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Electroencephalogram (EEG) is often used in clinical epilepsy treatment to monitor
electrical signal changes in the brain of patients with epilepsy. With the development of
signal processing and artificial intelligence technology, artificial intelligence classification
method plays an important role in the automatic recognition of epilepsy EEG signals.
However, traditional classifiers are easily affected by impurities and noise in epileptic EEG
signals. To solve this problem, this paper develops a noise robustness low-rank learning
(NRLRL) algorithm for EEG signal classification. NRLRL establishes a low-rank subspace
to connect the original data space and label space. Making full use of supervision
information, it considers the local information preservation of samples to ensure the
low-rank representation of within-class compactness and between-classes dispersion.
The asymmetric least squares support vector machine (aLS-SVM) is embedded into
the objective function of NRLRL. The aLS-SVM finds the maximum quantile distance
between the two classes of samples based on the pinball loss function, which further
improves the noise robustness of the model. Several classification experiments with
different noise intensity are designed on the Bonn data set, and the experiment results
verify the effectiveness of the NRLRL algorithm.

Keywords: electroencephalogram, epilepsy, noise robustness, low-rank learning, pinball loss function

INTRODUCTION

Brain computer interface (BCI) is a system that collects the signals from the brain to communicate
with computers or other devices (Gummadavelli et al., 2018; Jiang et al., 2020). As an efficient
way for the human brain to directly communicate with peripheral devices, the BCI does not need
to rely on the peripheral nervous system and muscles. Electroencephalogram (EEG) signals, as a
biomarker, play an important role in BCI. EEG is often used in clinical diagnosis to determine
the presence and type of epilepsy (Fahimi et al., 2019; Jiang et al., 2019). The epileptic seizure
process has several different periods: interictal, pre-seizure, and seizure. The waveform, frequency,
and signal characteristics of different stages are different in EEG. Based on the analysis of the
characteristics of epilepsy EEG, many studies can generally be divided into two directions: epilepsy
detection and epilepsy prediction (Jiang et al., 2017; Gu et al., 2021). The epilepsy detection
algorithm uses signal processing, machine learning, and deep learning to extract signal features,
and distinguishes the EEG signals between the interictal period and the seizure period. The epilepsy
prediction algorithm distinguishes the EEG signals in the pre-seizure period and the seizure period.
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The prediction task is more difficult than the detection task.
First of all, there is no uniform definition of epilepsy prediction
and internal standards in the industry. Secondly, compared with
the EEG signal in the seizure period, the signal pattern of the
EEG signals in the pre-seizure period and the EEG signals in the
intermittent period are more similar, so the algorithm is required
to be more robust.

Both epilepsy detection and epilepsy prediction are essentially
classification tasks in machine learning (Ni et al., 2020). Several
studies focus on the classification of EEG information, which
involve both epilepsy detection tasks and epilepsy prediction
tasks. Zhou et al. (2018) represented the epilepsy EEG signal
into a two-dimensional image, and then they constructed
a convolutional neural network to automatically learn the
transformed image. This method borrows the idea of image
processing to analyze the EEG signals and broaden the method
of signal processing. Birjandtalab et al. (2017) performed non-
linear dimensionality reduction on EEG signals after extracting
time-frequency features. This feature processing method can
reflect the non-linear relationship of the data in the process
of low-dimensional mapping. Ramakrishnan and Muthanantha
(2018) computed the approximate entropy value, the maximum
Lyapunov component, and the correlation coefficient dimension
on different sub-bands of epilepsy EEG signals, and introduced
fuzzy rules to fuzzify the features. The authors believe that
fuzzy rules are the natural choice of using human professional
knowledge to build machine learning systems, which is closely
related to people’s way of thinking. Wang et al. (2017) explored
multiple bands of the EEG signal by considering the maximum
and standard deviation characteristics of each band. Then they
constructed the feature vector of the EEG and used a one-to-one
self-organization strategy to create a high high-precision epilepsy
detection system. Sun et al. (2019) intercepted and analyzed
the pre-seizure data, and they used recurrent autoencoders on
multivariate signals to extracted EEG features. Liu et al. (2019)
transformed the EEG signal into spectral data through the
combination of dimensionality reduction and short-time Fourier
transform. Then, the authors constructed a shallow convolutional
neural network (CNN) network to automatically learn data
features. Yu et al. (2020) used the local mean decomposition
(LMD) method to obtain the feature matrix of the EEG signals,
and they used a CNN model to implement feature extraction
and combined Bayesian linear discriminant analysis to obtain the
prediction result.

