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Background: The roles and potential diagnostic value of circRNAs in

intracerebral hemorrhage (ICH) remain elusive.

Methods: This study aims to investigate the expression profiles of circRNAs

by RNA sequencing and RT–PCR in a discovery cohort and an independent

validation cohort. Bioinformatics analysis was performed to identify the

potential functions of circRNA host genes. Machine learning classification

models were used to assess circRNAs as potential biomarkers of ICH.

Results: A total of 125 and 284 differentially expressed circRNAs (fold

change > 1.5 and FDR < 0.05) were found between ICH patients and healthy

controls in the discovery and validation cohorts, respectively. Nine circRNAs

were consistently altered in ICH patients compared to healthy controls. The

combination of the novel circERBB2 and circCHST12 in ICH patients and

healthy controls showed an area under the curve of 0.917 (95% CI: 0.869–

0.965), with a sensitivity of 87.5% and a specificity of 82%. In combination with

ICH risk factors, circRNAs improved the performance in discriminating ICH

patients from healthy controls. Together with hsa_circ_0005505, two novel

circRNAs for differentiating between patients with ICH and healthy controls

showed an AUC of 0.946 (95% CI: 0.910–0.982), with a sensitivity of 89.1%

and a specificity of 86%.
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Conclusion: We provided a transcriptome-wide overview of aberrantly

expressed circRNAs in ICH patients and identified hsa_circ_0005505 and

novel circERBB2 and circCHST12 as potential biomarkers for diagnosing ICH.

KEYWORDS

intracerebral hemorrhage, RNA sequencing, circular RNA, biomarkers, machine
learning algorithms

Introduction

Stroke causes high levels of mortality and disability
globally. Intracerebral hemorrhage (ICH) is a deadly stroke
subtype with an estimated annual incidence of 16 per 100,000
persons worldwide (Wilkinson et al., 2018). ICH accounts for
approximately 23.8% of stroke cases in China, compared with
Western countries, where it accounts for 10–15% of stroke cases,
causing a median fatality ratio of 40.4% per month (Qureshi
et al., 2009; Benjamin et al., 2017). The diagnosis of stroke
is often made with computed tomography (CT) or magnetic
resonance imaging (MRI), and although most patients are
hospitalized with typical neurological symptoms, it is difficult
to distinguish ICH from ischemic stroke (IS) in the super acute
period (Hankey, 2017). Thus, identifying potential biomarkers
for the early prediction and diagnosis of ICH is important.

Non-coding RNAs (ncRNAs) have been extensively studied
in the pathophysiology of cerebrovascular diseases (Weng
et al., 2022). Changes in RNA levels during stroke have the
potential to aid stroke diagnosis and provide insight into
stroke diagnosis and management (Montaner et al., 2020).
Emerging evidence has revealed that ncRNA expression profiles
are altered in the peripheral blood of patients with ICH
(Kim et al., 2019; Li et al., 2019; Cheng et al., 2020).
CircRNAs are a novel class of ncRNAs that are produced
in eukaryotic cells during posttranscriptional processes; these
covalently closed RNAs lack a free 3′ or 5′ end and are
resistant to exonuclease digestion (Kristensen et al., 2019). Thus,
circRNAs are promising diagnostic and prognostic biomarkers
for many human diseases because of their stability, specificity
and abundance in human blood (Jeck and Sharpless, 2014;
Zhang et al., 2018). Growing evidence has demonstrated that
circRNAs are implicated in a variety of pathological conditions,
including coronary artery disease (Cardona-Monzonis et al.,
2020), acute ischemic stroke (Liu Y. et al., 2022) and cancers
(Kristensen et al., 2022). Moreover, the expression of circRNAs
was found to be significantly altered in IS (Tiedt et al., 2017;
Dong et al., 2020; Li et al., 2020; Lu et al., 2020; Ostolaza
et al., 2020; Zuo et al., 2020), and these studies implied that
aberrantly expressed circRNAs may be novel biomarkers for
IS diagnosis and prognosis. Our previous study revealed that
circRNA profiles were significantly altered in hypertensive
ICH patients compared to hypertensive subjects without

ICH and found that hsa_circ_0001240, hsa_circ_0001947 and
hsa_circ_0001386 were potential biomarkers for predicting and
diagnosing hypertensive ICH (Bai et al., 2021). In addition,
circRNA expression is significantly altered in rat brain tissue
after ICH (Dou et al., 2020; Zhong et al., 2020), indicating
that circRNAs are novel clinical biomarkers for ICH. However,
comprehensive circRNA expression profiles and their potential
diagnostic value in the peripheral blood of ICH patients remain
elusive.

Artificial intelligence techniques such as machine learning
tools have been increasingly used in precision diagnosis
(Chang et al., 2021). Machine learning algorithms are artificial
intelligence techniques used to select the best model from a set
of alternatives to fit a set of observations (Li, 2018). Machine
learning has remained a fundamental and indispensable tool due
to its efficacy and efficiency in both feature extraction of relevant
biomarkers and the classification of samples as validation of the
discovered biomarkers (Ledesma et al., 2021).

In this study, we investigated the expression profile of
circRNAs in peripheral blood cells from patients with ICH,
patients with IS and healthy controls by RNA sequencing in
the discovery and validation cohorts. The significantly altered
circRNA host genes were examined with Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses to characterize the potential functions. We
further validated the altered circRNAs by quantitative reverse
transcription-PCR (RT–PCR) analysis of all samples. Logistic
regression models were performed to identify whether circRNAs
were independent factors for ICH. Additionally, we performed
Spearman’s correlation analysis to investigate the correlation
between ICH risk factors and candidate circRNAs. Furthermore,
machine learning classification algorithms and ROC curves were
used to assess circRNAs as potential biomarkers of ICH.

