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Subject motion is a well-known confound in resting-state functional MRI

(rs-fMRI) and the analysis of functional connectivity. Consequently, several

clean-up strategies have been established to minimize the impact of subject

motion. Physiological signals in response to cardiac activity and respiration

are also known to alter the apparent rs-fMRI connectivity. Comprehensive

comparisons of common noise regression techniques showed that the

“Independent Component Analysis based strategy for Automatic Removal of

Motion Artifacts” (ICA-AROMA) was a preferred pre-processing technique for

teenagers and adults. However, motion and physiological noise characteristics

may differ substantially for older adults. Here, we present a comprehensive

comparison of noise-regression techniques for older adults from a large

multi-site clinical trial of exercise and intensive pharmacological vascular

risk factor reduction. The Risk Reduction for Alzheimer’s Disease (rrAD)

trial included hypertensive older adults (60–84 years old) at elevated risk

of developing Alzheimer’s Disease (AD). We compared the performance

of censoring, censoring combined with global signal regression, non-

aggressive and aggressive ICA-AROMA, as well as the Spatially Organized

Component Klassifikator (SOCK) on the rs-fMRI baseline scans from 434

rrAD subjects. All techniques were rated based on network reproducibility,

network identifiability, edge activity, spatial smoothness, and loss of temporal

degrees of freedom (tDOF). We found that non-aggressive ICA-AROMA did

not perform as well as the other four techniques, which performed table

with marginal differences, demonstrating the validity of these techniques.
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Considering reproducibility as the most important factor for longitudinal

studies, given low false-positive rates and a better preserved, more cohesive

temporal structure, currently aggressive ICA-AROMA is likely the most suitable

noise regression technique for rs-fMRI studies of older adults.

KEYWORDS

resting-state fMRI, aging, preprocessing, noise regression, multi-site studies

Introduction

Ever since the observation of low-frequency fluctuations
(<0.1 Hz) and corresponding connectivity patterns in
functional MRI (fMRI) recordings of resting subjects (Biswal
et al., 1995), the investigation of resting-state fMRI has become
a staple of modern neuroscientific research. During the last
25 years new analysis methods have been developed, yet from
early on subject motion during scanning, as well as physiologic
and system-related confounding factors, have been and still
remain challenges for fMRI data analysis and interpretation
(Jenkinson et al., 2002; Chang and Glover, 2010; Pruim et al.,
2015a; Caballero-Gaudes and Reynolds, 2016).

Issues of subject motion in fMRI, as well as the impact of
motion on functional connectivity, motion compensation, and
motion cleaning strategies, are well established (Cole et al., 2010;
Power et al., 2012; van Dijk et al., 2012; Murphy et al., 2013).
Commonly, 3-dimensional fMRI volumes in a 4-dimensional
timeline are linearly registered to each other (volume by
volume), giving an estimation of and correction for the six
motion parameters (three translational and three rotational
directions). Typically, these six motion parameters are used
within a General Linear Model (GLM) to regress motion-related
signals that might still be present in the data after the initial
alignment process. Early on, Friston et al. (1996) introduced
motion derivatives and temporal shifts to better model subject
motion. While this method can address gradual motion over
time, it is not effective for correction of short sudden bursts of
motion, thus motion spike regression, censoring, or “scrubbing”
(i.e., regressing or cutting time points with high FWD rates)
were designed to remedy sudden motion effects (Power et al.,
2012). While these techniques can remedy motion effects, they
come at the cost of altering the temporal cohesiveness and must
be deployed carefully and with consideration of the subsequent
analysis methods (Power et al., 2012; Pruim et al., 2015a; Scheel
et al., 2018). As these procedures are widely used, residuals of
subject motion-related signals are often still present after pre-
processing and thus impact the results of higher-level analyses
(Scheel et al., 2015). These impacts might manifest as subtle
artifacts but can also be severe, like false long-range fronto-
posterior connections, making the independence-verification of

motion parameters from target variables indispensable (Power
et al., 2012; Scheel et al., 2015).

In addition to motion, artifacts or confounds stemming
from physiological fluctuations need to be addressed during
pre-processing. Low-frequency fluctuations in both respiratory
volume and cardiac rate can affect blood-oxygen-level-
dependent (BOLD) signal, which then can obscure detection
of neural activations. Regression of concurrently recorded
signals of breathing and heart rate (RETROICOR-RVHR) can
adequately address these issues assuming there is no temporal
overlap of the intrinsic neuronal signals with these physiological
variations (Chang et al., 2009; Glover et al., 2000; Scheel et al.,
2014). In addition, not all scanners or sites are equipped
with physiological monitoring devices. Another common
way physiological artifacts are addressed is the regression
of signals from the white matter (WM), cerebrospinal fluid
(CSF), and the much-debated global signal (Zhu et al., 2015;
Kassinopoulos and Mitsis, 2019). Average signals from regions
of the WM and CSF are unlikely to contain neuro-vascular
activity and are therefore commonly interpreted as broad
average estimators of non-neural physiological fluctuations.
The global signal, meaning the average signal of all brain voxels,
has been shown to be dominated by signals stemming from
upper-stream physiological fluctuations such as blood flow
oscillations impacted by heart rate and respiration (Zhu et al.,
2015; Kassinopoulos and Mitsis, 2019).