In supervised learning, the support vector machine (SVM)
represented by least squares regression (LSR) is a simple
and effective method. The core idea of LSR is to learn the
non-linear projection from the original data to the feature
space, and the obtained projection vector of the original data
is also used as the data representation in the label space.
For example, discriminative LSR method include multiclass
classification (Xiang et al., 2012), groupwise retargeted LSR
method (Ling and Geng, 2019), regularized label relaxation
linear regression (Fang et al., 2018), double relaxed regression
for classification (Han et al., 2019), and so on. For epilepsy
data, the scalp EEG data will have more impurity signals and
noise signals. Moreover, dimensional explosion and information

redundancy problems are common in EEG signals. Learning a
discriminatively compact data representation is a very critical
problem in pattern recognition. At present, there are many
methods based on subspace learning and least squares classifier
to learn good classifiers. For example, to combine projection
learning with the task of exploring label information, Meng
et al. (2020) proposed a constrained discriminative projection
learning for joint optimization of subspace learning and
classification problems, which used low-rank constraints to
learn robust subspaces to connect the original visual features
and target output. Subspace learning essentially tries to find
a suitable low-dimensional space in which the discriminative
representation of the original features is preserved as much
as possible. In recent years, low-rank learning has achieved
relatively good results in matrix analysis, data recovery, and
data denoising. At the same time, low-rank representation is an
effective means to describe the structure of high-dimensional
data, and it is a generalized form of sparsity in matrix
space. That is, low-rank representation can describe the low-
dimensional subspace structure of high-dimensional data, thus its
component in the subspace becomes the most important factor
in characterizing the data. In addition, low-rank representation
effectively introduces low-rank constraints into the data matrix,
which can help to construct discriminative feature subspaces and
eliminate outliers. Inspired by this idea, the noise robustness low-
rank learning (NRLRL) algorithm is proposed for EEG signal
classification. NRLRL learns a low-rank subspace that connects
the original data space and the label space. It fully considers
the correlation information and local structure of samples,
and it guarantees the minimum rank of the coefficient matrix
constructed of data under its self-expression. By integrating the
multi-class asymmetric least squares SVM classifier with low-
rank representation, NRLRL is insensitive to noise and outliers.
The experiments performed on noisy EEG signals are shown that
our algorithm is noise robust. NRLRL has several advantages
as follows: (1) since the low-rank representation follows the
minimum rank criterion, NRLRL is robust when reconstructing
the original data with noise and outliers. (2) By full use of
supervised information and pinball loss function, an asymmetric
least square SVM is jointly learned into our objection function,
so that NRLRL explores a robust classifier in the framework
of low-rank learning. (3) Local constraints based on low-rank
representations are used based on supervision information.
The criteria of low-rank representations for minimum within-
class and maximum between-classes are adopted to capture the
discriminative structure of the data.

BACKGROUND

Low-Rank Representation
Give a set of data samples X = [x1, ..., xn], each sample xi ∈ Rdin
X can be represented as a linear combination of atoms from a
dictionary A:

X = AC, (1)
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where C = [c1, ..., cn] ∈ Rn×mis the coefficient matrix
rank representation.

As a common practice in low-rank learning, the dictionary A
is set to X, i.e.,

X = XC, (2)

Eq. (2) uses the data set itself to represent the data, which is
called the self-expression of the data. Each data sample in data set
X can be represented by:

xi =
∑
j6=i

Cijxj, (3)

By minimizing the rank of the coefficient matrix C, Eq. (1) can
be written by:

min
C

rank(C),

s.t. X = XC.
(4)

whererank(C) is the rank function of C.
Considering the existence of noise and outliers in the data

sample, the structure of the original data X is taken as two parts:
one is the linear combination of the dictionary X and a low-rank
coefficient matrix C, and the second part is noise (error) matrix,
i.e.,

X = XC+ E, (5)

Then the low-rating representation can be defined as follows:

min
C,E

rank(C)+ µ ||E||2,0 ,

s.t. X = XC+ E,
(6)

where ||·||2,0means the `2,0-norm operator. µ is the trade-off
parameter. In Eq. (6), the term ||E||2,0 encourages the sparseness
of the error components.

