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Introduction: The human brain could be modeled as a complex network via

functional magnetic resonance imaging (fMRI), and the architecture of these

brain functional networks can be studied from multiple spatial scales with

different graph theory tools. Detecting modules is an important mesoscale

network measuring approach that has provided crucial insights for uncovering

how brain organizes itself among different functional subsystems. Despite

its successful application in a wide range of brain network studies, the lack

of comprehensive reliability assessment prevents its potential extension to

clinical trials.

Methods: To fill this gap, this paper, using resting-state test-retest fMRI

data, systematically explored the reliabilities of five popular network metrics

derived from modular structure. Considering the repeatability of network

partition depends heavily on network size and module detection algorithm,

we constructed three types of brain functional networks for each subject

by using a set of coarse-to-fine brain atlases and adopted four methods for

single-subject module detection and twelve methods for group-level module

detection.

Results: The results reported moderate-to-good reliability in modularity,

intra- and inter-modular functional connectivities, within-modular degree

and participation coefficient at both individual and group levels, indicating

modular-relevant network metrics can provide robust evaluation results.

Further analysis identified the significant influence of module detection

algorithm and node definition approach on reliabilities of network partitions

and its derived network analysis results.

Discussion: This paper provides important guidance for choosing reliable

modular-relevant network metrics and analysis strategies in future studies.
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test-retest reliability, brain functional network, module detection, modular structure,
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Introduction

The human brain could be modeled as a complex network
via functional magnetic resonance imaging (fMRI) consisting
of brain regions as nodes linked by edges, estimated with
functional connectivity (FC) (Friston, 2011; Park and Friston,
2013). As with other real-world connected systems, investigating
the topology of brain functional interactions has profound
implications for understanding its complex principles (Heuvel
and Pol, 2010), e.g., underlying neural-mechanisms of human
complex behaviors and cognitive capacities (Bullmore and
Sporns, 2009) and pathogenesis of brain diseases (Sang et al.,
2015; Dai et al., 2018), etc. The brain functional network can
be studied from different spatial scales with graph theory tools,
such as global network efficiency at macroscale (van den Heuvel
et al., 2009), functional sub-systems’ coordination at mesoscale
(Chan et al., 2014), and regional properties at microscale
(Cheng et al., 2015). In recent decades, network metrics at
each scale have provided crucial insights for understanding the
organization of human brain in health and disease.

With the extension of the use of FCs coupled to graph
theory analysis to clinical trials becoming possible, increasing
attention has been given to the reliability of these studies (Braun
et al., 2012; Liang et al., 2012; Liao et al., 2013; Cao et al.,
2014; Andellini et al., 2015; Du et al., 2015; Wang et al., 2017;
Jin et al., 2018; Zeng et al., 2019). Test-retest reliability (TRT),
which quantifies within-subject stability of a measure under
multiple occasions in a group of subjects (Lavrakas, 2008), has
been widely used for reliability assessment of fMRI data analysis.
Based on this approach, the robustness of various graph-theory
analyses at different spatial scales in functional brain networks
has been extensively explored over the past decade. Macroscale
studies found that most global network metrics, including global
efficiency, clustering coefficient, characteristic path length,
small-worldness, modularity, and hierarchy, are reproducible
with reliability ranging from moderate to good (Braun et al.,
2012). For nodal topological properties at microscale, their
reliabilities displayed a spatially heterogeneous distribution,
wherein regions in association areas exhibit moderate reliability
(Liang et al., 2012), and nodal degree and nodal efficiency
are more reliable than nodal betweenness (Liao et al., 2013).
Compared to macroscale and microscale network metrics with
their TRT reliability systematically assessed, network properties
at mesoscale still lack a comprehensive reliability evaluation.

In recent years, module detection is becoming a popular
approach for investigating mesoscale properties of brain
functional networks (Gallos et al., 2012; Park and Friston, 2013;
Sporns and Betzel, 2016; Baum et al., 2017). It decomposes the
human brain into several functional modules, each of which
represents groups of brain regions that perform specialized
neurophysiological function (Power et al., 2011; Cole et al.,
2014). Following suits, a variety of module-related network
metrics were proposed, including modularity (Sporns and

Betzel, 2016), intra- and inter-modular FCs (Ma et al., 2017),
within-modular degree, and participation coefficient (Guimera
and Amaral, 2005). More importantly, these measurements
have been used as biomarkers for brain disease diagnosis.
For example, previous studies reported abnormal changes
of modularity, intra- and inter-modular FCs in neurological
ailments like Alzheimer’s disease (Haan et al., 2012), Parkinson’s
disease (Cai et al., 2018), and depression (Andric and Hasson,
2015). Furthermore, the detected modular structure also
influences the classification of nodes into different functional
roles through within-modular degree (reflecting intra-modular
coordination) and participation coefficient (reflecting inter-
modular coordination) (Meunier et al., 2009a; Bertolero et al.,
2015; Wen et al., 2019). These hub regions have been found to
have increased susceptibility in case of brain disorders and cause
major functional disruption in case of brain injury (Power et al.,
2013). All abovementioned studies suggest the promising future
of modular-relevant network analysis, and timely assessment
of its reliability is crucial for its broader applications because
only with adequate reliability, we can then expect the detected
modular-relevant biomarkers to be reproducible.