More recently, data-driven techniques such as the
Independent Component Analysis (ICA) based “FMRIB’s
ICA X-noiseifier” (ICA-FIX), the ICA based strategy for
Automatic Removal of Motion Artifacts (ICA-AROMA), and
the Spatially Organized Component Klassifikator (SOCK)
have been introduced to improve motion and general artifact
estimation and regression (Bhaganagarapu et al., 2013;
Salimi-Khorshidi et al., 2014; Pruim et al., 2015b). All these
procedures apply spatial Independent Component Analysis
(sICA) to extract noise components from fMRI data (Beckmann
and Smith, 2004). Spatial ICA components are classified as
either non-noise or noise components and the corresponding
temporal noise signals are used as regressors. The main
differences between these techniques are how and which signal
components are classified as noise. ICA-FIX uses an elaborate
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FIGURE 1

Motion parameters of a typical subject with continuous tremor-like high-frequency motion. The top panel describes the head movement
induced translations in 3-dimensional space over time. The bottom panel shows the corresponding frame-wise displacements (FWD) as an
estimate of motion magnitude from one volume to the next. Visible are the many FWD spikes that surpass the 0.2 mm threshold and only a few
at the 0.5 mm threshold.

combination of stacked classifiers (multiple Support Vector
Machines, k-Nearest Neighbors, and Trees) with a multitude of
extracted features. Additionally, ICA-FIX needs to be manually
trained on a subset of subjects. In the case of multi-site or
multi-scanner studies, manual training is also needed on a
subset of data from each site or scanner due to unique site or
scanner characteristics and thus can potentially lead to dataset
biases as well as high workloads (Pruim et al., 2015a). Since
ICA-FIX is not well suited for multi-site studies, it was not
selected for our comparison study. ICA-AROMA employs a
more straightforward Linear Discriminant Analysis (LDA)
approach with a basic set of signal features and operates without
the need to retrain the classifier, as it is provided pretrained
and automatically adapts to all rs-fMRI recordings. SOCK
(Bhaganagarapu et al., 2013) was not initially developed for the
purpose of noise regression. In classical ICA analysis, signal
components are classified as noise or neural components so
that subsequent analyses can be targeted at specific neural
networks. SOCK aimed to facilitate this post hoc rating process
by creating a classifier that mimics an expert’s decision tree
when rating spatial independent components. Nonetheless,
SOCK implements a noise component classification that
can also be used in the context of noise identification and
regression. Most importantly, ICA-AROMA and SOCK contain
pre-trained classifiers and thus do not require re-training on
new data, making them suitable for studies that aggregate data
from multiple scanners and study sites.

The noise regression techniques discussed above are diverse
and their use is much debated in the neuroimaging field
(Murphy et al., 2009, 2013; Cole et al., 2010; Wu et al., 2011;
Mowinckel et al., 2012; Power et al., 2012; van Dijk et al., 2012;

Griffanti et al., 2014; Caballero-Gaudes and Reynolds, 2016; Liu,
2016; Satterthwaite et al., 2019). A comprehensive comparison
was first conducted by Pruim et al. (2015a), on a healthy young
cohort with a mean age of 15.4 ± 3.7 years. The authors
compared the regression of 0, 6, and 24 motion parameters,
spike regression, scrubbing, aCompCor, SOCK, ICA-FIX, and
ICA-AROMA. Based on the criteria of motion artifact removal
quality, preservation of signal of interest, reproducibility,
identifiability, and loss of tDOF, they concluded that ICA-
AROMA (non-aggressive) was the most suitable method for
noise reduction. Censoring or scrubbing techniques performed
reasonably well but alter the temporal autocorrelation structure.
ICA-FIX showed the best reproducibility at the cost of
a profound impact on neuro-vascular activity. SOCK and
aCompCor had the lowest efficacy in reducing motion-
related noise signals. A second comprehensive comparison was
conducted using data from 34 obsessive-compulsive disorder
patients, 50 schizophrenic patients, as well as 381 healthy adult
controls from four independent data sets (Parkes et al., 2018).
Nineteen different denoising pipelines, combining different
techniques, were compared using a range of quality control
metrics. The comparisons showed that the censoring-based
pipelines performed best, but also had the highest degrees
of data loss, making (non-aggressive) ICA-AROMA the more
favorable option.