The low-rank optimization problem of Eq. (6) is a non-convex
NP-hard problem. To find its unique optimal solution, it is
necessary to perform convex relaxation of Eq. (6). The kernel
norm is the best convex approximation of the rank function
on the unit sphere in the matrix spectral norm (Candès and
Recht, 2009). Therefore, the convex kernel norm can be used to
approximate the non-convex rank function, and the `2,0 norm
can be relaxed to its `2,1norm (Raghunandan et al., 2010). Then
Eq. (6) can be written as the following convex optimization
problem

min
C,E
||C||∗ + µ ||E||2,1 ,

s.t. X = XC+ E,
(7)

where ||·||∗ means the nuclear norm operator, and||·||2,1means
the `2,1-norm operator.

Asymmetric Least Squares Support
Vector Machine
The loss function in the least squares SVM (LS-SVM) pays
attention to both the correctly classified and incorrectly classified
samples. It minimizes the squared error of the classifier as follows,

l(x) = (1− wTx–b)2. (8)

In fact, the above loss function is noise sensitive, especially
the noises around the separation hyperplane. Many extensions
of least squares loss function have been proposed to solve
this problem, such as iteratively reweighted least square (Leski,
2015) and asymmetric square function (Leski, 2015), asymmetric
squared loss (Huang et al., 2014). Using the statistical property to
lower quantile value, the asymmetric squared loss is defined as:

LaLSp (x) =

{
p(1− wTx+ b)2, if 1− wTx+ b ≥ 0
(1− p)(1− wTx+ b)2, if 1− wTx+ b < 0

(9)

where w and b are the hyperplane parameter and bias
parameter of SVM classifier, respectively. p is the lower quantile
value parameter.

The aLS-SVM uses the expectile distance and maximizes the
expectile distance between different classes. The aLS-SVM has the
following optimization problem:

min
w,b
=

1
2

wTw+
α

2

n∑
i=1

LaLSp (1− yi(wTxi + b))2. (10)

where α is the regularization parameter. This optimization
problem can be solved by quadratic programming method.

NOISE ROBUSTNESS LOW-RANK
LEARNING ALGORITHM

The Noise Robustness Low-Rank
Learning Model
Given a set of data points X = [x1, ..., xn] and their
labels Y = [y1, ..., yn] are distributed in K classes.
yk = [y1,k, y2,k, ..., yn,k] is the class label vector of n training
samples associated with the k-th class. Considering the influence
of noise or outliers, the main goal of our algorithm is to find the
lowest rank representation C and the best classifier based on C.

First, to increase discrimination capability, the local
preservation with label embedding is incorporated into the
learning process. Different from the traditional local preservation
term in low-rank learning, the label information is embedded
into the k-nearest neighborhood relationships. For sample xi,
its low-rank is expressed as ci. Without considering the label
information of the sample, if xj is in the k-nearest neighbor
of xi, their corresponding low-rank representations cj and ci
should be closer to each other. Obviously, this strategy is not
suitable for classification tasks. Based on the basic classification
principles of within-class compactness and between-classes
separation, the label information is introduced into the k-nearest
neighborhood relationships. The within-class matrix Bwithin and
between-classes matrix Bbetween are accordingly defined, and
their elements can be defined as,

Bwithin,ij =


exp(−

∣∣∣∣xi − xj
∣∣∣∣2 /t), if xi ∈ N(xj) or xj ∈ N(xi),

yi = yj,
0, otherwise

(11)
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Bbetween,ij =


− exp(−

∣∣∣∣xi − xj
∣∣∣∣2 /t), if xi ∈ N(xj) or

xj ∈ N(xi), yi 6= yj,
0, otherwise

(12)

where N(xj) returns the k-nearest neighbors of xj .
In the NRLRL, the original data is projected into a low-

dimensional subspace by low-rank representation. NRLRL shows
the similarity within the class and the difference between classes
of the data. To achieve this goal, the label embedded local
preservation term is defined as,

min
C
=

1
2
∑n

i=1
∑n

j=1
∣∣∣∣ci − cj

∣∣∣∣2
2 (Bwithin,ij − Bbetween,ij)

= Tr(CBwithinCT)− Tr(CBbetweenCT)

= Tr(CLCT)

