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Empirical comparison of deep
learning methods for EEG
decoding

Iago Henrique de Oliveira and Abner Cardoso Rodrigues*

Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of

Neuroscience, Santos Dumont Institute, Macaiba, Brazil

Electroencephalography (EEG) is a technique that can be used in non-invasive

brain-machine interface (BMI) systems to register brain electrical activity.

The EEG signals are non-linear and non-stationary, making the decoding

procedure a complex task. Deep learning techniques have been successfully

applied in several research fields, often improving the results compared with

traditional approaches. Therefore, it is believed that these techniques can

also improve the process of decoding brain signals in BMI systems. In this

work, we present the implementation of two deep learning-based decoders

and we compared the results with other state of art deep learning methods.

The first decoder uses long short-term memory (LSTM) recurrent neural

network and the second, entitled EEGNet-LSTM, combines a well-known

neural decoder based on convolutional neural networks, called EEGNet, with

some LSTM layers. The decoders have been tested using data set 2a from

BCI Competition IV, and the results showed that the EEGNet-LSTM decoder

has been approximately 23% better than the competition-winning decoder.

A Wilcoxon t-test showed a significant di�erence between the two decoders

(Z = 2.524, p = 0.012). The LSTM-based decoder has been approximately 9%

higher than the best decoder from the same competition. However, there was

no significant di�erence (Z = 1.540, p = 0.123). In order to verify the replication

of the EEGNet-LSTM decoder on another data, we performed a test with

PhysioNet’s Physiobank EEG Motor Movement/Imagery dataset. The EEGNet-

LSTM presented a higher performance (0.85 accuracy) than the EEGNet (0.82

accuracy). The results of this work can be important for the development of

new research, as well as EEG-based BMI systems, which can benefit from the

high precision of neural decoders.

KEYWORDS

brain machine interface, deep learning, long short term memory, EEG, machine

learning

1. Introduction

Brain-machine interfaces (BMI) aim to translate brain signals into commands

that allow the control of machines or computer interfaces (Niemeyer, 2016). One of

BMI’s best-known paradigms is motor imagery, which refers to the act of imagining a

movement without executing it (Mulder, 2007). Thus, if a system can correctly classify

the brain signals patterns of motor imagery, patients without motor function can benefit
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from prostheses, orthoses, exoskeletons, and other

neuroprosthetic devices, controlled using thought.

A common method used to record brain electrical activity

in non-invasive BMI systems is electroencephalography (EEG)

(Bansal and Mahajan, 2019). The EEG signals have complex

non-linear properties, low spatial resolution, and are non-

stationary (Bhuvaneswari and Kumar, 2015). These limitations

make decoding EEG signals a complex and challenging task.

Several statistical methods can be used as neural decoders

in BMI systems, such, as an example, Kalman filter (Alarcón-

Domínguez, 2017) and linear discriminant analysis (Ahangi

et al., 2012). However, as deep learning (DL) is adequate for this

purpose, some works are analyzing its feasibility.

Decoders based on convolutional neural networks have been

successful in decoding brain signals (Tabar and Halici, 2016;

Tang et al., 2017; Lun et al., 2020). EEGNet is a neural decoder

based on convolutional neural networks, which was proposed

by Lawhern et al. (2018) for the classification of EEG signals

showing good performance. Some research has made efforts to

improve its performance by combining it with other models,

achieving success (Riyad et al., 2020; Wang L. et al., 2020).

The work by Tseng et al. (2019) showed that in some cases,

neural decoders based on recurrent neural networks of the long-

short termmemory (LSTM) type, surpassed traditional decoding

methods, such as Kalman filter, wiener filter, and extended

Kalman filter.

Besides the relative success in using DL as a decoder in

BMI systems, some works are reporting less favorable results,

for example, the work of Tseng et al. (2019) employed a LSTM

decoder using data from implanted electrodes in three macaques

controlling a prosthesis. The results were superior to traditional

filter methods for some macaques in some trials but there has

not been an overall improvement. These mixed results are due

to the large number of hyperparameters that must be evaluated

in DL systems, compared to filter methods.

In this work, two neural decoders were implemented.