The reliability of modular-relevant analysis in brain
functional networks depends on two factors, i.e., the reliability
of edges (i.e., FCs among brain regions) and the repeatability of
network partition. TRT reliability regarding to FCs have been
well assessed, which can be affected by many factors, including
imaging acquisition parameters (Shirer et al., 2015), imaging
preprocessing steps (Parkes et al., 2017), and FC estimation
methods (Liang et al., 2012; Fiecas et al., 2013; Mejia et al.,
2018), etc. A recent review literature (Noble et al., 2019)
concludes that fMRI studies with high reliability tend to have
the following characteristics: (1) eyes open and awake recordings
of subjects during imaging scanning, (2) as much frames of
fMRI data for each subject as possible, (3) test and retest
measurements collected at shorter inter-scan intervals, and (4)
connectivity estimated via full correlation. This study provides
an important guidance for choosing the effective approach to
improve the reliability of FCs. In contrast to systematic studies
of FC reliability, how to guarantee the repeatability of network
partition in brain functional networks remains unclear. It is well
known that, the non-deterministic nature of module detection
is an NP-hard problem (Xu et al., 2010; Gong et al., 2014),
the reliability and quality of its resultant network partition is
potentially affected module searching strategy and network size.
Therefore, in reliability evaluation of modular-relevant analysis,
the influence of module detection algorithm and node definition
approach should be highlighted.

In this work, we systematically explored the reliability of
various modular-relevant network measurements, including
modular structure and five modular-relevant network
properties. We aimed to investigate the following three
questions: (1) Are individual- and group-level modular-relevant
network analysis methods reliable and reproducible? (2) Does the
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module detection algorithm affect reliability of modular-relevant
measurements? (3) Does the node definition approach affect
reliability of modular-relevant measurements? To this end, we
used a test-retest fMRI dataset from 45 healthy subjects in
Human Connectome Project (HCP) database and adopted
three coarse-to-fine brain atlases to construct individual brain
functional networks. For each kind of networks, we used four
individual-level module detection methods and 12 group-level
module detection methods to capture the corresponding
network partitions and then calculated the related network
measurements. TRT reliability was computed with intra-class
correlation coefficient (ICC).

Materials and methods

A summary of the processing pipelines in this paper
was given in Figure 1. Specifically, based on a publicly
available HCP test-retest database, we first conducted module
detection on each single subject and the population group
to obtain individual- and group-level modular structures,
and then calculated five popular modular-relevant network
properties. After that, we assessed the reproducibility of all
above estimations to give a comprehensive evaluation of
TRT reliability of modular-relevant analysis methods in brain
functional networks.

Participants

This study was carried out using test-retest dataset from
the publicly available HCP database S1200 release1 (Van Essen
et al., 2013). It includes 45 healthy subjects (13 males, aged
22∼35 years old) with full 3T imaging scans. All participants
were free of current psychiatric or neurologic illness. Extensive
descriptions of the data, please refer to Marcus et al. (2013).

Each subject has two resting-state fMRI (rs-fMRI) sessions,
each of which consists of two runs scanned with the same
multi-band sequence (Moeller et al., 2010) but the different
readout directions (i.e., one with LR phase coding direction and
the other with RL direction). The mean interval between two
sessions of subjects is ∼140 days. The first section is used as
test data and the second session is used as retest data. All rs-
fMRI data were collected with eye open and relaxed fixation
on a projected bright cross-hair on a dark background. The
other acquisition parameters for rs-fMRI were: TR = 720 ms,
TE = 33.1 ms, flip angle = 52◦, voxel size = 2 mm3 (isotropic),
72 slices, and total volumes = 1,200 (15 min). For more detailed
information of rs-fMRI in HCP, please refer to the previous work
(Smith et al., 2013).

1 https://www.humanconnectome.org/study/hcp-young-adult

Data preprocessing

All rs-fMRI data were first preprocessed by “HCP
fMRIvolume” minimal preprocessing pipeline (Glasser et al.,
2013), including the following procedures: (1) gradient
distortion correction, (2) head motion correction, (3)
EPI distortion correction, (4) registration to the Montreal
Neurological Institute (MNI) space, (5) intensity normalization
to a global mean, and (6) masking out non-brain voxels. After
that, we further adopted independent component analysis
(ICA) based FIX Xnoiseifier to remove artifacts from fMRI data
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). During
this cleanup, 24 head motion parameters (including 6 rigid
-body motion parameters, their backward temporal derivatives,
and squares of those 12 time series) and “bad components”
estimated from ICA were regressed from blood oxygen level
dependent (BOLD) signals of each scan.

Brain functional network construction

Considering the node definition approach may affect
repeatability of module detection methods, this paper adopted
three different types of brain atlases to define nodes in brain
functional networks. These three atlases were defined with
different methods (or brain features) and parcellate the human
brain from a coarse to fine scale. They are (1) automated
anatomical labeling (AAL) atlas derived from anatomical
landmarks and parcellate the human brain into 90 brain
regions (Tzourio-Mazoyer et al., 2002); (2) Shen’s FC-based atlas
generated from rs-fMRI data and includes 217 brain regions
(Shen et al., 2013); (3) Zalesky’s random atlas defined with
the random parcellation method and consists of 1,024 brain
regions (Zalesky et al., 2010). Notably, we excluded cerebellar
regions of AAL atlas and Shen atlas due to the difficulty of
cerebellum registration.

After obtaining parcels with brain atlas, we constructed the
corresponding functional brain network for each scan using
the following steps. Specifically, we first extracted rs-fMRI time
series for each brain region (i.e., brain parcel) by averaging
blood oxygen level dependent (BOLD) signals of all voxels
within it. We then computed the Pearson’s correlation between
each pair of time series and used them as edges of brain
functional networks. After that, we conducted r-to-z value
conversion on each FC matrix with Fisher-z transformation
to improve the data normality. Since each session has two
runs, each subject has two FC matrices, one of which was
generated from rs-fMRI data with LR readout direction and
the other from RL direction. We followed the suggestion
in Smith et al. (2013) to construct the representative FC
network for each subject by averaging LR and RL FC matrices.
Finally, for each subject, we set all the negative values of FC
network of each subject to zeros for their unclear biological
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FIGURE 1

Summary of the processing pipelines in this paper. First, we constructed three types of brain functional networks for each subject based on
different brain atlases. Second, we detected modular structure for each subject with four methods and for the population group with 12
methods (i.e., three group-wise modular construction frameworks four module searching approaches). Third, we computed five
modular-relevant network properties, including modularity, intra- and inter-modular functional connectivities (FCs), within-modular degree,
and participation coefficient. Finally, we assessed the test-retest and reliability of each kind of estimations with different measurements. NMI,
normalized mutual information; RI, rand index; ICC, intra-class coefficient.

meanings (Garrison et al., 2015). In summary, each subject in
each dataset would have a 90 ×90 FC matrix, a 217 ×217
FC matrix, a 1,024 ×1,024 FC matrix. It should be noted
that the weighted brain networks were used in the following
experiments.