(13)

where L = Lbetween − Lwithin, Lbetween = Bbetween − Bbetween,
Lwithin = Bwithin − Bwithin. Bbetween and Bwithin are diagonal
matrices, and their elements are Bbetween,ii =

∑n
j=1 Bbetween,ij,

Bwithin,ii =
∑n

j=1 Bwithin,ij, separately. Tr(·) is the trace operator.
The label embedded local preservation term is to ensure that

if the nearest neighbors xi and xj are from the same class, their
low-rank codes ci and cj are also close to each other. At the
same time, if the nearest neighbors xi and xj are from different
classes, their low-rank codes ci and cj are separated as much as
possible. In such a low-rank learning stage, the ideal non-linear
local structure of EEG data is preserved.

To promote the discriminative ability of low-rank
representation vectors, a multi-class aLS-SVM classification
term is embedded into the NRLRL algorithm. The multi-class
aLS-SVM classification term L(C)includes two parts

L(C,W,b) =
∑K

k=1(f (C, yk, wk, bk)+ α ||wk||
2
2),

f (C, yk, wk, bk) =
∑n

i=1 l(ci, yk,i, wk, bk),
(14)

where l(ci, yk,i, wk, bk) is the loss function associated with the
k-th aLS-SVM.

The squared pinball loss in NRLRL can be written as

l(µ) =

{
pµ2, µ ≥ 0,

(1− p)µ2, µ < 0,
(15)

where µk,i = yk,i(wT
k ci + bk)− 1.

Bedding the local preservation with label embedding term
and multi-class aLS-SVM classification term into the Eq.(7), the
objective function of NRLRL can be written as

min
C,E,W,b

||C||∗ + λ ||E||2,1 + γL(C,W,b)+ ηTr(CLCT),

s.t. X = XC+ E,

1TnC = 1Tn ,

(16)

where λ,γ, and η are regularization parameters.
The loss function term is decomposed into the sum of the loss

term of each sample, and it can be seen that the contribution
of each data sample to the objective function is linearly
cumulative. L(C,W,b) includes a class-by-class loss function

term l(ci, yk,i, wk, bk)on the low-rank representation, so that
the obtained lowest-rank representations are highly correlated
within the class. EEG signals belonging to the same class usually
contain the common discriminative features. The lowest-rank
representation obtained by Eq. (16) has the characteristics of
strong within-class correlation and between-class difference for
classification tasks.

To reduce the time costs, the Frobenius norm is used to replace
the nuclear norm, the objective function of NRLRL can be re-
written as:

min
C,E,W,b

||C||2F + λ ||E||2,1 + γL(C,W,b)+ ηTr(CLCT),

s.t. X = XC+ E,

1TnC = 1Tn ,

(17)

For simplicity of expression, combining the two terms ||C||2F
and Tr(CTLC), Eq. (17) can be written as:

min
C,E,W,b

λ ||E||2,1 + γL(C,W,b)+ Tr(C(ηL+ I)CT),

s.t. X = XC+ E,

1TnC = 1Tn ,

(18)

From Eq. (18), we can see that the NRLRL algorithm consists
of three sub-problems, namely the parameters of C, E, and
aLS-SVM classifier. These three sub-problems can be solved
alternately until the NRLRL algorithm converges. We use the
alternating direction multipliers method (ADMM) (Luo et al.,
2017) to solve Eq. (18). The augmented Lagrangian function
corresponding to Eq. (18) can be written as:

min
C,E,W,b

λ ||E||2,1 + γL(C,W,b)+ Tr(C(ηL+ I)CT)

+Tr[θT(X− XC− E)]+Tr[δT(1TnC− 1Tn )]

+
µ
2

(
||X-XC− E||2F +

∣∣∣∣1TnC− 1Tn
∣∣∣∣2
F

) (19)

where θ and δ are Lagrange multipliers, and µ is the
penalty parameter.

Optimization of the Objective Function
According to the ADMM algorithm, the parameters in Eq.
(19) can be updated alternately, that is, when one parameter
is updated, other parameters are fixed until the NRLRL
algorithm converges.