Materials and methods

Study design and sample collection

We recruited 64 patients with ICH, 59 patients with IS
and 50 sex- and age-matched healthy controls between 2014
and 2019 from two individual cohorts for RNA sequencing.
In the discovery cohort, 44 patients with ICH, 43 patients
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with IS and 31 healthy controls were enrolled from Cangzhou
Central Hospital between 2014 and 2017. In the validation
cohort, 20 patients with ICH were enrolled from the Affiliated
Hospital of Hebei University, 16 patients with IS were enrolled
from General Hospital of Ningxia Medical University, and
19 healthy control subjects were enrolled from the Tsinghua
University Hospital between 2017 and 2019. Patients with
ICH were diagnosed by professional neurologists based on
their histories and examinations, and ICH was confirmed by
CT or MRI. Healthy controls without a history of stroke
or cardiovascular events were selected. The demographic and
clinical characteristics of the study population were obtained
through a face-to-face survey and by checking hospital records
or medical examination records. The exclusion criteria included
autoimmune diseases, cardiac disease, liver diseases, renal
diseases, cancer or a history of stroke and cerebral infarction
with hemorrhagic transformation. This study was reviewed and
approved by the Human Ethics Committee, Fuwai Hospital
(Approval No. 2016-732), and conducted in accordance with
the principles of Good Clinical Practice and the Declaration
of Helsinki. Written informed consent was obtained from all
participants or their legal proxies.

RNA isolation and sequencing

RNA was isolated from human peripheral blood
and used to perform RNA sequencing by Annoroad

Gene Technology Company Ltd. (Beijing, China), as
previously described (Bai et al., 2021). Total RNA from all
samples was isolated with an RNeasy Mini kit (QIAGEN).
An Agilent 2100 RNA Nano 6000 Assay Kit (Agilent
Technologies, CA, USA) was used to measure RNA
integrity. The libraries were constructed using an RNA
integrity number ≥7.5 and a 28S:18S rRNA ratio ≥ 1.8.
Ribo-ZeroTM Gold Kits (Illumina, San Diego, CA, USA)
were utilized to eliminate all ribosomal RNAs from total
RNA. RNase R (Epicenter, Madison, WI, USA) digestion
was used to eliminate linear RNAs. The purified circRNAs
were subjected to the NEB Next Ultra Directional RNA
Library Prep Kit for Illumina (NEB, Ipswich, USA)
according to the manufacturer’s instructions. The obtained
libraries were subjected to paired-end sequencing with
150 bp reads performed on the Illumina PE150 platform.
The sequence depth was approximately 15G. The raw
sequencing data were analyzed using Q30 statistics from
FastQC, and clean reads were obtained by removing
adaptor-polluted and low-quality reads. The RNA-seq
data have been deposited into the Genome Sequence
Archive (Chen T. et al., 2021) in the National Genomics
Data Center (CNCB-NGDC Members and Partners,
2022), China National Center for Bioinformation/Beijing
Institute of Genomics, Chinese Academy of Sciences (GSA-
Human: HRA001807), which are publicly accessible at
https://ngdc.cncb.ac.cn/gsa-human.

TABLE 1 Demographics and characteristics of the discovery and validation cohorts.

Discovery cohort Validation cohort

Control
(n = 31)

ICH
(n = 44)

IS
(n = 43)

P-value Control
(n = 19)

ICH
(n = 20)

IS
(n = 16)

P-value

Age, y 58.9± 5.3 55.9± 7.2 57.4± 5.5 0.09 57.2± 7.0 56.7± 7.1 57.2± 7.7 0.86
Men,% 17 (54.8) 24 (54.5) 21 (48.8) 0.83 10 (52.6) 10 (50) 8 (50) 0.98
BMI, kg/m2 24.8± 2.9 26.1± 6.6 27.6± 6.9 0.09 24.9± 2.4 25.8± 6.8 25.0± 2.6 0.90
SBP, mmHg 125.7± 10.1 137.4± 17.6 138.6± 13.6 < 0.001 120.3± 9.7 171.2± 25.7 150.6± 19.4 < 0.001
DBP, mmHg 79.2± 4.3 87.9± 10.7 91.8± 16.6 < 0.001 77.6± 9.1 103.7± 13.3 89.3± 13.9 < 0.001
HDL-C, mmol/L 1.4± 0.3 1.1± 0.3 1.1± 0.2 < 0.001 1.3± 0.3 0.9± 0.5 1.0± 0.3 0.007
LDL-C, mmol/L 2.9± 0.7 2.4± 0.8 2.3± 0.8 < 0.001 2.9± 0.9 2.8± 0.8 2.7± 0.9 0.82
TC, mmol/L 5.5± 1.0 4.5± 1.0 4.5± 1.0 < 0.001 4.5± 1.0 4.3± 0.9 4.9± 1.3 0.23
TG, mmol/L 1.4± 0.8 1.5± 0.9 1.6± 0.6 0.41 1.2± 0.5 1.4± 0.6 2.3± 1.5 0.004
GLU, mmol/L 6.0± 1.8 6.3± 1.6 5.9± 1.3 0.17 5.3± 0.6 5.5± 1.7 6.0± 1.1 0.21
Smoking,% 0.95 0.92
Never 19 (61.3) 28 (63.7) 26 (60.5) 13 (68.4) 14 (70) 11 (68.7)
Former 4 (12.9) 5 (13.6) 8 (18.6) 3 (15.8) 2 (10) 2 (12.5)
Current 8 (25.8) 11 (22.7) 9 (20.9) 3 (15.8) 4 (20) 3 (18.8)
Drinking,% 0.98 0.96
Non-drinker 20 (64.5) 28 (63.6) 27 (62.8) 11 (57.9) 12 (60) 10 (62.5)
Drinker 11 (35.5) 16 (36.4) 16 (37.2) 8 (42.1) 8 (40) 6 (37.5)

Data are expressed as the mean± standard deviation or n (%).
BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TC, Total cholesterol; TG, Triacylglycerol; HDL-C, High-density lipoprotein cholesterol; LDL-C,
Low-density lipoprotein cholesterol; GLU, Glucose; ICH, Intracerebral hemorrhage; IS, ischemic stroke.
Statistical comparisons for percentages were performed using the chi-square test. Comparisons between means or medians were performed using one-way ANOVA.
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Differential expression analysis

The differential expression circRNA analysis was performed
as previously described (Bai et al., 2021). Briefly, CIRI2 (Gao
et al., 2018) was used to detect paired chiastic clipping signals
according to the mapping of reads. The reads were mapped
to the reference genome1 using the BWA-MEM method. Back-
spliced junction reads were integrated and measured by spliced
reads per billion mapping to quantify circRNA. Differential
expression analysis was performed using the DESeq2 R package
(Wang et al., 2010) and edgeR (Robinson et al., 2010).
Fold differences of each circRNA were calculated to identify
differentially expressed circRNAs between ICH patients and
healthy controls (or IS patients) by Student’s t-test. A P
value was assigned to each circRNA and adjusted by multiple
testing using the Benjamini–Hochberg method for controlling
the false discovery rate (FDR). The differentially expressed
circRNAs were defined as those with a fold change ≥ 1.5 and
FDR < 0.05.