The first neural decoder is based on LSTM, where the

characteristics of frequency, time, and space of the signals are

extracted separately, through the combination of wavelet packet

decomposition (WPD) and common spatial pattern (CSP). This

step of pre-processing was chosen based on results presented in

the literature (Yang et al., 2012; Feng et al., 2019). The second

decoder was called EEGNet-LSTM and combines the features of

both models, extracting the characteristics simultaneously with

the classification.That decoder is similar to the best decoder

implemented by Wang L. et al. (2020), however with differences

in the architecture and selection of hyperparameters of the

decoder and strategies for data pre-processing.

In both decoders, we exhaustively employed grid search for

hyperparameters optimizations, as we believe that is an essential

step, to use DL techniques in neural decoding successfully. We

detailed all these steps and this may be useful for works that will

test DL in BMI in the future.

The neural decoders have been tested with data set 2a from

BCI Competition IV (Brunner et al., 2008), which has two

motor imaging sessions for four classes (left hand, right hand,

both feet, and tongue). To evaluate the performance of the

decoders we used two metrics: accuracy and kappa value. We

compared the results of the two implemented decoders with

each other, as well as with the results obtained by decoders

implemented in other works. We found that our deep learning

decoders were 23% and 5% better than the best decoder in the

competition. We also tested the LSTM-EEG decoder with data

from Physiobank EEG Motor Movement/Imagery dataset from

PhysioNet, considering two classes of motor imagery (left wrist

and right wrist). The EEGNet-LSTM achieved an accuracy of

0.85. The original EEGNet, which was tested by other researchers

with the same dataset, showed an accuracy of 0.82.

2. Materials and methods

2.1. Long short-term memory

The recurrent neural networks long short-term memory

(LSTM) can process long data sequences while avoiding

gradient vanishing problems (Hochreiter and Schmidhuber,

1997). LSTM networks have a memory cell, called cell state,

which is long-term memory, capable of storing information for

a long period. Besides, LSTM memory cells have three kinds of

gates that control the flow of information, namely: forget gate,

input gate and output gate (Du et al., 2021). The update of the

memory cell, at each time step, is determined by the following

equations (Jiao et al., 2020):

ft = σ (wf · [ht−1, xt]+ bf ) (1)

The Equation (1) is the forget gate ft , which indicates the

information that will be forgotten in the state of the cell. The

wf symbolizes the forget gate weights, ht−1 is the cell’s previous

output, xt is the network input, bf is the bias associated with

forget gate.

it = σ (wi · [ht−1, xt]+ bi) (2)

C̃t = σ (wc · [ht−1, xt]+ bc) (3)

The input gate it is defined by Equation (2), which

determines the cell state values that will be updated. The wi

symbolizes the weights and bi represents the bias associated

with the input gate. In Equation (3), C̃t is calculated, generating

a vector of candidate values for the state of the cell. These

values are calculated using the hyperbolic tangent as activation

function. The weights and bias of the cell itself are wc and bc,

respectively.

Ct = wi ∗ Ct−1 + it + C̃t (4)
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TABLE 1 EEGNet architecture based on convolutional block, the

output from previous bloc neural networks.

Block Layer Filters Size Activation Mode

1 Input

Reshape

Conv2D F1 (1, LK) Linear Same

BatchNorm

DepthwiseConv2D D * F1 (C, 1) Linear Valid

BatchNorm

Activation ELU

AveragePool2D (1, 4)

Dropout

2 SeparableConv2D F2 (1, 16) Linear Same

BatchNorm

Activation ELU

AveragePool2D (1, 8)

Dropout

Flatten

Classifier Dense N * (F2 * T // 32) Softmax

In Equation (4), the result of the previous equations is used

to update the state of the cell, where Ct is the current state of the

cell.

ot = σ (wo · [ht−1, xt]+ bo) (5)

ht = ot ∗ tanh(Ct) (6)

Equation (5) is the output gate ot , which decides the values

of the current state of the cell that will be considered in the

cell’s output. The gate weights are represented by wo and the

bias is bo. The calculation of the output of cell ht is shown in

Equation (6).

2.2. EEGNet

EEGNet is a deep learning model based on convolutional

neural networks proposed by Lawhern et al. (2018) to be used

in classification of EEG signals in BCI systems. This model uses

deep and separable convolutions, performing the extraction of

signal features and classification at same time.

Table 1 shows the model’s architecture, where C denotes the

number of channels, T represents the number of points in time,

F1 is the number of time filters,D is the number of spatial filters,

F2 represents the number of point filters, N is the number of

classes and, LK is the kernel size of the first layer, also called the

temporal convolution length.