(1) Update C by fixing E, wk, and bk. Eq. (19) is converted to
the following problem:

L(ci) = γ
∣∣∣∣1− yk,i(wT

k ci + bk)
∣∣∣∣2

2 + Tr(ci(ηL+ I)cTi )

+Tr[θT(xi − xici)+δT1Tn ci]
+

µ
2

(
||xi − xici − ei||2F +

∣∣∣∣1Tn ci − 1Tn
∣∣∣∣2
F

)
.

(20)
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Let the derivative of Eq. (19) with respect to ci be zero, the
solution of ci is:

ci =

(
2(ηL+ I)+ µ(xTi xi + 1n1Tn )+ 2γ

∑
wkwT

k

)−1

(µ(xTi xi − xTi ei + 1n1Tn )+ xTi θ− 1nδ+ 2γ∑
wk(yk,i − bk)) (21)

(2) Update E by fixing C, wk, and bk. Using the same
calculation and reduction strategy by Liu et al. (2013). Eq. (19)
is converted to the following problem:

min
E

λ

µ
||E||2,1 +

1
2

∣∣∣∣∣∣∣∣E− (X− XC+
1
µ

θ)

∣∣∣∣∣∣∣∣2
F
, (22)

Then the solution of E can be obtained by:

E(:, i) =

{
||θi||−λ

||θi||
θi, if λ

µ
<
∣∣∣∣θi∣∣∣∣ ,

0, otherwise
(23)

where θiis the ith column vector of the matrix θ .
(3) Update wk and bk by fixing E and C. Eq. (19) is converted

to the following problem:

min
wk,bk

K∑
k=1

{
α ||wk||

2
2 +

n∑
i=1

l(ci, yi,k, wk, bk)

}
, (24)

Eq. (24) is a multi-class aLS-SVM problem, and the optimal
parameters wk and bk can be obtained by the aLS-SVM algorithm.

The training procedure of NRLRL is summarized in
Algorithm 1.

ALGORITHM 1 | The training procedure of NRLRL is summarized.

Algorithm NRLRL: noise robustness low-rank learning algorithm

Input: Training samples X, label matrix Y.

Output: lowest-rank representation matrix C, multi-class aLS-SVM classifier.

t = 1

While not convergence or t < maximum number of iterations

Update C(t) by solving Eq. (21);

Update E(t) by solving Eq. (23);

Update w(t) and b(t) by solving aLS-SVM algorithm;

t = t + 1

end while

EXPERIMENT

Datasets and Experimental Settings
This study used EEG signals are from Bonn University. The data
set consists of five subsets (groups A to E), each of which consists
of 100 EEG segments with a single channel duration of 23.6 s
and 4,097 samples. The fragments in groups A-B were taken from

five healthy subjects, and the fragments in groups {C, D, E} were
taken from patients with epilepsy. The groups C and D recorded
the signal during the intermittent period of epileptic seizures. The
group E recorded the signal during the seizure. The signals of the
five groups of EEG data are shown in Figure 1. In the experiment,
the 4,097 data points were divided into three data blocks to
obtain the research samples, that is, a data block is a sample,
representing the EEG information in about 8 s. Therefore, the
sample size of this paper is 3 × 100 = 300 in each group, and
each sample has 1,365 features of sampling points. We design two
types of classification tasks on the Bonn dataset. One is the binary
classification task: non-epileptic condition (sets {A, B, C, D, E})
and epileptic condition (set E). The other is the three classes of
classification task: normal (sets {A, B}), interictal (sets {C, D}),
and ictal (set E).

We use the following algorithms as the comparison
algorithms: DLSR (Xiang et al., 2012), LC-KSVD (Jiang
et al., 2013), SRRS (Li and Fu, 2016), LRSD (Kong et al., 2017),
aLS-SVM (Huang et al., 2014), and LRDLSR (Chen et al.,
2020). The parameters of these comparison methods are set
to their default settings. In NRLRL, the dictionary size is set
from {40, . . . , 320}, three regularization parameters are set
from {2−5, . . . , 23}, the k-nearest neighbor parameter is set
from {3, . . . , 11}, and the pinball loss parameter p is set from
{40, . . . , 360}. We adopt the one-by-one strategy to select the
optimal parameters.

Following the method of references (Huang et al., 2014; Gu
et al., 2019, 2020), 20 and 50% samples are randomly selected and
common Gaussian white noise is added. To test the sensitivity
of the classifier to noise intensity, the intensity of Gaussian
white noise is divided into three types: the mean value is 0, and
the variance is set to 5, 10, and 15% of the sample features,
respectively. For example, the noise (20%, 10%) indicates that
20% of the samples in the Bonn dataset contain Gaussian white
noise, and the variance of the noise is 10% of the sample features.