Module detection algorithms

The module detection in brain networks is broadly divided
into two categories, one of which is to detect modular
structure for one single subject (i.e., individual-level module
detection) and the other is to generate a common network
partition for a cohort of subjects (i.e., group-level module
detection). For a comprehensive evaluation, we assessed TRT
reliability of modular-relevant analysis at both individual and
group levels. For each category, we selected a variety of
widely used module detection methods to generate different
network partition results to evaluate the influence of module
detection algorithm on reliability. To ensure the quality of
network partitions, we only kept top 10% strongest positive
connections to ensure the sparsity of FC networks (Wen
et al., 2019; Zhang et al., 2021). After obtaining individual-

and group-level modular structures, we projected them on
brain surface for further comparison between different methods
and different brain atlases. The brain parcellation template
generated on a large population by using the clustering
method was adopted as ground truth (Yeo et al., 2014),
whose spatial distribution is displayed in Supplementary
Figure 1.

Individual-level module detection algorithms
Among various module detection algorithms, “modularity

maximization” is the most widely adopted method in brain
module detection in FC-related studies (Sporns and Betzel,
2016). This approach divides the network into modules by
maximizing modularity quality function, during which the
optimization strategy has an effect on the quality of the
solution. Considering this situation, this study employed three
different approaches to search for optimal modularity, including
Louvain algorithm (Blondel et al., 2008), Tabu search (Arenas
et al., 2008), and spectral optimization (Newman, 2006). For
each approach, we repeated module detection 50 times on
each network, and used consensus clustering to construct
consistent modules to avoid their uncertainty (Bassett et al.,
2013). In addition to the above three methods, we also used
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Infomap algorithm for module detection due to its good
performance in other domains (Rosvall and Bergstrom, 2008).
Unlike the first three methods, Infomap detects modules by
minimizing the description length of random walks in the
network. In summary, for each single subject, we employed
four module detection methods to capture its modular
structure.

Group-level module detection algorithms
Currently, there are three popular group-wise frameworks

for determining modular structure on the population
group, which can be named as “Ave,” “SimMax,” and
“Consensus,” respectively. “Ave” based methods first construct
a representative brain network by averaging FC matrixes
across all subjects, and then apply module detection on this
averaged network for generating group-level modular structure
(Meunier et al., 2009b). “SimMax” based methods conduct
module detections on all subjects and choose the partition that
is most similar to others as the group-level result (Meunier
et al., 2009b). “Consensus” based methods first perform module
detection for each subject to construct the association matrix,
where each element represents the probability of assigning
a pair of nodes to the same module across subjects, and
then employ the second clustering on association matrix to
generate group-level network partition (Bassett et al., 2013).
By combining three group-wise modular construction schemes
with four individual-level module detection methods, there
are 12 group-level module detection methods, named as
Louvain + Ave, Tabu + Ave, Spectral + Ave, Infomap + Ave,
Louvain + SimMax, Tabu + SimMax, Spectral + SimMax,
Infomap + SimMax, Louvain + Consensus, Tabu + Consensus,
Spectral + Consensus, Infomap + Consensus.

Modular-relevant network properties

Based on the detected module structure, we computed
five popular network properties, including modularity, intra-
modular FC, inter-modular FC, within-modular degree,
and participation coefficient. Among these metrics, the
first three assessed the information coordination capacity
among functional modules of the whole brain network
(including separation and integration), and the latter two
evaluated the topological role of nodes within module
and between different modules, which are regional level
measurements. There are differences for network property
calculation between individual and group levels. Specifically,
for a given network, individual-level network metrics were
computed based on modular structure detected on itself,
while group-level network metrics were measured by
warping group-wise representative on the network. All
positive connections in FC network were used for computing
network properties.

Modularity
It is defined as the difference between the fraction of edges

within the given modules and the expected fraction if edges are
distributed at random (Newman, 2006), which is formulated as

Q =
1

2m

∑
ij

(
aij−

kikj

2m

)
δ(σi, σj) (1)

where aij represents the link strength between nodes i and j, and
ki indicates the degree of node i. m is the total link strength of the
whole network. The Kronecker delta function, δ(σi, σj), is equal
to 1 when nodes i and j belong to the same module; otherwise,
it is set to 0. Modularity is a network-level measurement for
evaluating network segregation.

Intra-modular functional connectivity
It measures the total link strength of FC within the modules,

which is defined as the averaged FC strength across all the
within-modular connections (Chan et al., 2014). This index is
generally used for evaluate network segregation.

Inter-modular functional connectivity
It measures the total link strength of FC between different

modules, which is defined as the averaged FC strength across all
the edges that linked different modules (Chan et al., 2014). This
index can be used as an indicator for network integration.

Within-modular degree
It characterizes the importance of a region within its own

module (Guimera and Amaral, 2005). Given a modular partition
C = {c1, c2,. . .,cA}, the within-module degree WD of a node n in
module ci is formulated as

WDn =
Kn

ci
−Kci

δKci

(2)

where Kn
ci

is the total FC strength between node n and the
other nodes in module ci, and Kci and δKci

represent the average
and standard deviation of Kn

ci
across all nodes in module

ci, respectively.