Risk Reduction for Alzheimer’s Disease (rrAD) is a multi-
center clinical trial (NCT02913664) designed to assess the
effects of aerobic exercise and pharmacological interventions
on cognitive function in older hypertensive adults (60–85) who
are at a higher risk of developing Alzheimer’s Disease and
related dementias (ADRD) (Szabo-Reed et al., 2019). As part
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of the neuroimaging protocol, resting-state fMRI (rs-fMRI) was
obtained at baseline and again after 2 years of intervention.
Compared to the adolescent cohort analyzed by Pruim et al.
(2015b) and the adult cohorts in Parkes et al. (2018), rrAD
subjects are elderly, hypertensive, and have a high risk of
developing ADRD. Subjects from the rrAD cohort are also likely
to have comorbidities (Vidoni et al., 2020). Thus, the patterns
of neuronal activity, motion, physiological noise, and vascular
contributions to fMRI signals are expected to be significantly
different from the prior studies (Mowinckel et al., 2012; Ferreira
and Busatto, 2013; Ferreira et al., 2016; Pardoe et al., 2016; Biehl
et al., 2017; Geerligs et al., 2017; Saccà et al., 2021).

Figure 1 shows the head-motion plot for a typical rrAD
subject. The top panel shows the translational motion in
the three spatial directions over time, while the lower panel
shows the framewise displacement (FWD) as an estimate
of displacement magnitude from one volume to the next.
Visible are continuous high-frequency (HF) motion patterns
that fluctuate in each direction, with the FWDs constantly
surpassing the typical 0.2-mm threshold (Power et al., 2012;
Pruim et al., 2015a). Caused by heavy breathing or tremors,
this type of motion pattern is typical for rrAD subjects and
differs significantly from healthy young and middle-age adult
subjects, whose motion plots are often much smoother and do
not exhibit HF motion (Gratton et al., 2020). If the subject
motion is not properly addressed in the noise regression
stage of preprocessing, spurious motion artifact signals will
dominate and drive temporal correlations of the fMRI signal,
rather than the underlying neuronal activity. In this work
we employed the baseline scans (before intervention) of 434
rrAD subjects, scanned on five different 3T MRI scanners
from three vendors (Siemens, GE, and Philips), to compare the
performance of different rs-fMRI noise regression techniques
across different scanners. These techniques are: censoring
of excessive motion, censoring combined with global signal
regression, aggressive and non-aggressive AROMA, as well
as SOCK. As censoring is a more traditional technique that
is standardly implemented in AFNI’s proc.py script and has
proven good performance in the prior assessments, we included
it as a reference technique. With the current debate on global
signal regression (Murphy et al., 2009, 2013), we decided to add
a pipeline that combines censoring with global signal regression
for comparison. The general applicability and benefits of ICA-
AROMA have been shown in prior publications (Pruim et al.,
2015a; Parkes et al., 2018), but the difference in efficacy and
performance between non-aggressive and aggressive AROMA
has not been evaluated systematically before, thus we included
both versions in this comparison. SOCK was chosen as a third
data-driven denoising approach as it provides an unbiased
classifier that does not have to be re-trained. Furthermore,
the classifier used in SOCK was created based on a human
rater decision tree and thus represents a different approach.
To assess the performance of these techniques, we compared

their reproducibility, identifiability, amount of edge activity,
spatial smoothness, and loss of tDOF. To reliably investigate
longitudinal changes, we emphasized network reproducibility
and identifiability as the most important metrics for the rrAD
data analysis. An overview of our data processing can be found
in Supplementary Figure 1.

Materials and methods

Dataset

A detailed description of the rrAD protocol, including
inclusion and exclusion criteria, has been provided by Szabo-
Reed et al. (2019). Overall, individuals with a history of severe
neurological, psychological, cardiovascular, and other severe
diseases were excluded from this study. An overview of the
demographics for the rrAD subjects used in these analyses
is provided in Table 1. As part of the rrAD neuroimaging
protocol, 434 subjects underwent baseline resting-state fMRI
acquisition (eyes focused on a cross) for 12 min on five different
3 Tesla MRI systems at four clinical sites: 49 subjects on a
Philips Achieva, 61 subjects on a GE MR750W, both located
at the University of Texas Southwestern Medical Center; 128
subjects on a GE MR750W at the Pennington Biomedical
Research Center; 106 subjects on a Siemens Skyra at the
University of Kansas; and 90 subjects on a Siemens Prisma
at Washington University. All scanners were equipped with a
32-channel head coil, except the GE system at the University
of Texas Southwestern Medical Center, where a 48-channel
head/neck coil was used. The fMRI data were acquired with
2.5 s TR (time of repetition), 28 ms TE (time of echo), and
a 64 × 64 matrix size with 3.4 mm × 3.4 mm pixels. A 3
mm slice thickness was used on all but the GE system at the
University of Texas Southwestern Medical Center, on which
thicker slices of 3.4 mm were used without parallel imaging
to compensate for the reduced signal-to-noise ratio on the
48-channel head-neck coil.

In addition to the functional images, anatomical 3D
1-mm3 isotropic T1-weighted MPRAGE images with CSF
suppressed were also collected for each of the subjects using
the following parameters: 176 sagittal slices, TE = 3.8–4 ms,
TR of acquisition ≈ 8.6 ms, time of inversion (TI) = 830 ms,
TR of inversion = 2,330 ms, flip angle = 8◦, FOV (field of
view) = 25.6 cm × 25.6 cm, matrix size = 256 × 256, slice
thickness = 1 mm, and parallel imaging acceleration factor = 2.