Bioinformatics analysis

Volcano plots and hierarchical clustering using heatmaps
were generated based on the normalized values of differentially
expressed genes using the R package. Venn diagrams were
used to present the consistently differentially expressed genes
in the discovery and validation cohorts. GO enrichment and
KEGG analyses were performed to determine the biological
functions and pathways of differentially expressed circRNA host
genes. P values were calculated using Fisher’s exact test with the
hypergeometric algorithm.

Quantitative real-time polymerase
chain reaction validation

To validate the expression levels of differentially expressed
circRNAs identified by RNA-seq, the candidate circRNAs
were selected for further validation of expression levels by
quantitative RT–PCR. Total RNA was incubated with RNase R
or RNase-free water as a control at 37◦C for 30 min to purify
the circRNAs. After incubation, cDNA synthesis was completed
using 1 µg of total RNA and a Transcriptor First Stand
cDNA Synthesis Kit (Takara, Dalian, China), and Taq premix
(Takara, Dalian, China) was added to start PCR according
to the manufacturer’s protocol. The products were used for
Sanger sequencing. Quantitative RT–PCR was performed using
SYBR Master Mix (Yeasen, Shanghai, China) on the ViiA
7 Real-time PCR System (Applied Biosystems) according to

1 http://www.ensembl.org/index.html

the manufacturer’s instructions. The circRNA primers were
designed to overlap the back-spliced junction using the NCBI
Primer-BLAST website.2 The primers used in this study are
listed in Supplementary Table 7. The relative expression
of the corresponding genes was quantified and normalized
to that of GAPDH.

Performance evaluation of candidate
biomarkers with classification
algorithms

To evaluate the applicable biomarkers for ICH, we used
mutual information (MI) (Blokh and Stambler, 2017) and
random forest (RF) algorithms (Ambale-Venkatesh et al., 2017;
Kawakami et al., 2019) to screen circRNA biomarker signatures
according to the expression levels in all samples. To assess the
diagnostic values of the specific circRNAs, we used six machine
learning classification algorithms (Chang et al., 2021; Chen Y.
et al., 2021; Liu D. et al., 2022), support vector machine (SVM),
RF, K-nearest neighbor (KNN), logistic regression (LR), decision
tree (DT) and Gaussian naive Bayes (GNB), to discriminate ICH
patients from healthy controls or IS patients according to the
expression levels of circRNAs by Python packages. To ensure the
stability and accuracy of the classifiers, we used 10-fold cross-
validation; 90% of the data were used for the training set, and
10% were used for the test set. We calculated five measurements,
including sensitivity, specificity, accuracy, positive predictive
value (PPV), and negative predictive value (NPV) (Shu et al.,
2020). The ROC curve was illustrated based on sensitivity
and 1-specificity scores. For each area under the curve (AUC)
value, the 95% CI was computed with 1000 stratified bootstrap
replicates.

Statistical analysis

Statistical analysis was performed using SPSS 21.0 (IBM
Corp., NY, USA). The sample distribution was determined
using the Kolmogorov–Smirnov normality test. For parametric
data, the two-tailed unpaired Student’s t-test was used
to determine differences between two groups. The data
are represented as the means ± standard deviations or
medians (interquartile range). Statistical comparisons for
percentages were performed using chi-square statistical analysis.
In the RNA sequencing analysis, differentially expressed
RNAs were selected if there were significant differences
(fold change > 1.5 and FDR < 0.05) between the ICH
patients and healthy controls (or IS patients) using Student’s
t-test. Logistic regression models were used to evaluate

2 https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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FIGURE 1

Differentially expressed circRNAs between intracerebral hemorrhage (ICH) patients and healthy controls in the discovery and validation cohorts.
(A,B) The volcano plot of circRNA expression profiles in ICH patients and controls (fold change ≥ 1.5 and FDR < 0.05) in the discovery (n = 44
vs. 31) (A) and validation (n = 20 vs. 19) (B) cohorts. Red dots represent upregulated genes, and blue dots represent downregulated genes.
(C) The bar diagram shows the circRNA distribution in the chromosomes between 44 ICH patients and 31 healthy controls in the discovery
cohort. The red columns represent upregulated circRNAs, while blue columns represent downregulated circRNAs. (D) The bar diagram shows
the circRNA distribution in the chromosomes between 20 ICH patients and 19 healthy controls in the validation cohort. The red columns
represent upregulated circRNAs, while blue columns represent downregulated circRNAs. (E) The bar diagram and pie chart show the
differentially expressed circRNA distribution in the chromosome region (exonic, intronic, intergenic, alternate exon, overlapping exon and
antisense) in 44 ICH patients compared with 31 healthy controls in the discovery cohort. (F) The bar diagram and pie chart show the
differentially expressed circRNA distribution in the chromosome region (exonic, intronic, intergenic, alternate exon, overlapping exon and
antisense) in 20 ICH patients compared with 19 healthy controls in the validation cohort.

whether circRNAs were independent predictive factors for
ICH. Spearman’s correlation analysis was performed to
investigate the correlation between ICH risk factors and
circRNAs. The net reclassification index (NRI) and integrated

discrimination improvement (IDI) were calculated to evaluate
the effect of the candidate biomarkers as previously described
(Wu et al., 2020). P < 0.05 was considered indicative of
statistical significance.
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Results

CircRNA expression profiles were
significantly altered in intracerebral
hemorrhage patients

The characteristics and demographics of the cohorts
of ICH patients, IS patients and healthy controls are
shown in Table 1. In RNA sequencing, the significantly
differentially expressed circRNAs were determined by a
fold change > 1.5 and FDR < 0.05 by DESeq2 methods.
In total, 125 circRNAs were significantly altered between

patients with ICH and controls, including 63 upregulated
circRNAs and 62 downregulated circRNAs in the discovery
cohort (Figure 1A and Supplementary Table 1), and 284
circRNAs were significantly altered between patients with
ICH and healthy controls in the validation cohort, including
218 upregulated circRNAs and 66 downregulated circRNAs
(Figure 1B and Supplementary Table 2). Additionally, the
circRNAs were distributed across all chromosomes in both
cohorts (Figures 1C,D). There were 107 circRNAs produced
by classic exon back-splicing, 3 alternate exons, 5 introns,
7 overlapping exons, and 3 intergenic circRNAs detected
between ICH patients and controls in the discovery cohort