The model has two main blocks and a classification block.

In the first block, Conv2D is a convolutional neural network.

DepthwiseConv2D is a deep convolution used to learn spatial

filters from the temporal convolution performed in the previous

layer. The AveragePool2D layers are used in both blocks

to reduce the signal-sampling rate. Batch normalization was

proposed by Ioffe and Szegedy (2015) to normalize the data

for a given layer, in EEGNet it is performed by BatchNorm

applied to both blocks. Dropout is the dropout rate and was

used in the model to reduce overfitting. In the second block,

SeparableConv2D represents separable convolutions, which

combine spatial filters in temporal bands. This layer performs

a spatial convolution in each input channel and applies a specific

convolution to mix the output Chollet (2017). Flatten was used

to transform the output of the convolutional layers into a

single vector.

In the classification block, the output from previous

blocks is transformed by softmax function to perform the

multiclass classification.

2.3. Wavelet packet decomposition

Wavelets are mathematical functions used to represent data

or other functions, at different scales of time and frequency

Jiang and Adeli (2004). The Wavelet Packet Decomposition

(WPD) is a type of wavelet transform that decomposes a given

signal into low-frequency components (approaches) and high-

frequency components (details) Faust et al. (2013). Since WPD

presents features in both time and frequency domains, this

method is useful for parameters extraction from EEG signals,

which are non-stationary and have characteristics of multi-scale

and randomness Yang et al. (2016). According to Li and Zhou

(2016), WPD can be defined recursively as:











d0,0(t) = x(t),

di,2j−1(t) =
√
2
∑

k h(k)di−1,j(2t − k),

di,2j(t) =
√
2
∑

k g(k)di−1,j(2t − k).

(7)

In Equation (7), x(t) is the original signal, h(k) is the high-

pass filter, g(k) is the low-pass filter, and d(i, j) are the coefficients

ofWPD at the i− th level for the j− th node (Li and Zhou, 2016).

2.4. Common spatial patterns

Common Spatial Patterns (CSP) is a spatial filtering

technique widely used for the extraction of EEG features in

non-invasive Brain-Computer Interface (BCI) systems (Song

and Yoon, 2015). This technique finds spatial filters that

will maximize the variance of signals from one class while

minimizing the variance from another class, resulting in ideal

discriminative features (Cheng et al., 2017). The equations

of CSP are presented according to Wang et al. (2005) and
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Huang et al. (2010):

RH =
XHXH

T

trace(XHXH T)
RF =

XFXF
T

trace(XFXF T)
(8)

In Equation (8), assuming that the problem has two classes,

RH and RF represent the normalized spatial co-variance of

each class, XH , and XF are matrices of the EEG signals of the

respective classes, XT is the transposed from matrix X and,

trace(A) is the sum of the diagonal elements of matrix A.

R = RH + RF = U0DU0
T (9)

In Equation (9), the composite spatial co-variance R is

calculated. RH and RF are the average normalized covariance,

calculated using the average of the co-variance matrices of

examples in each class. U0 is the eigenvector matrix and D is

the diagonal eigenvalue matrix of R.

P = D−1/2U0
T (10)

In Equation (10), the bleaching matrix P is calculated, which

equalizes the variance in the space defined by U0.

SH = PRHP
T SF = PRFP

T (11)

SH = UDHU
T SF = UDFU

T I = DH + DF (12)

In Equation (11), the bleaching transformation is applied to

RH and RF , obtaining matrices SH and SF , which share the same

eigenvectors. The identity matrix I is presented in Equation

(12). The eigenvectors that have higher eigenvalues for SH have

smaller eigenvalues for SF , that is, these quantities are inversely

proportional, differentiating the classes.

W = UTP (13)

Equation (13) calculates the projection matrix W, which

allows obtaining non-correlated components of the EEG signals.

Z = WX (14)

In Equation (14), Z are the components of the signal X,

aggregating common and class-specific components.

2.5. Description of the datasets

2.5.1. BCI competition IV

This paper used data set 2a from the BCI Competition

IV (Brunner et al., 2008), which were registered and made

publicly available by Graz University of Technology, located in

Austria.

FIGURE 1

Features extraction steps for the LSTM decoder.