Functional MRI pre-processing and
noise regression

The data of each subject was first processed with the
AFNI (Cox, 1996) proc.py script (AFNI’s tool to create
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TABLE 1 Participant characteristics.

25% Median 75% Mean ± SD Minimum Maximum

Male/Female (n) 160/274

Race (n) 360 Caucasian, 61 African American, 13 Hispanic

Age (years) 64 68 72 69 ± 6 60 84

Body mass index (kg/m2) 26 30 34 30 ± 5 19 47

Education (years) 15 16 18 16 ± 2 12 20

MMSE total 28 29 30 29 ± 1 24 30

Heart rate (bpm) 59 68 75 68 ± 11 39 106

Systolic blood pressure (mmHg) 125 136 149 138 ± 16 103 188

Diastolic blood pressure (mmHg) 74 79 84 79 ± 7 56 116

Cardiovascular risk score* 9 14 24 18 ± 13 3 81

*10-year Atherosclerotic Cardiovascular Disease (ASCVD) risk based on AHA Pooled Cohort (Goff et al., 2014).

a complete and standardized fMRI preprocessing pipeline).
This script includes the steps of outlier detection, de-
spiking, correction for slice timing differences, functional
image co-registration to anatomical recordings, alignment
between functional volumes to correct for rigid motions, and
smoothing using a 4 mm kernel. Building on these initial
steps, we implemented five different regression techniques
to compare their performance on motion correction and
noise reduction:

1) “censoring”: As a reference for the comparison, we used
the standard procedure implemented in AFNI’s proc.py:
Noise regressors include 24 motion parameters (24 MP),
sudden motion scrubbing/censoring regressors [Frame-
wise Displacement (FWD) cutoff at < 0.5 mm], mean
signal time courses from WM and CSF, a bandpass
filter (0.009–0.08 Hz) and third order detrending. All
regressors were combined for noise regression using
AFNI’s “3dDeconvolve.”

2) “censoring + GS”: Adds the global mean signal (GS) time
course of the whole brain to the regression matrix used in
the “3dDeconvolve” step from procedure 1 above.

3) “aggr. AROMA”: Using the results from the initial steps,
we transformed the motion parameters extracted by
AFNI’s motion correction into an FSL-compatible format
and performed aggressive ICA-AROMA (Pruim et al.,
2015b) before applying the same bandpass filter as in
techniques 1 and 2 above.

4) “non-aggr. AROMA”: Uses the same approach as
technique 3 above but performs non-aggressive ICA-
AROMA, in which partial regression instead of full
regression was used in the internal regression step of
ICA-AROMA (using “fsl-regfilt”) for the removal of
noise components.

5) “SOCK”: As a comparable method to ICA-AROMA,
SOCK implements a classifier to identify noise components
from a resting-state fMRI ICA decomposition. Here we

combined the noise components identified by SOCK with
the 24 motion parameters, WM/CSF signals, bandpass,
and detrend parameters used in technique 1 for the
“3dDeconvolve” noise regression.

Implementation of ICA-AROMA

The MATLAB implementation of ICA-AROMA version
0.4-beta was used to avoid implementation errors in Version
0.2-beta and earlier.1 To compare across techniques, spatial
smoothing was handled in a two-step process. Pruim et al.
(2015b) recommended at least 6 mm of spatial smoothing to
achieve stable ICA results. However, for the rrAD study, a
4 mm smoothing kernel (slightly larger than the voxel size)
is preferred, to resolve smaller structures such as parts of
the hippocampus. To satisfy these two requirements, ICA-
AROMA was first applied to extract noise components from
the dataset which was spatially smoothed with a 6 mm kernel.
The time courses of these noise components were then used
as the regressors in the dataset that was spatially smoothed
with a 4 mm kernel. Other optimizations we implemented
for ICA-AROMA, were adjustments to cope with anatomical
variations of older brains, as these often show significant
ventricle enlargements and other major anatomical distinctions.
ICA-AROMA uses an internal function “register2MNI” which,
by default, linearly transforms IC maps from native space to
MNI space for classification. This linear transformation works
well for young healthy brains but often leads to alignment errors
for brains that deviate greatly from the standard MNI152 brain,
which was common in this study. To resolve this alignment
issue, external linear and non-linear transformation matrices
can be used in “register2mni.” Using the program “FLIRT” from
FSL (Jenkinson et al., 2012), a transformation matrix was first

1 https://github.com/maartenmennes/ICA-AROMA
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created for the linear spatial alignment between the functional
and 3D MPRAGE images. Then, using the program “FNIRT”
from FSL (Jenkinson et al., 2012) a non-linear transformation
matrix was created, warping the 3D MPRAGE image from
native to MNI space. Using these transformation matrices as
additional input was indispensable for ICA-AROMA to work
reliably with non-normative brain anatomies.

Data quality metrics

Like the approaches by Bhaganagarapu et al. (2013) and
Pruim et al. (2015a), we assessed the performance of the
techniques based on the following quality metrics: Resting
state network (RSN) reproducibility, RSN identifiability, edge
activity, spatial smoothness, loss of temporal degrees of freedom
(tDOF), and true and false positive connectivities, as sub-
scores of identifiability. All metrics were calculated for each
subject and compared separately for each scanner and at the
consortium level.