FIGURE 2

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of significantly altered circRNA host genes.
(A) The top 10 biological process terms from GO enrichment analysis of differentially expressed circRNA host genes. (B) The top 10 KEGG
pathway analyses of differentially expressed circRNA host genes.
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(Figure 1E), and 240 circRNAs produced by classic exon
back-splicing, 13 alternate exons, 14 introns, 13 overlapping
exons, 3 antisense and 1 intergenic circRNA were detected

between ICH patients and controls in the validation cohort
(Figure 1F). Moreover, we observed that 302 and 395 circRNAs
were significantly altered between ICH and IS patients in the

FIGURE 3

Consistently differentially expressed circRNAs between intracerebral hemorrhage (ICH) and controls or hypertension (HTN) in the discovery and
validation cohorts by DESeq2 and edgeR methods. (A) Venn diagram showing consistently altered circRNAs (fold change ≥ 1.5 and FDR < 0.05)
in ICH patients compared with controls in the discovery (n = 44 vs. 31) and validation cohorts (n = 20 vs. 19) with both the DESeq2 and edgeR
methods. (B) Venn diagram showing consistently altered circRNAs (fold change ≥ 1.5 and FDR < 0.05) in ICH compared with HTN in the
discovery (n = 44 vs. 42) and validation cohorts (n = 20 vs. 18) with both the DESeq2 and edgeR methods. (C) Venn diagram showing the
common altered circRNAs (fold change ≥ 1.5 and FDR < 0.05) in the ICH patients compared with healthy controls and ICH compared with HTN
in both cohorts. Hierarchical clustering of nine consistently differentially expressed circRNAs between ICH patients and healthy controls in the
discovery (n = 44 vs. 31) (D) and validation (n = 20 vs. 19) (E) cohorts. Blue represents downregulated circRNAs, red represents upregulated
circRNAs, and white represents no changes in circRNA expression. The column represents a sample, and each row represents a single circRNA.
The red color label represents the ICH group, and the green color label represents the healthy control group. The label color scales indicate the
circRNA relative expression levels in the ICH and control groups.

TABLE 2 The consistently altered circRNAs in intracerebral hemorrhage (ICH) patients compared with controls.

Location circRNA ID Discovery Validation Up/Down Host gene Type

FC FDR FC FDR

chr7:48541721-48542148: + hsa_circ_0001707 3.038 2.4E-04 3.817 2.1E-09 up Null Intronic

chrX:147733519-147744289: + hsa_circ_0091669 1.827 0.005 2.138 1.4E-06 up AFF2 Exonic

chr12:66597490-66622150: + hsa_circ_0005505 2.903 0.007 7.329 2.8E-10 up IRAK3 Exonic

chr5:49694940-49707217: – hsa_circ_0001481 1.850 0.012 2.803 3.9E-06 up EMB Exonic

chr12:94562928-94580249: + hsa_circ_0027725 2.179 0.037 2.281 4.9E-07 up PLXNC1 Exonic

chr7:2477438-2483381: + circCHST12 0.334 0.007 0.395 5.5E-07 down CHST12 Alternate exon

chr19:18648410-18649246: – hsa_circ_0000914 0.510 0.010 0.595 4.6E-06 down FKBP8 Exonic

chr17:37866065-37872192: + circERBB2 0.278 0.020 0.184 1.7E-10 down ERBB2 Exonic

chr19:48185232-48198731: + circGLTSCR1 0.183 0.037 0.275 1.3E-05 down GLTSCR1 Exonic

FC, fold change; FDR, false discovery rate.
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discovery and validation cohorts, respectively (Supplementary
Figures 1A,B).

Gene ontology enrichment and kyoto
encyclopedia of genes and genomes
pathway analyses of circRNA host
genes

To assess the potential regulatory mechanism of
differentially expressed circRNAs in host gene transcription
after ICH, we performed GO and KEGG pathway analyses
of the host genes of the altered circRNAs in the two cohorts.
The top GO terms in the biological process category indicated
that the host genes were involved in the regulation of GTPase
activity, covalent chromatin modification, histone modification,
regulation of dendrite development and lipid phosphorylation
(Figure 2A). KEGG pathway analysis showed that the host
genes were mainly involved in the MAPK signaling network,
B-cell receptor signaling, ERBB receptor signaling network,
thyroid hormone synthesis and lysine degradation (Figure 2B).

Consistently altered circRNAs in the
discovery and validation cohorts

To elucidate the underlying mechanism by which the
circRNAs affected ICH more specifically, we screened the
common circRNAs in the two cohorts by both DESeq2 and
edgeR methods (Supplementary Tables 1–4) and found that
9 circRNAs overlapped between the ICH patients and controls
(Figure 3A). Similarly, there were 4 consistent circRNAs
between ICH and hypertension (HTN) in our previous study
(Figure 3B) (Bai et al., 2021); 2 of them were consistently altered
in the two comparison groups, including hsa_circ_0027725 and
a novel circRNA (host gene ERBB2) we named circERBB2
(Figure 3C).

The nine consistently altered circRNAs included five
upregulated circRNAs and four downregulated circRNAs. The
five upregulated circRNAs in ICH were hsa_circ_0001707,
hsa_circ_0091669, hsa_circ_0005505, hsa_circ_0001481 and
hsa_circ_0027725; the 4 downregulated circRNAs in ICH were
hsa_circ_0000914 and three novel circRNAs that we named
according to their host genes, circCHST12 (host gene CHST12),
circERBB2 and circGLTSCR1 (host gene GLTSCR1) (Table 2).
The 9 circRNA expression variants are shown with hierarchical
clustering heatmaps in the discovery and validation cohorts
(Figures 3D,E), which indicated that the circRNA expression
profiles in ICH patients were distinct from those in healthy
control groups.