Nine subjects participated in the experiment, which

consisted of two motor imaging sessions, held on different

days. The objective of the experiment was to imagine four

movements, namely, the movement of the left hand, right

hand, both feet and, tongue. In each session, 288 attempts at

motor imagery have been recorded, with 72 attempts for each

movement. It is worth mentioning that each sample of motor

imagery has 7.5 s, a time that includes the initial preparation,

the realization of motor imagery, and a pause. During the

experiment, 22 EEG channels and 3 electro-oculography (EOG)

channels were recorded, with sampling rate of 250 Hz. The

EEG and EOG electrodes can be consulted in Brunner et al.

(2008).

The signals were filtered using a bandpass filter

between 0.5 and 100 Hz. In addition, a notch filter

was applied at 50 Hz to suppress the noise from the

electrical network.

The EOG signals were not recorded correctly for the

fourth subject. Therefore, this subject was not considered in

this research.

2.5.2. Physiobank EEG motor
movement/imagery dataset

To verify the replicability of the best neural decoder

developed in this paper, we used the Physiobank EEG Motor

Movement/Imagery dataset, freely available from PhysioNet

(Goldberger et al., 2000).

One hundred and nine subjects participated in the

experiment, which consisted in different tasks of movement

execution and motor imagery. However, this paper

focuses only on the task of imagining the opening and

closing of the left or right wrist, that is, two classes of

motor imagery.

During the experiment, a target was displayed on the left

or right side of the screen and the subject imagined opening

and closing the corresponding fist, until this target disappeared.

Over three sessions, subjects performed a total of 45 trials,

imagining one of the movements for 4 s. During the execution

of the experiment, the brain signals of the subjects were recorded

through 64 EEG channels using the international 10–10 system

and the BCI2000 toolkit (Schalk et al., 2004), with a sampling

rate of 160 Hz.
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2.6. Implementation of the LSTM decoder

The extraction of features is an important step in the

classification of EEG signals (Amin et al., 2017). Some works

have used the combination of WPD and CSP to extract

features and have achieved better results compared to the

use of CSP only (Yang et al., 2012; Feng et al., 2019).

In this research, we use a combination of WPD and CSP

to extract important resources for the LSTM-based neural

decoder. Initially, the preprocessed EEG signals are used as

input to the four-level WPD, obtaining the coefficients of the

wavelet transform. Then, the extraction of features from these

coefficients was performed through the CSP. This process is

shown in Figure 1.

For the implementation of the neural decoders, the python

programming language (Python, 2020) and the keras library

(Keras, 2020) were used. For the implementation of the

LSTM-based decoder, an input layer was initially added to

the model, allowing the input of features obtained through

WPD and CSP. Inspired by the model that obtained the best

performance in the work by Tseng et al. (2019), two LSTM

layers were included in the model. After each LSTM layer,

batch normalization was applied to normalize the outputs,

and the dropout to avoid overfitting the model. Finally, a

dense layer was inserted with the number of units equal

to the number of classes in the data set used, and a

softmax activation function was added, allowing multiclass

FIGURE 2

Architecture of the LSTM neural decoder.

classification. The architecture of the LSTM decoder is shown

in Figure 2.

2.7. Implementation of the EEGNet-LSTM
decoder

For the implementation of the model proposed here, the

two main blocks of the EEGNet model were used, as specified

by Lawhern et al. (2018). Then, a layer was used to reshape

the output of the last block of the EEGNet model and connect

its output to the 2 LSTM layers. After each LSTM layer, batch

normalization and dropout were used. A dense layer with the

number of units equal to the number of classes and a softmax

activation function for multiclass classification. The architecture

of the EEGNet-LSTM decoder is shown in Figure 3.

2.8. Data pre-processing

2.8.1. Data preprocessing from BCI
competition IV dataset 2a

As the preprocessing step is very important for the good

performance of neural decoders, we tested four different

bandpass filters. The first one was a bandpass filter between 0.5

and 100 Hz, the second was between 8 and 13 Hz (mu rhythm),

the third was between 15 and 30 Hz (beta rhythm), and the

fourth was between 8 and 30 Hz (mu and beta rhythms). The

frequency ranges referring to mu and beta rhythms were defined

according to Bear et al. (2020).

The labels of the four classes of motor imagery (left hand,

right hand, both feet and tongue) were coded using one-hot

encoding, respectively, in four-dimensional vectors: {[1, 0, 0, 0],
[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}.

