

SL + PL

where SL denotes the lesion detection sensitivity (recall) and PL

denotes the positive predictive value (precision). The optimal

F1 score is 1. A lesion is considered as being detected or true

positive if the automatic detection overlaps with at least 10% of

the ground truth lesion volume and does not go outside by more

than 70% of the volume (Commowick et al., 2018).

New lesion segmentation performance is evaluated using the

Dice similarity coefficient, DSC, which measures spatial overlap.

DSC is formulated as,

DSC = 2
| A ∩ G |

| A | + | G |

where A denotes the automatic segmentation and G denotes the

ground truth. The optimal DSC is 1.

In addition to the metrics used in the MSSEG-2 challenge,

we also present results for average true positive lesion count,

nTP , average false positive lesion count, nFP , and average false

negative lesion count, nFN . Average true positive lesion count

evaluates the average correctly detected lesions by the automated

method. nFP evaluates the average incorrectly detected lesions

by the automated method. Finally, nFN evaluates the lesions not

detected by the automated method. These metrics are averaged

over the 32 new lesion cases in the test set. The consensus ground

truth segmentation contains a total of 224 new lesions, therefore

the optimal average true positive lesion count, nTP , is 7 ( 22432 ).

The optimal score for nFP or nFN is 0.
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TABLE 1 Comparison of the proposed method to the challenge participating methods in terms of DSC, F1 scores, the number of true positive

lesions nTP , the number of false positive lesions nFP , the number of false negative lesions nFN, and volume of false positive lesions VFP (unit:mm
3),

averaged across cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Method DSC F1 nTP nFP nFN nFP VFP