Likewise, we detected 20 consistent circRNAs
between ICH and IS patients in the two cohorts by
both DESeq2 and edgeR methods (Supplementary

Figure 1C). Notably, 3 circRNAs were in the
intersection between ICH versus controls (9 consistent
circRNAs) and ICH versus IS (20 consistent circRNAs),
including circERBB2, circCHST12 and hsa_circ_0005505
(Supplementary Figure 1D).

Investigation of the nine circRNAs as
independent predictors of
intracerebral hemorrhage

To further explore the potential value of candidate
circRNAs as ICH biomarkers, logistic regression models
were performed to identify whether nine circRNAs could
be predictors of ICH occurrence. As shown in Table 3,
after adjusting for age, sex, body mass index (BMI),
systolic blood pressure (SBP), diastolic blood pressure
(DBP), total cholesterol (TC), triacylglycerol (TG), high-
density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), smoking and alcohol
consumption, per unit of increase in hsa_circ_0001707,
hsa_circ_0091669, hsa_circ_0005505, hsa_circ_0001481
and hsa_circ_0027725, the odds ratios for ICH occurrence
were 2.23 (95% CI: 1.294–3.842; P = 0.004), 3.372 (95%
CI: 1.665–6.867; P = 0.001), 2.216 (95% CI: 1.363–3.316;
P = 0.001), 4.750 (95% CI: 2.054–10.985; P < 0.001)
and 2.156 (95% CI: 1.170–3.974; P = 0.014), respectively.
In addition, the adjusted ORs were 0.009 (95% CI:
0.001–0.097; P < 0.001), 0.160 (95% CI: 0.051–0.507;
P = 0.002), 0.019 (95% CI: 0.002–0.157; P < 0.001) and
0.122 (95% CI: 0.037–0.410; P = 0.001) per unit increase in
circCHST12, hsa_circ_0000914, circERBB2 and circGLTSCR1,
respectively.

TABLE 3 Logistic regression analysis to identify circRNAs as
independent predictive factors of intracerebral hemorrhage (ICH).

circRNA ID Adjusted risk factors Up/DownHost gene

OR 95% CI P-value

hsa_circ_0001707 2.230 1.294–3.842 0.004 up Null

hsa_circ_0091669 3.372 1.655–6.867 0.001 up AFF2

hsa_circ_0005505 2.216 1.363–3.316 0.001 up IRAK3

hsa_circ_0001481 4.750 2.054–10.985 < 0.001 up EMB

hsa_circ_0027725 2.156 1.170–3.974 0.014 up PLXNC1

circCHST12 0.009 0.001–0.097 < 0.001 down CHST12

hsa_circ_0000914 0.160 0.051–0.507 0.002 down FKBP8

circERBB2 0.019 0.002–0.157 < 0.001 down ERBB2

circGLTSCR1 0.122 0.037–0.041 0.001 down GLTSCR1

Risk factors included SBP, systolic blood pressure; DBP, diastolic blood pressure;
TG, triacylglycerol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol, smoking and alcohol consumption; ICH,
intracerebral hemorrhage; OR, odds ratio; CI, confidence interval.
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Validation of the differentially
expressed circRNAs by quantitative
real-time polymerase chain reaction

To verify the novel circRNAs circERBB2 and circCHST12
are really circular form, we first blasted the sequences and
confirmed the back-splice junction sites and assayed them by
RT–PCR with divergent primers. Next, Sanger sequencing was
performed to illustrate the junction site. The results showed
that circERBB2, located at chr17:37866065-37872192 (genomic
length: 6127 bp, spliced sequence length: 939 bp), was derived
from exons 9–16 of the ERBB2 gene (Figure 4A). circCHST12,
located at chr7:2477438-2483381 (genomic length: 5943 bp,
spliced sequence length: 5943 bp), was derived from exon 1
and partial exon 2 of the CHST12 gene (Figure 4B). RT–qPCR
analysis of total RNA after RNase R or control treatment
indicated that circERBB2 and circCHST12 were resistant, while

ERBB2, CHST12 and GAPDH mRNA transcripts were degraded
(Figures 4C,D). These data established that circERBB2 and
circCHST12 are two bona fide circRNAs.

Next, to confirm the expression of circRNAs in the high-
throughput results, we selected three upregulated circRNAs
(hsa_circ_0001707, hsa_circ_0005505 and hsa_circ_0027725)
and three downregulated circRNAs (hsa_circ_0000914,
circERBB2 and circCHST12) of the above consistently altered
circRNAs for further validation by RT–qPCR in all samples. The
expression levels of these circRNAs were consistent with the
RNA sequencing results, including three upregulated circRNAs
and three downregulated circRNAs that were significantly
altered in patients with ICH compared with control subjects
(Figures 5A–F). Moreover, the expression levels of circERBB2,
circCHST12 and hsa_circ_0005505 were also significantly
altered between ICH and IS patients (Figures 5G–I). These
results were consistent with the levels obtained by RNA
sequencing, supporting the accuracy and reliability of the data.

FIGURE 4

Identification of novel circular RNAs circERBB2 and circCHST12. (A,B) Schematic diagrams and Sanger sequencing illustrated the back-splice
junction site of circERBB2 (A) and circCHST12 (B). (C) RT–qPCR showed the expression of GAPDH, ERBB2, circERBB2, CHST12 and circCHST12
administered RNase R or mock control (n = 6 per group). (D) Representative agarose gel pictures showing the relative expression of GAPDH,
ERBB2, circERBB2, CHST12, and circCHST12 administered RNase R or mock control. Data are presented as the mean ± standard deviation. ∗∗∗

p < 0.001. ns: no significant. Statistical significance was assessed using unpaired two-tailed Student’s t-test.
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FIGURE 5

Validation of circRNA expression levels by quantitative real-time polymerase chain reaction (RT–qPCR). (A–F) RT–qPCR results validated the
expression levels of candidate circRNAs in all samples between 64 intracerebral hemorrhage (ICH) patients and 50 healthy controls.
(A) hsa_circ_0005505, (B) hsa_circ_0027725, (C) hsa_circ_0001707, (D) hsa_circ_0000914, (E) circERBB2 and (F) circCHST12. (G–I) RT–qPCR
results validated the expression levels of hsa_circ_0005505 (G), circERBB2 (H) and circCHST12 (I) between 64 ICH patients and 59 ischemic
stroke (IS) patients. The data are presented as the median (interquartile range). ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001. Statistical significance was assessed
using the Mann–Whitney U test.