Participation coefficient
It evaluates the region’s importance in connecting with

different modules (Guimera and Amaral, 2005). Given a
modular partition C = {c1, c2,. . .,cA}, the participation coefficient
of a node n in module ci is defined as

PCn = 1−
A∑

i = 1

(
Kn

ci

kn
)2 (3)

where Kn
ci

is the total FC strength between node n and the other
nodes in module ci and kn is the sum of FC strength connecting
node n.
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Reliability assessment

To systematically assess the reliability of modular-relevant
analysis in brain functional networks, we computed the
reproducibility of three network analysis methods by using
different evaluation indexes, including modular structure and
modular-relevant network metrics.

Modular structure
The repeatability of modular structure between test and

retest data was evaluated with normalized mutual information
(NMI, Ana and Jain, 2003) and rand index (RI, Rand, 1971).
Suppose there are two partitions A = {c1, c2,. . .,cA} and B = {c1,
c2,. . .,cB}. NMI is an information-theory-based index, which is
calculated as follows:

NMI(A,B) =
−2

∑A
i = 1

∑B
j = 1 Nijlog( NijN

Ni.N.j )∑A
i = 1 Ni.log

(
Ni.
N

)
+
∑B

j = 1 N.jlog(N.j
N )

(4)

In Eq. 4, N is confusion matrix, where each element Nij

denotes the number of nodes in module ci of partition A that
appears in module cj of partition B. Ni. is the sum over row i
of matrix N and N.j is the sum over column j. N is the sum
over all elements in N . Different with NMI, RI calculates the
fraction of correctly classified elements to all elements, which
can be formatted as

RI(A,B) =
2(n11 + n00)

n(n− 1)
(5)

where n11 is the number of node pairs that are in the same mode
under A and B, and n00 is the number of node pairs that in
different modules under A and B. n is the number of nodes in
FC networks. Both NMI and RI scores range from 0 to 1, where
1 corresponds to identical network partitions between A and B,
and 0 indicates two entirely dissimilar network partitions.

Modular-relevant network properties
The TRT reliability of five modular-relevant network

properties were evaluated using two-way mixed single-measures
intra-class correlation coefficient (ICC) (Shrout and Fleiss,
1979), which is defined as

ICC =
BMS− EMS

BMS+ (s− 1)EMS
(6)

where BMS is the between-subjects mean square, EMS notates
the error mean square and s is the number of repeated
measurement (here, s = 2). ICC coefficient conceptually ranges
from 0 (not reliable at all) to 1 (perfectly consistent between
repeated measurements), but its estimation can be negative in a
few cases. In this paper, we followed previous literatures and set
the negative ICC values to be zeros (Zhang et al., 2011, 2017).
Based on the values of ICC, reliability is usually categorized

as poor (0∼0.2), fair (0.2∼0.4), moderate (0.4∼0.6), good
(0.6∼0.8), and excellent (>0.8) (Koch, 1977; Chen et al., 2015).

Results

Reliability of individual-level
modular-relevant analysis

In this section, we reported TRT reliability results of
modular-relevant analysis on individual level, including
modular structure and five modular-relevant network
properties. Modular structure results were presented in
Figures 2, 3. Modular-relevant network metric results,
including modularity, intra- and inter-modular FCs, within-
module degree and participation coefficient, were displayed in
Figure 4 and Table 1.

Modular structure
Figure 2 displayed the repeatability of individual-level

module detection results computed by NMI and RI. For ease of
comparison, we reported averaged evaluation measures in the
form of line graphs for all computed results, and also showed
box plots alongside line graphs to represent the variability across
subjects.

In Figure 2, we observed that the repeatability of
network partition results depends heavily on module detection
algorithms. We could draw two conclusion. First, modularity
maximization based methods yielded higher reliability than
Infomap algorithm in almost all experiments, suggesting it
is more suitable for module detection in brain functional
network. Second, of three estimated modularity optimization
strategies, Louvain algorithm displayed the highest reliability
in all experiments, and its advantage became more and
more prominent as the network size increases. Specifically,
on the brain network with 90 nodes (i.e., AAL atlas), the
Louvain algorithm performed slightly better than Tabu method,
but with the number of nodes increases to 217 (i.e., Shen
atlas), their gap became larger. When the number of nodes
increases to 1,024 (i.e., Zalesky atlas), the performance of
Louvain algorithm was significantly better than the other
methods. This result implies that the choice of module
detection algorithm is important to ensure the reliability
of module detection results, especially for the large-scale
network.

Regarding the brain atlas, we found that AAL atlas yielded
the highest reliability in all experiments. This result is due to
its much smaller number of nodes than the other two atlases
reduces the difficulty of module detection. A surprising finding
is that, in most of cases, Shen atlas with fewer nodes generated
lower NMIs and RIs than Zalesky atlas with more nodes. This
finding suggests that the brain atlas construction approach
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FIGURE 2

Repeatability of individual-level module detection results. (Left) Averaged reliability values obtained using normalized mutual information (NMI,
top) and Rand index (RI, bottom). (Right) Box plots indicated the reliability across subjects on automated anatomical labeling (AAL), Shen and
Zalesky atlases, from left to right for each method.

can also affect the repeatability of module detection on brain
functional networks.

Furthermore, to verify the availability of module detection
results by different methods on different brain atlases, we
randomly selected an exemplar subject (subject ID: 114823) and
visualized his/her module detection results on brain surface in
Figure 3. We observed that (1) most of module detection results
captured four available functional subsystems, including visual
network (VN), sensorimotor network (SMN), default mode
network (DMN), and frontal-parietal network (FPN), and (2)
brain regions in each module derived from AAL atlas were
more spatially contiguous than those from Shen and Zalesky
atlases. Compared with Yeo’s atlas (Yeo et al., 2014), the modular
structures detected on Shen and Zalesky atlases were closer to
the true spatial distribution of functional systems than the AAL
atlas. As red line labeled, AAL atlas incorrectly assigned a large
brain region in frontal areas in SMN to DMN.