Then, only 4 s of each sample were selected. Among the 7.5

s of each sample, only signals registered between 2 and 6 s were

considered, during which time a suggestion of motor imagery

was presented on the screen and was performed by the subject.

Finally, the data was normalized between –1 and 1.

FIGURE 3

Architecture of the EEGNet-LSTM neural decoder.
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TABLE 2 Common hyperparameters of both models.

Hyperparameter Values

Optimizer Adam, RMSprop, SGD

Learning rate 0.0001, 0.001, 0.01

Batch size 32, 64, 128

Regularization of L2 0.1, 0.2, 0.3

Dropout 0.1, 0.2, 0.3

Epochs 100, 200, 300, 400, 500, 1,000

2.8.2. Data preprocessing from the Physiobank
EEG Motor Movement/Imagery dataset from
PhysioNet

The same bandpass filters applied in the BCI Competition

IV dataset 2a were applied to Physiobank data. AsWang X. et al.

(2020) did not report the application of any filter, we also tested

the use of raw signals, without any filtering. Additionally, we also

tested a bandpass filter between 0.5 and 45 Hz.

Each motor imagery attempt has a duration of 4 s. However,

we select only the first 3 s, as suggested by Wang X. et al. (2020).

Thus, for each motor imagery attempt we have 480 samples for

each of the 64 EEG channels.

Next, we separate the training and test data according to

Wang X. et al. (2020). Data from subjects 1 (S001) to 84 (S084)

were used as a training set. Subjects 85 (S085) to 109 (S109) were

used as a test set.

In their paper, Wang X. et al. (2020) mentioned the removal

of four subjects, but did not specify which ones. Thus, we

removed subjects 88 (S088), 92 (S092), 100 (S100) and 104

(S104) because they were damaged, according to Varsehi and

Firoozabadi (2021) and Fan et al. (2021).

The labels of the two classes of motor imagery (left wrist and

right wrist) were coded using one-hot coding. Finally, we scaled

brain signals between –1 and 1.

2.9. Hyperparameter optimization

2.9.1. Hyperparameter optimization of LSTM
and EEGNet-LSTM decoders for BCI
Competition IV dataset 2a

The hyperparameter optimization was performed using the

data from first subject of the data set. Then, we freeze the

parameters and used them to train the models for the other

subjects.

The data set has two sessions, one used for training and

the other for testing. For each configuration test, accuracy and

value of the kappa coefficient (Cohen, 1960) were recorded, so

that the best configuration was identified. Table 2 presents the

common hyperparameters between the LSTM based decoder

and the EEGNet plus LSTM decoder.

TABLE 3 Hyperparameters specific to the LSTM decoder.

Hyperparameter Values

Neurons layer one 32, 64, 128, 256

Neurons layer two 32, 64, 128, 256

TABLE 4 Hyperparameters specific to the EEGNet decoder.

Hyperparameter Values

LK 16, 32, 64, 128

F1 4, 6, 8, 16

F2 4, 6, 8, 16

D 1, 2, 4, 6

2.9.2. Adjusting hyperparameters of the LSTM
decoder

Initially, the LSTM-based decoder was trained with 32

neurons in each layer, with different configurations shown

in Table 2. The best configuration was maintained based

on the highest accuracy and kappa value, and the decoder

was tested with different amounts of neurons, according to

Table 3.

Based on these tests, it was possible to identify an ideal

configuration for the decoder and this configuration was used

for the other subjects.

2.9.3. Adjusting hyperparameters of the
EEGNet-LSTM decoder

The EEGNet-LSTM decoder has been trained with LK = 64,

F1 = 8, D = 2 and F2 = 16, which are standard for EEGNet.

In the LSTM layers, the same number of neurons obtained

through tests with the LSTM-based decoder was maintained.

Then, all configurations in Table 2 were tested, obtaining the best

configuration for the model. Soon after, the hyperparameters

of Table 4 were tested to identify the best configuration of the

specific hyperparameters of EEGNet.

2.9.4. Hyperparameter optimization of the
EEGNet-LSTM decoder for the Physiobank EEG
motor movement/imagery dataset

To adjust the EEGNet-LSTM decoder hyperparameters for

the Physiobank EEG Moviment/Imagery dataset, we performed

the same steps performed for the previous dataset. The only

difference is that for this dataset, we used a 30% of the data

from the training set to use as a test during hyperparamer

search, instead of using the first subject as we did with

BCI data.
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3. Results

3.1. Best hyperparameters for the
implemented decoders

3.1.1. Best hyperparameters for decoders LSTM
and EEGNet-LSTM using BCI Competition IV
dataset 2a

After automatically making all possible combinations of the

hyperparameters, the best settings for the two neural decoders

were obtained. Table 5 presents the configurations (common

between the two decoders) that provided the best results.