Expert 1 0.629 0.709 6.063 1.281 1.094 0.036 1.453

Expert 3 0.597 0.637 4.500 0.844 2.375 0.000 0.000

Expert 2 0.535 0.601 4.313 1.094 2.500 0.107 3.981

Expert 4 0.459 0.519 4.469 0.594 2.375 0.036 0.623

Proposed 0.510 0.552 4.969 2.031 2.281 0.036 0.192

MedICL 0.507 0.500 5.344 5.063†† 1.875 0.536††† 12.713

LaBRI-IQDA 0.500 0.515 5.563 6.094†† 1.656 1.143†† 38.486∗

SNAC 0.485 0.514 5.219 3.689† 2.031 0.321 5.726

LaBRI-D&E 0.472 0.496 5.500 9.156††† 1.750 1.964†† 177.131

NVAUTO 0.469 0.464∗ 5.344 12.000††† 1.906 3.286††† 68.211∗

LaBRI-Iw 0.453∗ 0.463∗ 5.000 6.719†† 2.250 0.857† 27.761∗

New Brain 0.451∗∗∗ 0.476∗∗∗ 4.032 2.903 3.355 0.786† 12.371

ITU 0.443 0.480 4.688 3.094 2.438 0.148 1.487

Mediaire-B 0.437∗∗ 0.541 5.688 4.469†† 1.500 0.536††† 29.235∗

Mediaire-A 0.432∗∗∗ 0.524 5.156 3.500 2.031 0.429† 15.908∗

Empenn 0.424∗ 0.532 4.178 2.719 3.031 0.286†† 4.258∗

McEwan-IM 0.423∗∗∗ 0.453∗ 5.469 8.531††† 1.781 0.857† 16.504

PVG 0.414∗∗∗ 0.449∗ 4.032 2.903 3.355 0.107 1.031

Neuropoly-1 0.411∗∗∗ 0.425∗∗∗ 3.625 2.813 3.563 0.286† 8.615

IAMLAB 0.411∗∗∗ 0.412∗∗∗ 5.094 6.844††† 2.156 1.679††† 19.753∗

LYLE 0.409∗∗∗ 0.443∗∗ 3.406 1.250 3.594 0.036 0.470

Neuropoly-2 0.409∗∗∗ 0.413∗∗∗ 3.656 1.906 3.469 0.107 0.498

SCAN 0.403∗∗∗ 0.431∗∗ 4.156 2.406 3.031 0.071 5.373

SCA-SimpleUNet 0.400∗∗∗ 0.448∗ 5.406 6.344††† 1.813 0.750††† 31.232∗

I3M 0.398∗∗∗ 0.358∗∗∗ 4.250 4.313† 3.000 0.393 14.800

Neuropoly-3 0.379∗∗∗ 0.416∗∗∗ 3.719 2.625 3.500 0.321† 19.240

The NoCoDers 0.365∗∗∗ 0.381∗∗∗ 4.750 7.594††† 2.500 1.370††† 25.848∗

Vicorob 0.357∗∗∗ 0.369∗∗∗ 3.906 4.094†† 3.156 0.964† 88.402

HufsAIM 0.346∗∗∗ 0.407∗∗∗ 2.938 1.979 4.156 0.444† 17.128∗

CMIC 0.330∗∗∗ 0.362∗∗∗ 3.906 6.094††† 3.344 4.714††† 123.442

MIAL 0.309∗∗∗ 0.332∗∗∗ 4.516 6.097† 2.774 1.464†† 177.861

SCA-withPriors 0.223∗∗∗ 0.216∗∗∗ 2.750 6.719†† 4.219 2.464††† 302.121

LIT 0.214∗∗∗ 0.242∗∗∗ 2.406 11.063 4.469 0.607† 35.404

IBBM 0.155∗∗∗ 0.145∗∗∗ 1.906†† 7.625††† 5.188† 3.786††† 123.309∗∗∗

Optimal score 1.000 1.000 7.000 0.000 0.000 0.000 0.000

The methods are sorted in the descending order of DSC. Best results are in bold. Asterisks indicate statistical significance (∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.005) when using a paired

Student’s t-test compared to the proposed method. We implement the Mann-Whitney U-test for nTP , nFP , and nFN metrics due to their non-normal distribution. The dagger symbols

indicate statistical significance (†p ≤ 0.05, ††p ≤ 0.01, and †††p ≤ 0.005) when using a Mann-Whitney U-test compared to the proposed method.

3.2.2. Performance on no-new lesion cases

For no-new lesion cases, the number and volume

of falsely predicted lesions are evaluated. To count

the number of false positive lesions, the Anima tool,

animaConnectedComponents3 function is used with

default parameters. The volume of false positive lesions is

3 Anima scripts: RRID:SCR_017072, https://anima.irisa.fr.
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calculated by multiplying the number of lesion voxels by

voxel spacing. We denote number of false positive lesions

as nFP , and volume of false positive lesions as VFP . The

optimal scores for both false positive lesion number and

volume are 0.

3.3. Results

3.3.1. Comparison against participating
methods in the challenge

The proposed pipeline is compared against MSSEG-2

participating methods and also four expert raters (Commowick

et al., 2021b), reported in Table 1. The performance of MSSEG-2

participating methods and four expert raters is acquired from

Commowick et al. (2021b). Table 1 shows that the proposed

pipeline ranks competitively against methods submitted to the

MSSEG-2 challenge. For the new lesion cases, it outperforms

the other methods in terms of both the average DSC and the

average F1 scores. Also, our method outperforms three of the

experts in nTP and nFN metrics. Our method correctly identifies

24 of the 32 new lesion cases as having new lesions. We achieve

comparable performance to Experts 1, 2, 3 and 4, which correctly

identify 26, 25, 27, and 22 of the 32 new lesion cases as having

new lesions, respectively. A non-zero F1 score is regarded as a

method having correctly identified a new lesion case.

For the no-new lesion cases, the proposed pipeline achieves

the lowest metrics for false positive lesions, including the average

number nFP and the average volume VFP . It correctly identifies

27 out of 28 no-new lesion cases as subjects with no-new lesions.

When comparing to expert raters, on the new lesion cases, the

proposed pipeline outperforms Expert 4 in terms of DSC and F1
scores and approaches the performance of Expert 2. On the no-

new lesion cases, the proposed pipeline outperforms or achieves

a comparable performance to Experts 1, 2 and 4.