Modular-relevant network properties
Test-retest reliability on five network properties derived

from individual-level module detection were given in Figure 4,
where the results of modularity, intra- and inter-modular FCs

were visualized as bar figures and the results of within-modular
degree and participation coefficient were displayed as box plots.
For ease of comparison, for each network metric estimated
on each brain atlas, we ranked four individual-level module
detection methods based on their ICC values as summarized in
Table 1.

As shown in Figure 4 and Table 1, among five estimated
network properties, modularity yielded the highest ICC values
with the reliability above good level on all three brain atlases,
and the reliability of the other four properties ranged from
moderate to good. But overall, these network metrics derived
from individual-level module detection in brain functional
networks are reliable and reproducible.

We also observed a significant impact of module detection
algorithm on the reliability of modular-relevant network
metrics. Consistent with the repeatability of network partitions,
Louvain algorithm performed best in reliability assessment
experiments, and Infomap algorithm performed the worst.
Specifically, as shown in Table 1, Louvain algorithm ranked first
in 11/15 cases, whereas Infomap algorithm ranked last in 12/15
cases. For the other two methods, Tabu method yielded higher
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FIGURE 3

Visualization of modular structure detected by different methods on an exemplar subject (subject ID: 114823). In each sub-figure, different
colors represented different functional modules, and the similarity of module detection results between test and retest data estimated by
normalized mutual information (NMI) and rand index (RI) were given below the figure.

ICC values than spectral method on smaller networks (i.e., AAL
atlas and Shen atlas), but lower ICC values on larger networks
(i.e., Zalesky atlas), indicating it cannot handle the large-scale
brain network.

Regarding to the influence of brain atlas on network metrics,
a surprising finding is that, the reliability of modular-relevant
network metrics was not significantly changed with the increase
of network size, except within-modular degree. Take results
from Louvian algorithm as the example for illustration. As
shown in Figure 4, although ICC values of modularity, intra-
and inter-modular FCs, and participation coefficient displayed
variation across different brain atlases, these changes were not
very significant, and their reliabilities were still in the same
level. As for within-modular degree, with the number of nodes
changing from 90 to 1,024, its reliability gradually increased
from moderate to excellent.

Reliability of group-level
modular-relevant analysis

In this section, we systematically evaluated TRT reliability
of group-level modular-relevant analysis, including modular
structure, modularity, intra- and inter-modular FCs, within-
module degree and participation coefficient. Modular structure
results were displayed in Figures 5, 6. Five network metric
results were given in Figure 7 and Table 2.

Modular structure
Figure 5 displayed the similarity of group-level modular

structure between test and retest data obtained with 12 different
module detection methods, including four average based
methods, four similarity maximum based methods, and four
consensus clustering based methods. In Figure 5, an obvious
finding is that, both NMI and RI values derived from similarity
maximum based methods were much lower than those from
average based and consensus clustering based methods. It
indicates that, in group-level module detection, the methods
considering all subjects can yield more robust modular structure
than those by selecting a representative subject. Further
comparisons among four average based methods, we found the
inconsistent result with individual-level analysis, i.e., none of
the module searching approach displayed better performance
than others in terms of repeatability of modular structure. The
similar finding was also found among four consensus clustering
based methods. All these results suggest that the repeatability
of group-level network partition were sensitive to group-wise
modular structure construction framework rather than module
searching strategy.

Additionally, the effect of brain atlas was not exactly
same as that found in individual level. In subject level, the
modular structure detected on Shen atlas displayed the lowest
repeatability among three brain atlases in most of experiments
(as shown in Figure 2). However, in group-level analysis, the
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FIGURE 4

Test-retest reliability results of individual-level modular-relevant network metrics estimated by intra-class correlation (ICC), including (A)
modularity, (B) intra-modular functional connectivity (FC), (C) inter-modular FC, (D) within-modular degree, and (E) participation coefficient. In
panels (D,E), two-sample t-test are used for method comparison, where * represents significant level p < 0.05 and *** represent p < 0.005.

similar results were only found on three average based methods,
i.e., Spectral + Ave, Tabu + Ave, and Infomap + Ave. For the
other two frameworks, the repeatability of the resultant network
partitions was decreased with the increase of network size.

Finally, for each atlas, we also projected 12 group-
level network partition results obtained from different
module detection algorithms on brain surface for the further
comparison. The visualizations on AAL, Shen and Zalesky
atlases were, respectively, given in Figure 6 and Supplementary
Figures 2, 3. Similar to individual-level results, four functional
subsystems could be also successfully captured by most
of group-level module detection methods, i.e., VN, SMN,
DMN, and FPN. Taking network partitions from Louvain
algorithm as example, we further compared differences of
spatial distribution of functional subsystems between different
group-wise module construction schemes and different brain
atlases. The network partition map generated by Yeo et al.
(2014) were adopted as ground truth. In Figure 6, we observed
two results. First, average and consensus clustering based
methods yield the similar network partition results. Second,

functional modules generated on Shen atlas were closer to the
real spatial distributions than the other two atlases. For example,
the results on AAL and Zalesky atlases assigned superior frontal
areas to DMN, but they were not constituent brain areas of this
system.

Modular-relevant network properties
We reported TRT reliability results of modularity, intra- and

inter-modular FCs, within-modular degree, and participation
coefficient estimated from group-level module detection in
Figure 7. Besides, in all 15 experiments (5 network metrics ×3
brain atlases), we further sorted 12 group-level module detection
methods based on ICC values and visualized the top four in
Table 2 for the further comparisons.