Performance evaluation of the
candidate circRNAs with classification
algorithms

To evaluate applicable biomarkers for ICH, we used mutual
information (MI) and random forest (RF) algorithms to screen
circRNA marker signatures according to the expression levels in

all samples. We obtained the signature of the top 10 circRNAs in
the two algorithms and found 4 circRNAs [hsa_circ_0005806,
circERBB2, circCHST12, circFBRS (host gene FBRS)] in the
intersection (Supplementary Table 5). However, there was
no significant difference in hsa_circ_0005806 or circFBRS
expression levels between the ICH patients and controls in
the validation cohort (Supplementary Figure 2). Finally, we

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.1002590
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1002590 November 23, 2022 Time: 15:59 # 11

Bai et al. 10.3389/fnins.2022.1002590

focused on evaluating the diagnostic value of circERBB2
and circCHST12 as potential ICH biomarkers in further
statistical analysis.

Furthermore, six different classifier algorithms were
executed to assess the validity of the candidate circRNAs.
By using 10-fold cross-validation, the average performance
measurement values of the candidate circRNAs in ICH were
computed and are summarized in Table 4. The six machine
learning classifiers based on test accuracies and AUCs in the
training set and validation set are presented in Figure 6. The
RF provides greater accuracy values of 0.995 and 0.910 than the
other five classifiers in the training and test sets between ICH
and controls, respectively (Figures 6A,B). We also evaluated
the performance of the circERBB2 and circCHST12 signatures
for discriminating ICH from IS patients and observed that the
RF had the highest value of 0.989 in the training set and the
SVM had the highest value of 0.779 in the test set (Figures 6C,D
and Supplementary Table 6). These results indicate that the
combination of the circERBB2 and circCHST12 signatures is
capable of identifying ICH with high accuracy according to
expression levels.

Correlation of the circERBB2 and
circCHST12 expression levels with
clinical characteristics

Additionally, we performed Spearman’s correlation analysis
to test the correlation of the expression levels of circCHST12

and circERBB2 with ICH patient clinical characteristics. The
results showed that the circERBB2 expression levels positively
correlated with HDL-C and negatively correlated with SBP,
DBP and alcohol consumption in ICH patients (P < 0.05);
the circCHST12 expression levels positively correlated with
LDL-C and negatively correlated with SBP, DBP, glucose, white
blood cells and alcohol consumption (P < 0.05) (Table 5).
These results indicated that circERBB2 and circCHST12 may be
involved in the pathogenesis of ICH.

Evaluation of the diagnostic value of
circERBB2 and circCHST12 in
intracerebral hemorrhage patients

Receiver operating curve (ROC) analysis was performed
to explore the potential diagnostic value of circERBB2 and
circCHST12. The signatures of circERBB2 for differentiating
between patients with ICH and healthy control subjects showed
an AUC of 0.883 (95% CI: 0.811–0.937) with a sensitivity of
68.2% and a specificity of 92%; the signatures of circCHST12
showed an AUC of 0.838 (95% CI: 0.769–0.908) with a sensitivity
of 93% and a specificity of 71.6% (Figure 7A). The combination
of circERBB2 and circCHST12 for differentiating between
patients with ICH and healthy controls showed an AUC of
0.917 (95% CI: 0.869–0.965), with a sensitivity of 87.5% and a
specificity of 82% (Figure 7A). We next performed a multifactor
risk logistic regression model, the combination of circERBB2
and circCHST12 together with the risk factors (age, sex, BMI,

TABLE 4 Classification performance for the two-circRNA signatures between intracerebral hemorrhage (ICH) patients.

Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) AUC

RF

Training set 100 100 100 100 100 0.995(0.983–1)

Test set 80.83 74.81 78.48 80.10 77.48 0.910(0.857–0.963)

KNN

Training set 91.71 81.32 87.26 86.66 88.33 0.938(0.894–0.982)

Test set 80.56 69.63 76.89 78.08 72.62 0.827(0.753–0.901)

DT

Training set 100 100 100 100 100 0.995(0.983–1)

Test set 77.03 69.81 73.26 78.21 66.48 0.734(0.644–0.824)

LR

Training set 86.35 76.82 82.28 83.16 80.99 0.906(0.852–0.960)

Test set 84.03 72.64 80.38 80.62 76.33 0.883(0.822–0.944)

GNB

Training set 90.90 65.11 79.79 77.48 84.41 0.897(0.840–0.954)

Test set 90.14 63.98 79.62 77.46 82.17 0.882(0.821–0.943)

SVM

Training set 93.25 64.25 80.75 77.51 87.90 0.902(0.846–0.957)

Test set 88.89 63.98 79.62 76.78 85.83 0.885(0.825–0.945)

ICH, intracerebral hemorrhage; RF, random forest; KNN, K-nearest neighbor; LR, logistic regression; DT, decision tree; GNB, Gaussian naive Bayes; SVM, support vector machine; PPV,
positive predictive value; NPV, negative predictive value; AUC, area under the curve.
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FIGURE 6

Receiver operating curve (ROC) plot of the six classifier performances based on AUC in the training set and test set. (A,B) ROC plot of the six
classifier performances based on AUC in the training set (A) and test set (B) for discriminating intracerebral hemorrhage (ICH) from healthy
controls. (C,D) ROC plot of the six classifier performances based on AUC in the training set (C) and test set (D) for discriminating ICH from
ischemic stroke (IS) patients. SVM, support vector machine; RF, random forest; KNN, K-nearest neighbor; LR, logistic regression; DT, decision
tree; GNB, Gaussian naive Bayes.