To avoid site or MRI system bias, we applied the following
seed-based approach in RSN map creation: Each subject’s
anatomical MPRAGE scan underwent Freesurfer (Fischl, 2012)
segmentation to reliably extract seed regions for major resting-
state networks. RSN maps were then calculated by using the
respective seed region’s mean signal for whole-brain correlation.
See Supplementary Table 1 for a list of seed regions and
expected resting-state network connectivity. We used the 14
RSN atlas by Shirer et al. (2012) as a reference, to compare the
seed-based correlation maps with the peak regions of established
RSNs. All correlation indices were Fisher-z transformed. Metrics
based on thresholded z-correlation maps used Gaussian mixture
modeling for thresholding.

RSN reproducibility estimates how stable RSN maps are
across subjects. It is derived by using 500 random split-half
permutations: for each permutation the dataset is randomly split
into halves, representing 50% of all subjects. For each half of
the dataset, the average Fisher-z transformed, unthresholded
map of each seed correlation map is calculated. This procedure
results in two average seed correlation maps (one per half) per
seed (one of 22) and permutation (one of 500). The spatial
Pearson correlation of the two corresponding averaged maps
gives a distribution of 500 correlation values per seed. The
correlation values of uncoressponding maps (off-diagonals in
the 22 × 22 correlation matrix) serve as null distribution and
are used to transform the correlation values (main diagonals)
into pseudo-z-scores, for details see Pruim et al. (2015a).

RSN identifiability estimates how reliable the 14 reference-
RSNs from Shirer et al. (2012) can be identified using the 22
RSN maps generated from the aforementioned 22 seeds. Here
we categorized these 22 RSN maps as either corresponding or
not corresponding to the 14 reference-RSNs. The identifiability
score of an RSN map compared to a reference map is defined

by the ratio of the mean absolute z-score within the RSN
map and the mean absolute z-score outside the map, for
details see Pruim et al. (2015a). In a subsequent analysis, we
further investigated sub-scores of identifiability: true positive
connectivity, represented by the average connection strength
within target network regions, and false positive connectivity,
represented by the mean r-values outside the target networks
but within the gray matter. Furthermore, strong correlations
with regions of the WM and the CSF are also considered false
positives.

Edge activity is given by the percentage of absolute active
voxels within an edge mask around the brain (after Gaussian
mixture model thresholding). Activation along the edge of the
brain is considered a marker of motion artifacts (Bhaganagarapu
et al., 2013).

The spatial smoothness measure identifies noise, that
manifests as high spatial fragmentations which are not likely
due to neuronal activity. When RSN maps are not spatially
cohesive, but rather fragmented in many spots and patches,
they are unlikely of neural origin. Spotty and patchy regions
tend to contain relatively large amounts of signal with high
spatial frequencies. Regions of RSN maps with neural origin
on the contrary tend to have lower spatial frequencies and
appear more cohesive and smooth (Bhaganagarapu et al., 2013).
The spatial smoothness can be quantified with a discrete 3D
Fourier transform. Specifically, it can be calculated based on
the ratio of the mean amplitudes of the Fourier transformed
signals between the low-frequency and HF regions defined by
a sphere with the origin at the center of frequency space. Using
the “smoothness_measure” function of SOCK (Bhaganagarapu
et al., 2013), we calculated these smoothness fractions at six
increasing spherical sizes. We used the mean of these six ratios
as a measurement of the spatial smoothness of an RSN map.

Lastly, the loss of tDOF counts how many time-points of the
fMRI time series are lost due to performing linear regressions.
Each regressor for motion censoring or noise IC regressions
represents a loss of one degree of temporal data freedom.

Statistical analyses

Employing the data quality metrics, displayed as
mean ± standard deviations in Tables 2, 3, of resting-state-
network reproducibility, identifiability, edge activity, spatial
smoothness, and the loss of tDOF on the rrAD baseline data,
we assessed the performance of the different noise regression
techniques using a best to worst ranking. In complementary
analyses, we ranked the sub-scores of resting-state-network
identifiability as true and false positive connectivity, as well as
connectivity with WM and CSF. For voxel-wise analyses that
made use of thresholded maps, we employed Gaussian Mixture
Modeling for thresholding of connectivity maps. Statistical
significance was tested using non-parametric Kruskal-Wallis
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TABLE 2 RSN data quality metrics based on data across all scanners collected from the rrAD project.

Techniques Reproducibility z-score Identifiability z-score Edge activity % Spatial smoothness

Censoring 5.8 ± 1.2 3.5 ± 1.1 11 ± 9 0.028 ± 0.004

Censoring + GS 5.3 ± 0.7 3.4 ± 1 8 ± 4 0.023 ± 0.004

Aggressive AROMA 6.9 ± 1.2 3.6 ± 1 10 ± 5 0.031 ± 0.007

Non-aggressive AROMA 4.5 ± 1.4 1.6 ± 1.2 26 ± 19 0.03 ± 0.007

SOCK 6.4 ± 1.3 4.1 ± 1 6 ± 2 0.023 ± 0.003

Resting state network (RSN), results are presented as mean ± std, bold entries mark the best result, and italic entries mark the worst result.