As shown in Figure 7 and Table 2, the reliabilities of
five group-level modular-relevant network metrics were ranged
from moderate to good with modularity yielded the highest
ICC values. These results suggest that, the estimation of
network properties from group-level module detection in brain
functional networks were reliable.
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TABLE 1 Rankings of four individual-level module detection algorithms on five network metrics estimated on three brain atlases.

Metrics Atlas ICC rank

Modularity AAL Tabu (excellent)> Louvain (good)> Spectral (good)> Infomap (moderate)

Shen Louvain (good)> Spectral (good)> Tabu (good)> Infomap (moderate)

Zalesky Louvain (good)> Spectral (good)> Tabu (moderate)> Infomap (moderate)

Intra-modular FC AAL Louvain (moderate)> Tabu (moderate)> Spectral (fair)> Infomap (poor)

Shen Louvain (moderate)> Tabu (moderate)> Spectral (fair)> Infomap (poor)

Zalesky Spectral (moderate)> Louvain (moderate)> Tabu (fair)> Infomap (poor)

Inter-modular FC AAL Louvain (moderate)> Tabu (moderate)> Spectral (moderate)> Infomap (poor)

Shen Louvain (good)> Tabu (moderate)> Spectral (moderate)> Infomap (poor)

Zalesky Spectral (moderate)> Louvain (moderate)> Tabu (poor)> Infomap (poor)

Within-module degree AAL Louvain (moderate)> Tabu (moderate)> Infomap (moderate)> Spectral (moderate)

Shen Louvain (good)> Tabu (good)> Spectral (good)> Infomap (good)

Zalesky Louvain (excellent)> Tabu (excellent)> Spectral (good)> Infomap (good)

Participation coefficient AAL Louvain (moderate)> Tabu (moderate)> Spectral (fair)> Infomap (poor)

Shen Louvain (moderate)> Tabu (moderate)> Infomap (fair)> Spectral (moderate)

Zalesky Spectral (moderate)> Louvain (moderate)> Infomap (fair)> Tabu (fair)

Poor reliability (0< ICC< 0.2), fair reliability (0.2< ICC< 0.4), moderate reliability (0.4< ICC< 0.6), good (0.6< ICC< 0.8), and excellent reliability (ICC> 0.8).

We further compared ICC values of 12 group-level module
detection algorithms in each experiment, and found that
reliability was relevant to group-wise module construction
framework rather than module searching approach. Specifically,
as shown in Table 2, among all listed module detection
algorithms, there are 31 consensus clustering based methods,
24 average based methods, and 5 similarity maximum based
methods, indicating the superiority of consensus clustering
framework in terms of reliability assessment. However, the
further comparison between four module searching approaches
within each group-wise scheme did not find the significant
difference between each other. Taking the consensus clustering
framework as example, the proportions for Louvain algorithm,
spectral method, Tabu method and Infomap algorithm were
7/31, 8/31, 11/31, and 5/31, respectively, and none of the method
displayed significantly better performance than the others.

Regarding to the brain atlas, the similar results were found
with individual-level analysis, that is, the reliability of most
network properties derived from group-level modular detection
was not significantly changed with the increase of network
size. The only network metric with dramatic change was inter-
modular FC, whose ICC values were slightly decreased with the
increase of network size.

Discussion

The main purpose of this study was to systematically
investigate the reliability of modular-relevant analysis in brain
functional network from rs-fMRI data, including modular
structure and popular module-derived network metrics. We
were also interested in evaluating how module detection
algorithm and node definition approach affect the reliability.

Through a series of experiments, we drew the following
conclusion. First, five modular-relevant network metrics were
reliable and reproducible with TRT reliability ranging from
moderate to good. Second, the reliability of network metrics
could be affected by module detection algorithm but there
was difference between individual- and group-level analyses.
Individual-level reliabilities were sensitive to module searching
strategy, whereas group-level reliabilities depended heavily on
group-wise modular structure construction framework. Third,
node definition approach was another potential affecting factor
for reliability of modular-relevant analysis, and both the
generation approach and parcellation granularity of brain atlas
could impact ICC values.

To our best knowledge, there is no such comprehensive
reliability study before specific to mesoscale module-related
network measuring approaches from rs-fMRI data. Although
many studies have investigated reliabilities of FCs and network
properties at macroscale and microscale (Shehzad et al., 2009;
Anderson et al., 2011; Shou et al., 2013; Mueller et al., 2015;
Shirer et al., 2015; Laumann et al., 2017; Tomasi et al., 2017),
they cannot guarantee the repeatability of module detection
results and their derived network analysis approaches. This
study filled this gap that focused on this important mesoscale
graph theory tool to provide a potential guidance for the usage of
module detection in brain functional networks in future studies.

Reliability of modular-relevant network
analysis

The results from a series of reliability evaluation
experiments indicate five popular network measurements
from functional modules are reliable and reproducible. This
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FIGURE 5

Repeatability of group-level module detection results estimated by normalized mutual information (NMI, top) and rand index (RI, bottom).
Twelve module detection methods were applied for each brain atlas, including four average based methods, four similarity maximum based
methods, and four consensus clustering based methods.

finding not only fills the gap of mesoscale reliability assessment
of brain functional networks, but also provides an evidence
for the potential application of module detection in future
clinical trials. Of the five network metrics, we noted that
modularity yields the highest ICC values. This is because it
is calculated by directly comparing the modular structure of
the given network and stochastic model (Sporns and Betzel,
2016), thus avoiding the secondary introduction of unreliable
FCs to reduce reliability values. In addition, the present work
reported good-to-excellent reliability in modularity, which were
much higher than the previous studies (Braun et al., 2012; Du
et al., 2015). This discrepancy may due to different imaging
acquisition parameters and network analysis approaches.
Specifically, compared with Braun et al. (2012), the higher
reliability in our work to some extend is benefited from better
rs-fMRI data acquisition parameters, including subject’s eye
open and much more frames per subject, etc. A recent FC
reliability literature review in support of this view. It using
the meta-analysis method concluded that studies with rs-fMRI
collected in subject awake, eye open and more within-subject

data tend to generate more reliable FCs (Noble et al., 2019),
and thus more reproducible network properties. As for Du
et al. (2015), the main reason for its poorer reliability is due to
the large voxel-wise brain functional network intensifies the
non-determinacy of module detection algorithm, making it
difficult to obtain a stable and accurate modular partition. This
gives us a hint of the care should be taken of voxel-wise analysis
when using graph theory tools of module detection in brain
functional networks.