SBP, DBP, TC, TG, HDL-C, LDL-C, smoking and alcohol
consumption) showed that the AUC was increased to 0.980 (95%
CI: 0.959–1), the sensitivity was 93.8%, and the specificity was
96% (Figure 7B). The addition of circERBB2 and circCHST12
to the previously known risk factors improved the predictive
ability, with an NRI of 20.3% and IDI of 23.7% (P < 0.001). The
AUC of circERBB2 and circCHST12 for differentiating between
ICH and IS patients was 0.765 (95% CI: 0.682–0.847); the
sensitivity was 57.6%, and the specificity was 85.9% (Figure 7C).

hsa_circ_0005505 was upregulated in both ICH compared
with controls and ICH compared IS patients. Furthermore,
we evaluated the diagnostic values of the two novel circRNA
combinations of hsa_circ_0005505 for identifying ICH. The
combination of hsa_circ_0005505, circERBB2 and circCHST12
for differentiating between patients with ICH and healthy
controls showed an AUC of 0.946 (95% CI: 0.910–0.982), with
a sensitivity of 89.1% and a specificity of 86% (Figure 7A);
the AUC was 0.799 (95% CI: 0.722–0.875), with a sensitivity

of 59.3% and a specificity of 89.5% for differentiating between
patients with ICH and IS patients (Figure 7D). These
results indicate that hsa_circ_0005505, novel circERBB2 and
circCHST12, individually or combined, serve as potential
diagnostic biomarkers for identifying ICH (Figure 8).

Discussion

In the present study, we first investigated the circRNA
profiles in the peripheral blood of ICH patients and healthy
controls by using RNA sequencing in two independent cohorts.
Functional analysis indicated that the differentially expressed
circRNAs are involved in many pathophysiologic processes
of ICH. By using two independent analysis strategies, we
obtained nine circRNAs that were consistently altered in
both cohorts, including five upregulated circRNAs and four
downregulated circRNAs. Furthermore, based on machine
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TABLE 5 Correlation between baseline characteristic and circRNA
levels in intracerebral hemorrhage (ICH) patients.

Parameters circERBB2 circCHST12

Coefficient P-value Coefficient P-value

Age, y 0.143 0.128 −0.018 0.850

Sex (male) 0.017 0.895 0.022 0.814

BMI, kg/m2 0.044 0.646 0.103 0.274

SBP, mmHg −0.373 < 0.001* −0.240 0.010*

DBP, mmHg −0.418 < 0.001* −0.309 0.001*

HDL-C, mmol/L 0.190 0.043* 0.153 0.104

LDL-C, mmol/L 0.157 0.096 0.224 0.016*

TC, mmol/L 0.165 0.079 0.016 0.419

TG, mmol/L −0.085 0.367 −0.164 0.182

GLU, mmol/L −0.06 0.525 −0.273 0.003*

UA, µmol/L 0.193 0.097 0.218 0.060

TBIL, µmol/L −0.023 0.846 0.001 0.992

BUN, mmol/L −0.027 0.817 0.094 0.442

WBC, 109/L −0.283 0.014* −0.366 0.001*

Smoking −0.063 0.504 −0.153 0.104

Alcohol consumption −0.215 0.022* −0.307 0.001*

ICH, Intracerebral hemorrhage; BMI, Body mass index; SBP, Systolic blood pressure;
DBP, Diastolic blood pressure; TC, Total cholesterol; TG, Triacylglycerol; HDL-C,
High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; GLU,
Glucose; UA, Uric acid; TBIL, Total bilirubin; BUN, Blood urea nitrogen; WBC, White
blood cell. *p < 0.05.

learning classification, we screened two candidates, circERBB2
and circCHST12, to explore their diagnostic value as potential
biomarkers in ICH patients. The AUC was 0.917 (95% CI: 0.869–
0.965), with a sensitivity of 87.5% and a specificity of 82% for
distinguishing between ICH patients and healthy controls. In
combination with ICH risk factors, the AUC was 0.980 (95% CI:
0.959–1), sensitivity was 93.8% and specificity was 96% in ICH
diagnosis. Moreover, logistic regression analysis and Spearman’s
correlation test demonstrated that downregulation of circERBB2
and circCHST12 may be independent risk factors for ICH.
Additionally, the expression level of circERBB2 correlated with
SBP and HDL-C; circCHST12 expression levels correlated
with LDL-C, SBP, DBP and white blood cells, indicating
that circERBB2 and circCHST12 might be heavily involved
in the pathology of ICH. Our data show that circERBB2
and circCHST12 may be novel biomarkers for ICH diagnosis.
Together with hsa_circ_0005505, circERBB2 and circCHST12
showed high accuracy for identifying ICH. A previous study
revealed that hsa_circ_0005505 was upregulated in ruptured
intracranial aneurysm tissues, promoted proliferation and
migration and suppressed apoptosis of vascular smooth
muscle cells in vitro (Chen X. et al., 2021), indicating that
hsa_circ_0005505 may be associated with the pathological
process of cerebrovascular diseases.

Intracerebral hemorrhage (ICH) is a multifactorial disease
with high incidence and mortality that imposes a large

socioeconomic burden. Identifying novel potential biomarkers
for the early diagnosis of ICH would be part of risk prediction.
CircRNAs are produced by host gene back-splicing, and closed
RNAs without a free 3′ or 5′ end are resistant to exonuclease
digestion (Jeck and Sharpless, 2014), which makes them more
stable and better biomarkers of human disease. Furthermore,
circRNAs are highly expressed in many tissues, particularly
the human brain, and in blood (Patop et al., 2019). There is
growing evidence that the circRNA expression profile is altered
in IS (Dong et al., 2020; Ostolaza et al., 2020; Zuo et al.,
2020; Liu Y. et al., 2022), indicating that circRNAs have the
potential to serve as biomarkers and therapeutic targets in IS.
Moreover, the circRNA expression profiles were altered in rat
brain tissues after ICH (Zhong et al., 2020; Bai et al., 2021).
However, the changes in circRNA expression in the peripheral
blood of ICH patients remain unclear. Our previous study
demonstrated that hsa_circ_0001240, hsa_circ_0001947 and
hsa_circ_0001386 were promising biomarkers for predicting
and diagnosing hypertensive ICH (Bai et al., 2021). In this
study, we first investigated whether circRNA profiles were
significantly altered between ICH patients and healthy controls,
which provides new insights into understanding the epigenomic
mechanisms of ICH.