3.3.2. Sensitivity vs. specificity analysis

Table 1 shows that there is a reverse correlation between the

results for new lesion cases vs. no-new lesions cases, especially

in the participating methods for the MSSEG-2 challenge. In

Figure 4, we plot the average DSC and F1 scores against

the average nFP and VFP metrics. It shows that methods

which perform well in new lesion cases do not perform

as well in no-new lesion cases. Contrary to other methods,

the proposed pipeline does not suffer from severe negative

correlation, which performs well in both new lesion and no-new

lesion cases.

FIGURE 4

Comparison of di�erent methods in new lesion metrics (DSC and F1) vs. no-new lesion metrics (nFP and VFP). X-axis denotes one of the no-new

lesion metrics in logarithmic scale and Y-axis denotes one of the new lesion metrics. Star denotes the proposed pipeline. (A) Plot of average DSC

vs. average false positive lesion count nFP . (B) Plot of average DSC vs. average false positive lesion volume VFP . (C) Plot of average F1 vs. average

false positive lesion count nFP . (D) Plot of average F1 vs. average false positive lesion volume VFP .

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.1007453
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Basaran et al. 10.3389/fnins.2022.1007453

TABLE 2 Comparison of the proposed method to recent state-of-the-art deep learning architectures in terms of DSC and F1 scores, the number of

false positive lesions nFP , the number of true positive lesions nTP , the number of false positive lesions nFP , the number of false negative lesions nFN,

and volume of false positive lesions VFP (unit:mm
3), averaged across cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Method DSC F1 nTP nFP nFN nFP VFP

Proposed 0.510 0.552 4.969 2.031 2.281 0.036 0.192

nnU-Net 0.490 0.548 4.562 1.281 2.688 0.036 0.138

(Isensee et al., 2021a)

TransBTS 0.477 0.470∗ 5.492 5.718†† 1.848 0.939† 12.238

(Wang et al., 2021)

UNETR 0.462 0.468∗ 5.343 9.031††† 1.906 4.214††† 23.705∗

(Hatamizadeh et al., 2022)

TransUNet 0.428∗∗ 0.434∗∗ 4.491 4.043†† 2.102 1.081†† 9.620

(Chen et al., 2021)

Tiramisu 2.5D 0.363∗∗∗ 0.365∗∗∗ 4.313 4.625†† 2.938 1.384†† 15.120

(Zhang et al., 2019)

Optimal score 1.000 1.000 7.000 0.000 0.000 0.000 0.000

The methods are sorted in the descending order of DSC. Best results are in bold. Asterisks indicate statistical significance (∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.005) when using a paired

Student’s t-test compared to our proposed method. We implement the Mann-Whitney U-test for nTP , nFP , and nFN metrics due to their non-normal distribution. The dagger symbols

indicate statistical significance (†p≤ 0.05, ††p ≤ 0.01, and †††p ≤ 0.005) when using a Mann-Whitney U-test compared to the proposed method.

3.3.3. Comparison against state-of-the-art
architectures

We also compare the proposed pipeline to a number of state-

of-the-art convolutional and transformer-based architectures,

which have demonstrated excellent performance in biomedical

image segmentation tasks. These architectures include the

standard nnU-net (Isensee et al., 2021a), TransBTS (Wang

et al., 2021), UNETR (Hatamizadeh et al., 2022), TransUNet

(Chen et al., 2021), and Tiramisu 2.5D (Zhang et al., 2019). In

order to evaluate methods fairly, we train these methods using

the same preprocessed data, described in Section 2.2.1, which

includes atlas-based brain extraction, N4 bias field correction,

and free-form deformation registration, and use the standard

data augmentation. The quantitative comparison results are

reported in Table 2, and an example segmentation for visual

comparison is provided in Figure 5. Table 2 shows that nnU-Net

with standard data augmentations performs favorably against

these state-of-the-art methods, and the proposed pipeline

further improves performance possibly due to the additional

data augmentation that we have introduced.

3.3.4. Ablation study

We carry out an ablation study to evaluate the impacts of

different components of the pipeline, including brain extraction

and N4 bias correction (Pre), affine and free-form image

registration (Reg) and additional data augmentation methods

including axial subsampling and CarveMix (Aug+). By default,

standard data augmentation methods are used which come with

nnU-Net, described in Section 2.2.4. The ablation study results

are presented in Table 3.