TABLE 3 Identifiability sub-scores of connectivity.

Techniques True positive connectivity r False positive connectivity r WM connectivity r CSF connectivity r

Censoring 0.27 ± 0.15 0.1 ± 0.06 0.02 ± 0.02 0.04 ± 0.04

Censoring + GS 0.18 ± 0.14 0.01 ± 0.03 0.01 ± 0.02 −0.01 ± 0.02

Aggressive AROMA 0.24 ± 0.13 0.11 ± 0.06 0.07 ± 0.05 0.06 ± 0.04

Non-aggressive AROMA 0.4 ± 0.2 0.24 ± 0.13 0.18 ± 0.13 0.13 ± 0.08

SOCK 0.21 ± 0.13 0.06 ± 0.04 0.01 ± 0.01 0.02 ± 0.02

Results are presented as mean ± std, bold entries mark the best result, and italic entries mark the worst result.

tests to investigate the effect of the regression techniques on each
of the RSN quality metrics. Pairwise Mann-Whitney U-tests
were used for pairwise comparisons. Multiple comparisons
were corrected using the Bonferroni method.

Results

All data quality metric comparisons were carried out
separately for data from each of the five MRI systems and at the
consortium level, which combines the data across all systems.
Tables 2, 3, as well as Figures 2, 3, summarize the findings
of the performance of the noise regression techniques at the
consortium level, including reproducibility, identifiability, edge
activity, spatial smoothness, and loss of tDOF. Separate results
for each of the MRI systems used in this study were largely
comparable to the consortium results (see Supplementary
material for separate listings).

The z-scores (mean ± std) for RSN reproducibility can
be found in Table 2 and Figure 2A. Aggressive AROMA
has the highest, while non-aggressive AROMA has the
lowest reproducibility rates, with all pairwise Mann-Whitney
U-tests and the general Kruskal-Wallis test reaching significant
corrected p-values lower than 0.001.

The z-scores for RSN identifiability can be found in
Table 2 and Figure 2B. Most techniques reached comparatively
good identifiability scores, yet non-aggressive AROMA scored
significantly lower while SOCK shows a slight trend of a higher
score. The general Kruskal-Wallis test and most pairwise Mann-
Whitney U-tests reached significant corrected p-values lower
than 0.001, except for censoring compared to censoring with
global signal regression, which reached a corrected p < 0.05

while censoring compared to aggressive AROMA did not show
a significant difference in identifiability.

Percentages of edge activity are shown in Table 2 and
Figure 2C. Activity around the edge of the brain was highest
for non-aggressive AROMA, the other techniques each show
quantitatively low edge activity measures. The general Kruskal-
Wallis test and most pairwise Mann-Whitney U-tests reached
significant corrected p-values lower than 0.001, except censoring
compared to aggressive AROMA, which did not show a
significant difference in edge activity.

Spatial smoothness fractions can be found in Table 2 and
Figure 2D. Aggressive and non-aggressive AROMA produce
maps that are spatially smoother than the other techniques. The
general Kruskal-Wallis test and most pairwise Mann-Whitney
U-tests reached significant corrected p-values lower than 0.001,
except censoring with global signal regression compared to
SOCK, which reached a corrected p < 0.01 while aggressive
AROMA compared to non-aggressive AROMA did not show a
significant difference in spatial smoothness.

Loss of temporal degree of freedom (TDF) compares
AROMA, SOCK, and censoring techniques. For AROMA and
SOCK, the loss of TDF depends on the number of components
classified as noise, while the loss of TDF for censoring varies
depending on the FWD cut-off used. At an FWD cut-off of
0.5 mm, as used in this study, the average loss of TDF was
7 ± 4%. At an FWD cut-off of 0.2 mm [used by Pruim et al.
(2015a)], the average loss of TDF would be 27 ± 25%, leading
to a substantial amount of data loss for some subjects. The
AROMA techniques have lost 15 ± 4% TDF, while SOCK
lost 10 ± 2% TDF (Figure 3). The general Kruskal-Wallis test
and most pairwise Mann-Whitney U-tests reached significant
corrected p-values lower than 0.001, except for the pairwise
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FIGURE 2

Comparison of data quality metrics. (A) Shows the Reproducibility as a result of 500 random split-half permutations. (B) Shows the Identifiability
as a ratio of true-positive and false-positive connectivity compared to the target region maps. (C) Shows the amount of brain edge activity after
Gaussian mixture modeling as an estimator of residual subject motion. (D) Shows smoothness fractions as a measure for spatial high-frequency
noise.

Mann-Whitney U-test between censoring with an FWD cut-off
of 0.2 mm and the AROMA techniques, which did not show a
significant difference in lost tDOF.