Regarding the specific hyperparameters of the LSTM-based

neural decoder, it presented better results with 32 neurons in

each layer. For the EEGNet-LSTM neural decoder, the specific

EEGNet configurations that generated the best results were F1 =

16, D = 6, F2 = 16 and FK = 16.

Regarding the filtering configuration, the best results were

obtained through the standard filtering of the data set, that

is, between 0.5 and 100 Hz. The best filtering and the best

hyperparameters were used to decode the signals of all subjects.

3.1.2. Best hyperparameters for the
EEGNet-LSTM decoder using the physiobank
EEG motor movement/imagery dataset from
PhysioNet

Table 6 presents the large search result, which

returned the best combination of hyperparameters for the

EEGNet-LSTM decoder, when using the Physiobank EEG

Movement/Imagery dataset.

The best results were achieved after applying a bandpass

filter between 0.5 and 45 Hz. This filtering and the best

hyperparameters were used to train the EEGNet-LSTM and

decode the data from the test dataset.

3.2. Comparison between the
implemented decoders using BCI
competition IV dataset 2a

Using the best configurations, the neural decoders were

trained with the data from one session and tested with the

data from another session, making it possible to evaluate

their performance, in the classification of four classes of

motor imagery.

Figure 4 shows the comparison graph between the accuracy

of each subject, obtained through the two neural decoders

implemented: LSTM and EEGNet-LSTM. The second decoder

obtained a better result for all subjects, except subject 3, in

which the two decoders presented equal accuracy. The average

accuracy for the EEGNet-LSTM neural decoder was 0.86 and for

the LSTM decoder, it was 0.72. Therefore, the average accuracy

TABLE 5 Best selected hyperparameters for the decoders considering

the data set 2a from BCI Competition IV.

Hyperparameter LSTM EEGNet-LSTM

Optimizer Adam Adam

Learning rate 0.0001 0.001

Batch size 64 32

Regularization of L2 0.2 0.2

Dropout 0.2 0.2

Epochs 200 400

TABLE 6 Best selected hyperparameters for the EEGNet-LSTM

decoder considering the data set Physiobank EEG Motion/Imagery

from PhysioNet.

Hyperparameter EEGNet-LSTM

F1 16

D 4

F2 16

FK 16

Optimizer Adam

Learning rate 0.01

Batch size 128

Regularization of L2 0.2

Dropout 0.2

Epochs 200

of the EEGNet-LSTM neural decoder was about 14% higher

than the average accuracy of the LSTM decoder. A Wilcoxon t-

test showed a significant difference between the accuracy of the

neural decoders (Z = 2.366, p = 0.018).

Figure 5 shows the comparison bar plot between the kappa

values obtained for each subject and the average value for each

decoder. The LSTM decoder presented the average kappa value

equal to 0.63 and the decoder that combines EEGNet and LSTM

resulted in an average kappa value equal to 0.81. According to

the interpretation suggested by Landis and Koch (1977), the

first decoder presented a strong agreement, and the second, an

almost perfect agreement. The average kappa value obtained

using the EEGNet-LSTM neural decoder was approximately

18% higher than the average kappa value achieved by the LSTM

decoder. A Wilcoxon t-test indicated a significant difference

between the kappa values of the two decoders (Z = 2.371, p =

0.018).

3.3. Comparison with other results
published in the literature that made use
of the BCI competition IV dataset 2a

Table 7 presents a comparison between the kappa values

obtained through the decoders implemented in the present
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FIGURE 4

Comparison of the accuracy obtained through the decoders.

work and the kappa values achieved by decoders developed in

other works.

Based on the average kappa value, the EEGNet-LSTM neural

decoder was about 23% higher than the method proposed

by Ang et al. (2012), first place in the BCI Competition IV,

which used the filter bank common spatial pattern (FBCSP)

for the extraction of characteristics and the naive bayesian

Parzen window (NBPW) for the classification. AWilcoxon t-test

indicated a significant difference between the two decoders (Z =

2.524, p = 0.012). The EEGNet-LSTM decoder provided a result

approximately 14% higher than the Incep-EEGNet developed by

Riyad et al. (2020). There was a statistically significant difference

(Z = 2.028, p = 0.043). This decoder was about 17% higher

than the decoder entitled series compact convolutional recurrent

neural network (SCCRNN), proposed by Wang L. et al. (2020).