In this study, we found that circERBB2 may serve as
a novel biomarker in ICH diagnosis. Previous studies have
identified blood biomarkers, such as glial fibrillary acid protein
(GFAP), retinol binding protein 4 and N-terminal pro B-type
natriuretic peptide, that distinguish IS from ICH with moderate
accuracy (Bustamante et al., 2021) and metabolic biomarkers
for ICH diagnosis (Zhang et al., 2021). The AUCs of S100
and IL6 were 0.65 and 0.59 (Bhatia et al., 2020), respectively,
and GFAP had a sensitivity of 78% and a specificity of 95%
between ICH and IS (Kumar et al., 2020). ncRNAs have been
identified as critical novel regulators of cardiovascular risk
factors and cell functions and are thus important candidates
to improve diagnostics and prognosis assessment (Poller et al.,
2018). In the present study, we identified that the AUC of
circERBB2 was 0.883 for distinguishing between ICH patients
and healthy controls, with a sensitivity and specificity of
68.2% and 92%, respectively. The signatures of circCHST12
showed an AUC of 0.838 with a sensitivity of 93% and
a specificity of 71.6%. The combination of circERBB2 and
circCHST12 with ICH risk factors increased the predictive
value for the identification of ICH. These findings were
better than the diagnostic value of three previously identified
circRNAs [hsa_circ_0001240 (AUC = 0.808), hsa_circ_0001947
(AUC = 0.798) and hsa_circ_0001386 (AUC = 0.806)] in ICH
(Bai et al., 2021). Additionally, we observed that downregulation
of circERBB2 was positively associated with HDL-C and
negatively correlated with SBP and DBP. Lowering blood lipids
was associated with an increased risk of ICH (Sun et al., 2019),
and high blood pressure was found to be the most prevalent
stroke risk factor (Feigin et al., 2016; Wang et al., 2017). Thus,
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FIGURE 7

Evaluation of the circRNA diagnostic value in ICH patients. (A) Receiver operating characteristic (ROC) curves were calculated using the
expression levels of circERBB2, circCHST12 and hsa_circ_0005505 for differentiating patients with intracerebral hemorrhage (ICH) and healthy
controls (n = 64 vs. 50). (B) ROC curves of combining circERBB2 and circCHST12 with ICH risk factors to differentiate patients with ICH and
healthy controls in all samples (n = 64 vs. 50). (C) ROC curves of combining circERBB2 and circCHST12 for differentiating patients with ICH and
IS patients in all samples (n = 64 vs. 59). (D) ROC curves of two novel circRNAs, circERBB2 and circCHST12, combined with hsa_circ_0005505
for differentiating patients with ICH and IS patients in all samples (n = 64 vs. 59).

we speculate that a decrease in circERBB2 expression levels
might correlate with an increased risk of ICH occurrence. These
findings indicate that circERBB2 might play vital roles in the
pathogenesis and pathology of ICH.

The protein ERBB2 is a member of a family of epidermal
growth factor receptors that are involved in aberrant signaling
and cell migration, growth, adhesion, and differentiation
(Strickler et al., 2022). A previous study demonstrated that
circERBB2 (chr17: 39,708,320–39,710,481; length: 676 bp)
serves as an important regulator of cancer cell proliferation and
has the potential to be a new therapeutic target for gallbladder
cancer (Huang et al., 2019) and breast cancer (Huang Y. et al.,
2021). Our study identified circERBB2 (chr17: 37,866,065–
37,872,192; genomic length: 6127 bp, spliced sequence length:
939 bp), which is a novel back-splicing circRNA that has
never been reported thus far, at a different chromosomal

position. Carbohydrate sulfotransferases (CHSTs) are a class
of key enzymes that contribute to tissue remodeling. CHST12
is a significant member of the CHST family, and a previous
study demonstrated that CHST12 may be a novel biomarker
for glioblastoma; it regulates cell proliferation and mobility
via the WNT/β-catenin pathway (Wang et al., 2021). One
study reported that hsa_circ_0134005 (chr7:2472197-2477555;
genomic length: 5358 bp, spliced sequence length: 5358 bp) is
derived from the CHST12 gene (Rybak-Wolf et al., 2015). This
study identified circCHST12 (chr7:2477438-2483381; genomic
length: 5943 bp, spliced sequence length: 5943 bp) derived from
exon 1 and partial exon 2 of the CHST12 gene, which is a novel
back-splicing circRNA that has never been reported thus far at a
different chromosomal position.

CircRNAs are involved in the translational and
transcriptional regulation of the pathological mechanisms
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FIGURE 8

Work flow. The diagram of the data analysis process in this study.

of many disorders (Shan et al., 2017; Aufiero et al., 2019).
CircRNAs can act as miRNA sponges and are expected to
influence downstream miRNA function, further regulating
the expression levels of target mRNAs (Hansen et al., 2013).
We performed GO and KEGG analyses to investigate the
enrichment of differentially expressed circRNAs. Functional
analysis demonstrated that the circRNA host genes were mainly
involved in GTPase activity, covalent chromatin modification,
histone modification, the MAPK signaling pathway and the
ERBB signaling pathway. Activation of the MAPK signaling
pathway is involved in the progression of injury following ICH
(Ding et al., 2020; Guo et al., 2020). Recently, research identified
that knockdown of circERBB2 suppressed the PDGF-BB-
induced proliferation, migration, and inflammatory response
of human airway smooth muscle cells via miR-98-5p/IGF1R
signaling (Huang J. Q. et al., 2021). The phenotype of smooth
muscle cells transforming from a contractile to a synthetic
phenotype plays an essential role in the onset of brain vascular
pathological progression (Bennett et al., 2016; Rho et al., 2017).
In this study, we speculated that the downregulation of the
novel circERBB2 in ICH patients might contribute to the
pathogenesis of ICH via the phenotype of smooth muscle cell
transformation.

Notably, there are some limitations of this study. First,
we should perform a larger multicenter study with more
participants to externally validate the candidate biomarkers.

Second, further studies should be performed to explore how
hsa_circ_0005505, circERBB2 and circCHST12 contribute
to the pathogenesis and development of ICH with cell- or
animal-based experiments. Additionally, our study lacked
follow-up information for ICH patients, and the prognostic
value of these candidate circRNAs should be assessed in
subsequent studies. We expect that hsa_circ_0005505,
circERBB2 and circCHST12 will provide new insights for
a better understanding of the pathogenesis of ICH and help
to improve the diagnosis and prognostic assessment of ICH in
clinical practice.

Conclusion

In this study, we provided a transcriptome-wide overview of
aberrantly expressed circRNAs in the peripheral blood of ICH
patients and identified hsa_circ_0005505 and novel circERBB2
and circCHST12 as promising biomarkers for diagnosing ICH
based on machine learning algorithms.
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