In addition to the quality metrics presented above, we also
computed preprocessing specific average resting-state network
maps across all subjects and applied Gaussian mixture modeling
for thresholding. As an example, the default mode network
(DMN) is depicted in Figure 4. While all regression techniques
on average produced qualitatively expected DMN maps,
some differences were observed: Censoring with global signal
regression and the SOCK technique revealed anticorrelated
task-positive regions, which were not shown in the other
techniques. Furthermore, while the non-aggressive AROMA
results show the highest correlation values within the DMN,
significant correlations were falsely shown in some motor
regions. As rrAD subjects often exhibited HF motion patterns
as seen in Figure 1, these motion patterns were manifested as
variations in functional connectivity maps. The variations of the
DMN maps due to the different preprocessing techniques are
shown for an example subject with HF motion in Figure 5. Here,
the censoring technique shows some residuals of edge activity,
while censoring in combination with global signal regression,
as well as SOCK, clearly show the anti-correlated task-positive
regions. The non-aggressive AROMA technique shows hyper-
connected regions across the whole brain, while the aggressive
AROMA technique shows a quantitatively clean DMN map.

Discussion

In this study, we qualitatively, and quantitively evaluated five
commonly used preprocessing techniques for the rs-fMRI data
of 434 rrAD subjects, scanned on five different scanners from
three vendors. Comparing across the metrics, except for non-
aggressive AROMA, the other four preprocessing techniques

FIGURE 3

Lost temporal degrees of freedom. Comparison of the
percentage of data that is lost resulting from each regression
approach. Censoring results are displayed first with a theoretical
FWD cut-off of 0.2 mm and then with the slightly more lenient
0.5 mm FWD cut-off. Censoring loss is induced by discarding
timepoints of high motion, while AROMA and SOCK loss is
induced by the number of ICA components classified as noise.
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FIGURE 4

Mean default mode network (DMN) connectivity map of 434 rrAD subjects in MNI space with the results of each of the regression approaches
overlayed on the subject’s mean MPRAGE images. On average, the seed-based DMN can be calculated reliably with each of the 5 regression
approaches and the differences are subtle. As expected, the regression of the global signal introduces task-positive anticorrelations for the
censoring + GS approach but also for SOCK. Non-aggressive AROMA displays false positive connectivity in superior motor regions, while
aggressive AROMA shows the best balance of separating basal ganglia subregions of the DMN.

demonstrated to be comparable overall. Aggressive AROMA
reached the highest reproducibility scores while non-aggressive
AROMA scores lowest. Except for non-aggressive AROMA, the
other four preprocessing techniques achieved reasonably good
identifiability scores. Considering reproducibility as a crucial
metric for longitudinal studies, we selected aggressive AROMA
as the most suitable preprocessing technique for rrAD subjects.

Our results aligned to a large extent with the findings of
Pruim et al. (2015a) and Parkes et al. (2018), who concluded
that AROMA is the recommended option for rs-fMRI noise
regression. Yet, the approaches employed for data analysis
leading to this conclusion may differ, as the comparisons by
Pruim et al. (2015b) do not specifically state which regression
model was used (i.e., non-aggressive vs. aggressive). As non-
aggressive AROMA is the standard procedure (Pruim et al.,
2015b), we were in fact concerned about the poor performance

of non-aggressive AROMA regarding network identifiability,
leading us to further investigate this issue. Figure 6 and
Table 3 give an overview of the mean connectivity (mean
Fisher-z transformed r-values) of different target regions of
the un-thresholded connectivity maps. Figure 6A shows the
connectivity within target network regions, in other words,
true positive correlations. Non-aggressive AROMA significantly
scores the highest true positive correlations. False-positive
connectivity is shown in Figure 6B, where mean r-values
outside the target networks but within gray matter are shown
for each regression technique. For false positive connectivity,
non-aggressive AROMA also scores highest. Furthermore, high
connection strengths with regions of the WM and the CSF
are also considered false positives, depicted in Figures 6C,D.
As identifiability is defined by the ratio between true and false
positive connectivity, Figure 6 and Table 3 clearly show that
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FIGURE 5

Connectivity of the default mode network (DMN) of an example subject after each regression procedure. Motion parameters for this subject can
be found in Figure 1. As seen on average in Figure 4, the usage of the global signal regressor (GS) introduces task-positive anticorrelations,
which can also be observed with the SOCK approach. The censoring approach without global signal regression exhibits minor motion-induced
edge activity, which is more pronounced in the non-aggressive AROMA approach, where extensive amounts of false-positive connectivity can
be observed across the whole brain. The aggressive AROMA approach produces the cleanest DMN map, while SOCK and censoring + GS
regression approaches perform sufficiently.

non-aggressive AROMA scores the highest on all categories
of false positives, and consequently achieves low identifiability
scores. As discussed earlier, high false-positive rates and
correlations across all parts of the brain suggest a poor model
fit for subject motion and other noise regressors. In other
words, the residual HF motion artifact signal dominates the
underlying neuronal activity. Yet, interestingly, the aggressive
AROMA approach uses the same model as the non-aggressive

approach. The main difference between aggressive and non-
aggressive AROMA is the regression method e.g., full vs. partial
regression. Our results suggest that the model of the AROMA
regressors fits the data very well but only the full regression
can successfully diminish noise signals stemming from HF
motion and physiological variability of the rrAD cohort. This
can also be observed in the results from the edge activity
analysis, where scoring a low percentage is a sign of a good
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FIGURE 6