Regarding regional-level module-derived network metrics,
we found both within-modular degree and participation
coefficient from brain functional networks were less reliable
than those from structural networks. Comparing to moderate-
to-good reliability from rs-fMRI in present work, a recent
reliability assessment in structural brain network from
diffusion tensor imaging (DTI) using the similar approach
reported good TRT reliability in within-modular degree
and excellent reliability in participation coefficient on AAL
atlas (Dimitriadis et al., 2021). This finding proves again that
structural connectivity (SC) from DTI is more robust than FC
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FIGURE 6

Visualization of group-level modular structure on automated anatomical labeling (AAL) atlas detected by 12 different module detection
methods, including three average based methods (left two columns), three similarity maximum based method (middle two columns), and three
consensus clustering based methods (right two columns). In each sub-figure, different colors represent different functional modules, and the
similarity of module detection results between test and retest data estimated by normalized mutual information (NMI) and rand index (RI) were
given below the figure.

from rs-fMRI as previous studies announced good reliability in
SC of averaged ICC = 0.62 (Buchanan et al., 2014) versus poor
reliability in FC of averaged ICC = 0.29 (Noble et al., 2019).

Effects of module detection algorithm

We found that module detection algorithm has a significant
influence on the reliabilities of modular-relevant network
measurements. This is not surprising because the repeatability
of network partition results on test and retest data heavily
determines the reliability of network attributes derived from
them. An interesting finding is that module detection method
affects individual- and group-level analyses through different
manners. Individual-level results reported Louvain algorithm
performed better than the other methods in almost all
experiments (as shown in Figure 4), suggesting module
searching strategy has a great impact on reliability of network
metrics. However, group-level experiments did not find the
superiority of any module discovery method, but the group-wise
representative module determination framework significantly
affect the ICC values (e.g., average and consensus clustering
based frameworks perform much better than the similarity
maximum as shown in Figure 7). This difference is due to
the fact that individual-level module detection algorithm needs
to ensure the partition quality of each tested brain functional

network; while group-level detection aims to obtain consistent
partition results across the population group, which has a
relatively low requirement for the partition accuracy of each
single network. The above findings can provide a guidance for
the selection of module detection algorithms in the subsequent
brain functional network research.

Of four individual-level module detection algorithms,
Louvain algorithm obtained the best results in almost all brain
networks ranging from small to large networks. This is due
to its hierarchical module searching strategy, which not only
makes it easier to approach the optimal solution in NP-hard
problems, but also suitable for large-scale networks (Blondel
et al., 2008). In contrary, Tabu method can only work well
on small brain network limited by its exhaustive searching
approach, and spectral method is not prominent in all networks.
A more interesting finding is that, in terms of reliability,
Infomap method is not suitable for module detection in brain
functional networks. We speculate the main reason is that the
random walk used in this method is highly dependent on the
reliability of edges in network, but FCs are usually unstable due
to imaging noise (Birn, 2012; Murphy et al., 2013). One possible
solution is to improve the stability of the function connection
or use a binary network. In group-level analysis, the average
and consensus clustering based module detection algorithms
yielded comparable performance in reliability assessment, which
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FIGURE 7

Test-retest reliabilities of group-level modular-relevant network metrics estimated by intra-class correlation (ICC), including (A) modularity, (B)
intra-modular functional connectivity (FC), (C) inter-modular FC, (D) within-modular degree, and (E) participation coefficient.

TABLE 2 List of top four group-level module detection methods with the highest intra-class correlation coefficient (ICC) values on five network
metrics estimated on three brain atlases.

Property Atlas ICC rank

Modularity AAL Louvain + Ave (good)> Spectral + Consensus (good)> Infomap + Consensus (good)> Tabu + Ave (good)

Shen Spectral + SimMax (good)> Louvain + Consensus (good)> Louvain + Ave (good)> Tabu + Consensus (good)

Zalesky Tabu + Ave (good)> Spectral + Ave (moderate)> Spectral + Consensus (moderate)> Tabu + Consensus (moderate)

Intra-modular FC AAL Infomap + Consensus (good)> Spectral + Consensus (good)> Infomap + Ave (good)> Louvain + Consensus (good)

Shen Tabu + Consensus (moderate)> Louvain + Ave (moderate)> Louvain + Consensus (moderate)> Infomap + Consensus (moderate)

Zalesky Tabu + SimMax (moderate)> Spectral + Ave (moderate)> Spectral + Consensus (moderate)> Tabu + Consensus (moderate)

Inter-modular FC AAL Infomap + Ave (good)> Spectral + Consensus (good)> Infomap + Consensus (good)> Tabu + Ave (good)

Shen Tabu + Consensus (good)> Louvain + Ave (good)> Louvain + Consensus (good)> Spectral + SimMax (good)

Zalesky Tabu + SimMax (good)> Spectral + Ave (good)> Spectral + Consensus (good)> Tabu + Consensus (moderate)

Within-module degree AAL Louvain + Consensus (moderate)> Spectral + Ave (moderate)> Tabu + Consensus (moderate)> Infomap + Consensus (moderate)