Interestingly, adding pre-processing alone or registration

alone does not drastically change performance metrics.

However, when they are combined, for new lesion cases, the

DSC score is increased from 0.476 to 0.490 and the F1 score

is increased from 0.533 to 0.548. When imaging-related and

lesion-aware data augmentations (Aug+) are introduced, the

DSC score is further increased to 0.510 and the F1 score

is increased to 0.552. This demonstrates that all the three

components play an important role in the proposed pipeline.

We also observe that when DSC and F1 scores are increased,

metrics concerning no-new lesion cases become poorer. The

undesired increase in false positive lesion count and lesion

volume is discussed in detail in Section 3.3.6.

3.3.5. Exclusion of no new lesion cases during
training

The MSSEG-2 training dataset is composed of 40 subjects.

11 subjects do not exhibit new lesions in their follow-up scans.

These subjects were removed from the training dataset, thus

we only utilized 29 subjects. We carry out an additional study

to investigate the impact of the exclusion of these images,

by comparing the performance on the test set when utilizing
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FIGURE 5

Visual comparison of the proposed segmentation pipeline to other methods. The proposed method produces a segmentation closest to the

ground truth annotation.

TABLE 3 Results for the ablation study, presenting DSC and F1 scores, the number of false positive lesions nFP , the number of true positive lesions

nTP , the number of false positive lesions nFP , the number of false negative lesions nFN, and volume of false positive lesions nFP (unit:mm
3), averaged

across cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Pre Reg Aug+ DSC F1 nTP nFP nFN nFP VFP

0.476 0.533 4.250 1.281 3.000 0.000 0.000

X 0.475 0.524 4.688 1.281 2.563 0.000 0.000

X 0.473 0.525 4.188 1.343 3.062 0.036 0.083

X X 0.490 0.548 4.562 1.281 2.688 0.036 0.138

X X X 0.510 0.552 4.969 2.031 2.281 0.036 0.192

Best results are in bold.

all 40 subjects for segmentation model training against using

the 29 subjects with new lesions. Results are presented in

Table 4. Interestingly, removing the no new lesion subjects result

in slightly higher DSC and F1 score, without compromising

performance in the no new lesion cases. This is likely due

to higher average representation of the foreground class (new

lesions) in the altered training set. In addition, reducing the

training set from 40 to 29 subjects decreased the model training

time by 27.5%.

3.3.6. Sources of failure

We carry out a qualitative investigation on the test set to

better understand where our method fails. In the no-new lesion

cases, the proposed pipeline correctly classifies 27 out of the 28

subjects. The one misclassified (subject ID: 004) is incorrectly

segmented to have 1 new lesion, which amount to 14 false

positive voxels (3.875 mm3), shown in Figure 6. The segmented

region has a higher intensity compared to surrounding regions

and we suspect that it is likely to be a new lesion. Two of four
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TABLE 4 Comparison between using the complete MSSEG-2 training set (40 subjects) against using 29 subjects which excludes the no new lesion

cases.

New lesion cases No-new lesion cases

(n = 32) (n = 28)

Training set DSC F1 nFP VFP

29 subjects with new lesions 0.510 0.552 0.036 0.192

All 40 subjects 0.502 0.530 0.036 0.192

We present the DSC and F1 scores, the number of false positive lesions nFP and their volume VFP (unit:mm3), averaged across cases. Best results are in bold.

FIGURE 6

The region which we incorrectly classify as a lesion in the

no-new lesion cases in the MSSEG-2 test set (subject ID: 004).

We suspect the segmented region to be a new lesion, two of the

human raters also classify this region as a new lesion.

expert raters also delineate this region as a new lesion, although

the consensus segmentation does not regards this as a lesion,

which leads to the misclassification of our method. This test set

subject is the cause of the undesired increase in false positive

lesion count and false positive lesion volume in Table 3.

In the new lesion cases, when assessing against the DSC and

F1 score, there is still room for improvement in performance.