The test indicated a significant difference (Z = 2.527, p = 0.012).

The average kappa value was also approximately 17% above the

filter bank spatial filtering and temporal-spatial convolutional

neural network (FBSF-TSCNN), presented by Chen et al. (2020).

There was a statistically significant difference (Z = 2.527, p =

0.018).

The LSTM-based decoder achieved a result about 5%

higher than the result obtained using the Ang et al. (2012)

method. However, there was no significant difference (Z =

1.540, p = 0.123). The LSTM neural decoder presented a result

approximately 4% lower than the result obtained through the

Riyad et al. (2020) method. However, there was no significant

difference (Z = 0.981, p = 0.326). The LSTMdecoder gave a result

about 2% below the result of Wang L. et al. (2020). However,

there was no significant difference (Z = 0.141, p = 0.888). This

decoder obtained a result approximately 1% lower than the

result achieved by the Chen et al. (2020) method. However, there

was no statistically significant difference (Z = 0.314, p = 0.753).

3.4. EEGNet-LSTM decoder performance
with Physiobank EEG Motor
movement/imagery dataset

Considering the two classes of motor imagery (left wrist

and right wrist) from the Physiobank EEG Motion/Imagery

dataset from PhysioNet, the EEGNet-LSTM decoder presented

an accuracy of 0.85 in the test set. Using the same dataset, Wang

X. et al. (2020) tested EEGNet and achieved an accuracy of

0.82. Using Filter Bank Common Spatial Pattern (FBCSP) and

Support Vector Machine (SVM), Handiru and Prasad (2016)

achieved approximately 0.64 accuracy.

4. Discussion

This work aimed to develop accurate neural decoders.

The EEGNet-LSTM and LSTM decoders achieved, respectively,

accuracies equal to 0.86 and 0.72. The high hit rate suggests

that the decoders developed have great potential for future

applications in EEG-based BMI systems.

In this work, a combination ofWPD andCSPwas performed

to extract the characteristics of the signals, for the LSTM-based
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FIGURE 5

Comparison of the kappa values obtained through the decoders.

TABLE 7 Comparison with the kappa values achieved by other studies.

Methods Subjects Mean Standard deviation p value (Wilcoxon)

1 2 3 5 6 7 8 9 EEGNet-LSTM LSTM

EEGNet-LSTM (Proposed method) 0.85 0.69 0.84 0.87 0.60 0.89 0.92 0.79 0.81 0.109 - 0.018

LSTM (Proposed method) 0.70 0.54 0.84 0.45 0.43 0.69 0.86 0.54 0.63 0.167 0.018 -

FBCSP e NBPW (Ang et al., 2012) 0.68 0.42 0.75 0.40 0.27 0.77 0.75 0.61 0.58 0.192 0.012 0.123

Incep-EEGNet (Riyad et al., 2020) 0.71 0.37 0.87 0.48 0.47 0.88 0.76 0.79 0.67 0.198 0.043 0.326

SCCRNN (Wang L. et al., 2020) 0.77 0.38 0.75 0.54 0.47 0.76 0.78 0.70 0.64 0.157 0.012 0.888

FBSF-TSCNN (Chen et al., 2020) 0.81 0.47 0.84 0.32 0.43 0.77 0.76 0.74 0.64 0.202 0.018 0.753

decoder. According to Yang et al. (2012), this combination

provides better results compared to the use of CSP only, due to

the time and frequency characteristics of the WPD. Using WPD,

the signals were represented in different scales of frequency

and time, and the spatial characteristics were extracted through

the CSP.

LSTM-type networks can store information for long periods

in their memory (Tseng et al., 2019). Therefore, these networks

allowed the retention of information of imagined movements

and, provided good performance in the decoding of the signals.

The decoder surpassed the best result of BCI competition IV, but

the results were slightly lower than the results obtained by other

researchers, who used decoders that made use of convolutional

neural networks (Chen et al., 2020; Riyad et al., 2020; Wang L.

et al., 2020).