Classification Result Comparison
First, we perform experiments on the binary classification task.
We compare all algorithms in indexes of specificity, sensitivity,
and accuracy on the noisy Bonn dataset. The experimental results
of the binary classification task are shown in Tables 1–3.

From the experimental results, it can be seen that (1) with
the increase of noise intensity, the specificity, sensitivity, and
accuracy of all algorithms show a decline in varying degrees. It
can be seen that the characteristic noise of samples will seriously
affect the classification effect of the classifier. Especially the
DLSR and LC-KSVD algorithms do not consider the impact of
the noise sample interference on the classification surface. As
the noise intensity increases, the classification result decreases
rapidly. (2) SRRS, LRSD, aLS-SVM, LRDLSR, and NRLRL
algorithms are all noise-insensitive classification algorithms,
therefore the classification results are significantly better than
conventional classification algorithms. The proposed NRLRL
algorithm achieves the best results in classification performance.
The NRLRL algorithm removes the influence of noise on the
sample in the lowest rank representation, and it uses the pinball
loss function to obtain a noise-insensitive classification classifier
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FIGURE 1 | Sample electroencephalogram (EEG) signals in each group in Bonn dataset. (A) Epileptic EEG signals measured from healthy people with eyes open.
(B) Epileptic EEG signals measured from healthy people with eyes closed. (C) Epileptic EEG signals obtained in hippocampal formation of the opposite hemisphere
of brain during seizure free intervals. (D) Epileptic EEG signals obtained from within epileptogenic zone during seizure free intervals. (E) Epileptic EEG signals
measured during seizure activity.

by maximizing the distance between the two classes of quantile
distances. In addition, the NRLRL algorithm can mine the
geometric structure of samples in low-dimensional space by low-
rank learning, and fully considers the correlation information
and subspace structure between samples. Therefore, the within-
class similarity and between-class differences of the data are
more prominent, which makes the NRLRL algorithm obtain good
classification performance in the presence of noise.

Then, we perform experiments on three class classification
task, i.e., classification of EEG data in normal, interictal and
epileptic periods. Similarly to the above experiment procedure,
we compare all algorithms in indexes of specificity, sensitivity,
and accuracy on the noisy Bonn dataset. The experimental
results of three classification task are shown in Tables 4–6. From
these results, it can be observed that since the complexity of
the three class classification is higher than that of the binary
class classification, the results of three class classification are
lower than those of binary class classification. The proposed
NRLRL algorithm achieves the best results of specificity,
sensitivity, and accuracy.

TABLE 1 | The specificity results of binary classification task on the
noisy Bonn dataset.

DLSR LC-KSVD SRRS LRSD aLS-SVM LRDLSR NRLRL

noise (20%, 5%) 92.93 93.06 95.08 95.06 95.57 95.50 96.55

noise (20%, 10%) 92.61 92.70 95.05 95.21 95.32 95.61 96.53

noise (20%, 15%) 92.04 92.87 95.06 95.01 94.80 95.46 96.51

noise (50%, 5%) 90.97 91.11 94.61 94.96 95.06 95.30 96.40

noise (50%, 10%) 90.40 90.54 94.36 94.29 94.62 95.23 96.36

noise (50%, 15%) 89.84 90.32 93.99 94.31 94.49 95.06 96.33

The bold values mean the best values in comparison experiments.

Parameter Analysis
Here we discuss the key parameters in the NRLRL algorithm
on binary classification task noise (20%, 10%) and three class
classification noise (50%, 10%).

The k-nearest parameter k-nearest is an important parameter
in NRLRL. It determines the neighbor relationship between
samples. The k-nearest parameter is set from {3, . . . , 11}. The

TABLE 2 | The sensitivity results of binary classification task on the
noisy Bonn dataset.