Shen Louvain + Ave (moderate)> Spectral + Ave (moderate)> Tabu + Consensus (moderate)> Louvain + Consensus (moderate)

Zalesky Louvain + Ave (good)> Spectral + Tabu (good)> Tabu + Consensus (good)> Infomap + Ave (good)

Participation coefficient AAL Louvain + Consensus (good)> Tabu + SimMax (moderate)> Tabu + Consensus (moderate)> Spectral + Ave (moderate)

Shen Louvain + Ave (moderate)> Spectral + Consensus (moderate)> Tabu + Consensus (moderate)> Tabu + Ave (moderate)

Zalesky Infomap + Ave (moderate)> Spectral + Ave (moderate)> Spectral + Consensus (moderate)> Tabu + Ave (moderate)

Poor reliability (0< ICC< 0.2), fair reliability (0.2< ICC< 0.4), moderate reliability (0.4< ICC< 0.6), good (0.6< ICC< 0.8), and excellent reliability (ICC> 0.8).
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is much better than those using similarity maximum as group-
wise module determination framework. This conclusion is in
line with our expectation because the similarity maximum
framework is to select network partition from one subject to
represent group-level modular structure, which is difficult to
characterize the module characteristics of all the tested brain
functional networks.

Effects of node definition approach

While the impact of node definition approach on the
topological organization of brain functional networks has been
widely acknowledged (Wang et al., 2009; Fornito et al., 2010;
Zalesky et al., 2010; Power et al., 2011), the question of how
parcellation scheme influences the reliability is still unclear.
Most studies assessed the reliability of network metrics using
common AAL atlas (Schwarz and McGonigle, 2011; Braun et al.,
2012; Chou et al., 2012; Guo et al., 2012; Liang et al., 2012;
Fiecas et al., 2013; Jin et al., 2018), and only few studies have
focused on this feature (Wang et al., 2011; Cao et al., 2014).
These studies compared the performance between structural
[AAL atlas and Harvard-Oxford atlas (Kennedy et al., 1998)]
and functional atlas [F-DOS (Dosenbach et al., 2010) and
funROI (Power et al., 2011)], and concluded that the reliability
of network metrics is certainly influenced by the chosen brain
atlas, but it is difficult to define which parcellation scheme
yields the highest reliability. Similar conclusion were reached
in our work that the robustness of modular-relevant analysis
was modulated by strategies of network node definition, and
none of brain atlas outperformed the others in all cases. For
example, in the individual level, Shen atlas displayed the lowest
repeatability in network partition results (shown in Figure 2),
whereas the group-level module detection found Zalesky atlas
performed worst. The discrepancy between individual and
group levels may due to that the reliability of modular-relevant
analysis can be influenced by both parcellation granularity of
the brain atlas and its generation approach. On one hand, it
is well known that increasing network size would worsen the
uncertainty of module detection results, thus the brain atlas
with finer parcellation generally display lower repeatability than
coarser parcellation. Therefore, in group-level modular analysis,
the Zalesky atlas with the largest number of nodes exhibited
the lowest reliability. On the other hand, in terms of atlas
generation, ROIs from AAL, Shen and Zalesky atlases were,
respectively, obtained based on anatomical features of sulcal
pattern (Tzourio-Mazoyer et al., 2002), brain region’s functional
connectivity, and geometric information. A previous study
found that the geometric parcellation could yield more reliable
FCs than the data-driven FC-based parcellation scheme (Zeng
et al., 2019). This may be the reason of the poorer performance
of Shen atlas than Zalesky atlas in individual-level analysis.
Recent studies have also attempted to determine the best brain

parcellation in terms of quality and reliability but failed to figure
out a clear winner (Arslan et al., 2018), which needs to be further
investigated in future studies.

Limitations and technique
considerations

Our study has a few of limitations. Firstly, we only explored
the influence of module detection algorithm and node definition
approach on reliability of modular-relevant network metrics,
without going through imaging acquisition and preprocessing
procedures. Previous studies have identified differences in
acquisition and processing procedures also impact test-retest
reliability (Zuo et al., 2013; Aurich et al., 2015; Varikuti et al.,
2017), e.g., temporal resolution of the fMRI data (Birn et al.,
2014; Shah et al., 2014; Zuo and Xing, 2014), global signal
regression (Shirer et al., 2015; Varikuti et al., 2017), and motion
correction (Zuo and Xing, 2014), etc. Hence, the reliability
results in this work are specific to the acquisition protocol of
HCP dataset and specific imaging preprocessing. Secondly, the
reproducibility of brain functional networks can be affected
by FC estimation methods (Liang et al., 2012) and network
sparsity strategies (Cao et al., 2014). These variables should
also be considered in functional brain networks following our
data-driven analysis. However, our work only examined two
factors (i.e., module detection algorithm and node definition
approach) which can impact the repeatability of network
partitions directly. Lastly, using rs-fMRI, we examined the
reliability of modular-relevant analysis in functional brain
networks. Previous studies have performed similar analyses of
structural brain networks using DTI data (Dimitriadis et al.,
2021). A systematic reliability evaluation using multimodal
data from the same population is warranted to gain a deeper
understanding of the structural and functional architecture of
the human brain.

Conclusion

In this study, we systematically investigated test-retest
reliability of diverse modular-relevant analyses in brain
functional networks as well as how they are affected by module
detection algorithm and node definition approach. The results
showed that five popular modular-derived network metrics
could provide robust results with modularity achieving the
highest reliability. The extensive analysis identified different
module detection methods and brain atlases yield different
reliability in network metrics. Our analysis indicate that much
attention should be paid to the choice of module detection
algorithms and node definition approaches in order to extract
reliable results at the mesoscale of brain networks.
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