Identifiability sub-scores of connectivity. Comparison of true positive and false positive connectivity of each regression approach, investigating
the low identifiability score of non-aggressive AROMA. (A) Shows the mean connectivity within target network regions (true-positive). (B) Shows
the mean connectivity within the gray matter (GM) but outside of the target network regions (false-positive). (C) Shows the mean connectivity
within the white matter (WM) and (D) shows the mean connectivity within regions of the cerebral spinal fluid (CSF) as measures of physiological
noise-induced connectivity.

regression model for subject motion. Non-aggressive AROMA
performed significantly worse while all other approaches seem
to adequately model subject motion.

The analysis of spatial smoothness conveys how connectivity
is spread across the cortex with the assumption that very
fragmented maps resemble noise in comparison to spatially
smooth maps, which are more likely of neural origin.
Quantitatively the aggressive and non-aggressive AROMA
techniques produce smoother maps than the other three
techniques. Interestingly, both perform on a comparable level
for this metric, speaking to better temporal cohesiveness as
opposed to the censoring approaches. As expected, comparing
the censoring methods, GS regression makes the resulting
connectivity maps less smooth, likely due to the resulting
negative correlations. The resulting negative correlations from
the SOCK technique also led to less smooth connectivity maps.

Regarding the loss of tDOF, in previous studies (Pruim et al.,
2015a; Parkes et al., 2018; Gratton et al., 2020) censoring motion
regressors have been applied with FWD cut-off at 0.2 mm.
This FWD criterion was too strict for our subject population,
especially in the circumstance of HF motion, thus we opted
for a slightly more lenient cutoff at 0.5 mm (Power et al.,
2012). Statistical testing did not show a significant difference
between AROMA and the 0.2 mm FWD censoring. Nonetheless,
Figure 3 shows that the lower threshold of 0.2 mm would

have led to a substantial amount of data loss for some subjects.
Additionally, the slightly higher cut-off at 0.5 mm proved to be
very efficient, as this approach leads to the lowest percentage
of lost degrees of freedom while still reaching low edge activity
ratings.

Figures 4, 5 display the findings according to the
different metrics on a brain network level. Generally, all
regression approaches produced reasonable RSN maps and, as
expected, global signal regression gave rise to task-positive anti-
correlations. Visible are the issues of false-positive correlations
for the non-aggressive AROMA technique, especially on the
single-subject level.

This multi-site study had several limitations. Not all
scanners were set up to collect cardiac and respiratory
physiological signals, thus external physiological signals were
not used as regressors in our analyses (Shmueli et al., 2007;
Birn, 2012; Chang et al., 2013; Scheel et al., 2014; Tsvetanov
et al., 2020). Subjects from the rrAD study were recruited
from clinics and the community-at-large, and represent a
subset of older adults with hypertension and increased risk
for AD. Although they had co-morbidities common in older
adults, they were highly motivated to participate in a 2-year
clinical trial of exercise and do not represent the general
population of older adults or those with significant cognitive
impairment or dementia. Additionally, the rrAD sample had
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an underrepresentation of minorities and an overrepresentation
of female participants. With the specific demographic of the
study population, the provided comparison is specific to older
adults with hypertension and might not generalize to other
pathophysiologies in different cohorts. Additionally, in this
work, we did not conduct a comparison with ICA-FIX, as we
were concerned about the appropriate sample sizes to train the
classifier used in ICA-FIX for multi-site studies. Nevertheless,
a future comparison using ICA-FIX with specific re-training
suited for a multi-site configuration might be insightful. Despite
these limitations, the rrAD study provides many important
insights for imaging studies of older adults.

Conclusion

Across all data quality metrics, non-aggressive AROMA
was the least suitable preprocessing option for rrAD subjects.
The other four techniques (censoring, censoring with global
signal regression, aggressive AROMA, and SOCK) performed
adequately with marginal differences, demonstrating the utility
of these techniques. Aggressive AROMA achieved low false
positivity rates and preserved a more cohesive temporal
structure than censoring approaches, making it the most
favorable technique for rs-fMRI noise regression. Considering
reproducibility as the most important factor for multi-site
longitudinal studies, currently, aggressive AROMA appears to
be the most suitable noise regression technique for older subjects
in the rrAD trial, and likely for longitudinal studies of older
adults in general. Nonetheless, residuals and aliases of noise
signals remain to varying degrees, posing risks for higher-
level analysis, especially for highly sensitive machine learning
approaches. More research needs to be done on the modeling
of physiological signals when no concurrent recordings are
available, as well as on the reproducibility and stability of
longitudinal functional imaging results. Finally, methods for
noise compensation and data preprocessing of fMRI data
are constantly evolving and in development, making future
comparisons imperative.
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