There are possibly three sources of failure that affect the

DSC and F1 scores. The first is the incorrect segmentation

of growing lesions. The pipeline employs affine and non-rigid

registration to align the baseline scan to the follow-up and

thus suppresses the detection of growing lesions. However, the

remaining mis-alignment for some growing lesions still leads to

the boundary voxels, i.e., the grown regions of lesions, being

incorrectly segmented as new lesions. Secondly, the proposed

pipeline may miss some tiny and less apparent new lesions.

In some cases, new lesions which form in the follow-up scan

are very small and less hyperintense compared to large new

lesions. This makes the detection of these lesions very difficult

and leads to misclassifications. Finally, new lesion segmentation

is a generally challenging task even for human raters and

there are indiscrepancies between annotations from different

human experts. The noise in the annotations may limit what an

automated method can achieve (Zhang et al., 2020). We present

examples of all three sources of failure in Figure 7.

4. Discussion and conclusion

Here we demonstrate that by incorporating appropriate

preprocessing steps, an nnU-net segmentation network, imaging

and lesion-aware data augmentation techniques, we can

achieve promising performance in new MS lesion segmentation

tasks. The proposed pipeline outperforms other challenge

participating methods in both new lesion cases and no-new

lesion cases, in terms of DSC, F1, nFP and VFP scores.

We also observe that in terms of network architecture, the

recently popular transformer architectures may not necessarily

outperform convolutional neural network architectures, such as

nnU-net (Table 2). The design of proper pre-processing steps

and problem-specific augmentations may play a more important

role in this particular lesion segmentation task (Table 3).

In addition to the DSC and F1 score used by the MSSEG-

2 challenge, we introduce extra evaluation metrics, nTP , nFP ,

and nFN , for the new lesion cases to understand the method

performance. While many methods have a high nTP and a

lower nFN score, the results suggest that a lower nFP is what

differentiates our method and the Experts to the other methods,

thus providing a higher DSC and F1 score. The nTP , nFP ,

and nFN results also suggest that they should be analyzed

with respect to each other, as evaluating a method solely with

one of these metrics can be misleading. For example, the top

performing method in correctly identified average true positive

lesions, nTP , ranks 10th in DSC score, and the top performing

method in fewest average false positive lesion count ranks 17th

in both DSC and F1 score. Methods with higher nTP score also

have high nFP scores, with respect to Experts’ performance. The

results on the new metrics show that methods differ on their

approach to achieve optimal DSC and F1 scores, and suggest that

extra thought should be considered when evaluating a method

solely on one metric.
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FIGURE 7

Examples of three di�erent sources of error. Ground truth and predicted lesions are delineated in red. (A) (subject ID: 012) False positive

segmentation of a growing lesion. (B) (subject ID: 078) False negative classification of a new lesion. (C) (subject ID: 036) False positive

segmentation of a region classified as healthy/not-new in the consensus label, but annotated as a new lesion in two of the four provided expert

annotations.

Future efforts to improve the proposed method include

further investigation of the sources of failure described

in Section 3.3.6 and bridging the gap between automatic

segmentation and expert raters. The current MSSEG-2

challenge dataset only contains annotations of new lesions.

To discriminate new lesions from growing lesions, future

works may include curating a dataset of both lesion types and

training automated methods for detecting and differentiating

these lesions. Also, additional post-processing steps could be

developed to inspect local neighborhoods of detected new

lesions and check whether they are connected to existing

lesions or not, thus decreasing false positives for new lesion

detection. However, too large of a local context may come

at the cost of decreasing true positives too. Furthermore,

the proposed pipeline only focuses on lesions in the brain

region and the pre-processing step removes the spinal cord

region. Despite the MSSEG-2 testing dataset not featuring any

new lesions in the spinal cord, MS lesions can form in this

region. Inclusion of the spinal cord into the preprocessing

step and training data will extend the application of the

proposed pipeline.

In conclusion, we propose an nnU-Net-based pipeline for

multiple sclerosis new lesion segmentation. A contribution

of the pipeline is that it incorporates task-specific data

augmentation methods, including axial subsampling, which

simulates MRI acquisition-based image artifacts, and CarveMix,

which increases the diversity of lesion images. When evaluating

on the MSSEG-2 dataset, the proposed pipeline achieves

excellent performance in evaluation metrics for both new lesion

and no-new lesion cases.
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