Although the average kappa value was slightly worse

compared to decoders that used convolutional neural networks,

for some specific subjects the LSTM decoder provided greater

or equal results. The average kappa value provided by the LSTM

decoder was approximately 2% lower than the decoders ofWang

L. et al. (2020) and Chen et al. (2020). Therefore, the percentage

difference was very small.

The other decoder implemented in this paper, called

EEGNet-LSTM, combined the features of the two models,

aiming to obtain a better performance. Wang L. et al. (2020)

developed some neural decoders and the best was SCCRNN,

similar to the decoder implemented here, since both combine

EEGNet with two LSTM layers. The frequency and spatial

characteristics can be extracted by CNN, and the temporal

characteristics can be extracted by the LSTM layers.
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However, unlike the network model implemented in this

paper, Wang L. et al. (2020) used a fully connected layer

before the first LSTM layer. In the EEGNet-LSTM decoder,

implemented in the present paper, only the two main EEGNet

blocks were used and the characteristics extracted through these

blocks were passed directly to the LSTM layers. After each LSTM

layer, batch normalization and dropout layers were also added

to avoid overfitting the model. The use of these layers was not

mentioned by Wang L. et al. (2020).

In addition, after testing different frequency ranges of

the signals, bandwidth filtering between 0.5 and 100 Hz was

considered, which generated the best results. In the research

by [3], a bandpass filter between 4 and 35 Hz was applied. In

the present work, the labels of the imagined movements were

encoded in binary vectors, using the one-hot encoding method,

being another difference that can influence the results. Other

works used in the comparison also did not mention the use of

this technique.

The EEGNet-LSTM decoder implemented in this research,

surpassed the results of current decoders (Chen et al., 2020;

Riyad et al., 2020), including the best decoder proposed by

Wang L. et al. (2020), which has an architecture similar to the

decoder implemented in this work. The additional layers, the

exhaustive selection of hyperparameters, the strategies used in

the pre-processing of the signals, and the fact of passing the

characteristics extracted by the EEGNet blocks, directly to the

LSTM layers, is what must be behind the better performance.

The combination of WPD and CSP allows the extraction

of time-frequency and space features. However, using these

methods, the extraction of characteristics and, the classification

through LSTM decoder, are steps performed separately.

According to Wang L. et al. (2020), performing the feature

extraction and classification, separately, may not provide ideal

results, and it is recommended to perform the extraction

and classification stage together, since the extraction of

characteristics can be adjusted automatically, based on the

classification. The EEGNet-LSTM decoder performs the

extraction of characteristics and, the classification, together,

providing better results in comparison to the decoder based on

LSTM, with the extraction of resources through WPD and CSP.

Wang X. et al. (2020) demonstrated that there is a reduction

in performance metrics of the model, as the number of motor

imagery classes increases. We noticed that the EEGNet-LSTM

presents a similar result to the original EEGNet in a simpler

problem, involving two classes of motor imagery from the

Physiobank EEG Motor Movement/Imagery dataset. However,

we noticed that in a more complex problem, involving the

four classes of motor imagery from the BCI Competition IV

dataset 2a, the EEGNet-LSTM presented significantly higher

results than the Incep-EEGNet, an improved version of the

EEGNet. Therefore, additional LSTM layers increase the hit

rate, especially in more complex problems. The EEGNet-LSTM

presented satisfactory results for two different datasets, one

simpler and the other more complex. Considering that brain-

machine interface systems can be used to control multiple

actuators coupled to prostheses, orthoses and exoskeletons, the

model presented is useful, as it maintains a high success rate in a

more difficult problem.

5. Conclusion

Through this work, it was possible to observe better

results, when feature extraction and classification are performed

together. It was noted that the selection of hyperparameters

and the pre-processing of the data are essential for the good

performance of the decoders. It was also possible to notice

that when combined with other models, LSTM-type networks

have the potential to improve results, mainly due to their

temporal capacity. The EEGNet-LSTM neural decoder showed

satisfactory results for two different datasets, proving the

potential for replicability and ability to maintain a high rate of

success in simpler problems (two classes of motor imagery) and

more complex (four classes of motor imagery). Given the good

results compared to competing neural decoders, the EEGNet-

LSTM decoder implemented in this research can be a good

alternative for accurate decoding of EEG signals in BMI systems.

Therefore, it can serve as a starting point for the development of

future works.
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