DLSR LC-KSVD SRRS LRSD aLS-SVM LRDLSR NRLRL

noise (20%, 5%) 92.94 93.49 95.31 95.50 95.74 95.96 96.65

noise (20%, 10%) 92.63 93.18 95.24 95.39 95.52 95.91 96.63

noise (20%, 15%) 92.08 92.91 95.27 95.25 95.40 95.84 96.58

noise (50%, 5%) 90.04 91.63 94.71 95.11 95.28 95.54 96.52

noise (50%, 10%) 90.42 91.02 94.52 94.31 94.72 95.31 96.48

noise (50%, 15%) 89.95 90.47 94.16 94.39 94.77 95.15 96.46

The bold values mean the best values in comparison experiments.

TABLE 3 | The accuracy results of binary classification task on the
noisy Bonn dataset.

DLSR LC-KSVD SRRS LRSD aLS-SVM LRDLSR NRLRL

noise (20%, 5%) 92.93 93.22 95.24 95.20 95.57 95.69 96.58

noise (20%, 10%) 92.61 92.72 95.16 95.33 95.34 95.76 96.57

noise (20%, 15%) 92.07 92.88 95.19 95.19 94.99 95.48 96.54

noise (50%, 5%) 90.03 91.29 94.62 95.02 95.18 95.33 96.42

noise (50%, 10%) 90.41 90.69 94.47 94.28 94.63 95.26 96.41

noise (50%, 15%) 89.90 90.46 94.06 94.38 94.57 95.09 96.39

The bold values mean the best values in comparison experiments.
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TABLE 4 | The specificity results of three class classification task on the
noisy Bonn dataset.

DLSR LC-KSVD SRRS LRSD aLS-SVM LRDLSR NRLRL

noise (20%, 5%) 89.41 89.43 92.45 92.78 92.66 93.31 94.18

noise (20%, 10%) 89.20 89.15 91.06 92.26 91.65 93.27 94.11

noise (20%, 15%) 88.34 88.45 91.72 92.04 91.90 93.08 93.96

noise (50%, 5%) 87.59 87.28 92.92 91.77 91.27 92.41 93.69

noise (50%, 10%) 86.85 86.87 91.67 91.46 92.19 92.44 93.62

noise (50%, 15%) 85.30 85.35 91.41 91.13 91.15 92.83 93.50

The bold values mean the best values in comparison experiments.

TABLE 5 | The sensitivity results of three class classification task on the
noisy Bonn dataset.

DLSR LC-KSVD SRRS LRSD aLS-SVM LRDLSR NRLRL

noise (20%, 5%) 89.51 89.51 92.60 92.85 92.69 93.39 94.20

noise (20%, 10%) 89.22 89.26 92.1 92.31 92.74 93.32 94.14

noise (20%, 15%) 88.66 88.49 91.99 92.03 92.08 93.27 93.99

noise (50%, 5%) 87.69 87.33 92.53 91.78 91.42 92.55 93.72

noise (50%, 10%) 86.88 86.81 91.79 91.51 92.21 92.54 93.65

noise (50%, 15%) 86.49 86.42 91.49 91.19 91.28 92.85 93.53

The bold values mean the best values in comparison experiments.

TABLE 6 | The accuracy results of three class classification task on the
noisy Bonn dataset.

DLSR LC-KSVD SRRS LRSD aLS-SVM LRDLSR NRLRL

noise (20%, 5%) 89.46 89.48 92.48 92.80 92.67 93.32 94.18

noise (20%, 10%) 89.20 89.17 92.04 92.28 92.61 93.29 94.01

noise (20%, 15%) 88.54 88.48 91.77 92.03 91.92 93.19 93.95

noise (50%, 5%) 87.57 87.28 92.47 91.64 91.37 92.49 93.70

noise (50%, 10%) 86.86 86.82 91.63 91.43 92.18 92.47 93.63

noise (50%, 15%) 86.40 86.39 91.43 91.14 91.22 92.82 93.52

The bold values mean the best values in comparison experiments.

FIGURE 2 | Classification accuracies of noise robustness low-rank learning
(NRLRL) with different k-nearest.

classification accuracies of NRLRL with different k-nearest are
shown in Figure 2. When k = 7, the classification accuracy is the

FIGURE 3 | Classification accuracies of noise robustness low-rank learning
(NRLRL) with different m.
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FIGURE 4 | Classification accuracies of noise robustness low-rank learning
(NRLRL) with different p.

highest. The appropriate value of k can reflect the local structural
information of the sample to the greatest extent. From the results
in Figure 2, we can set k = 7 in the NRLRL algorithm for
noisy Bonn dataset.

Another important parameter is m, which is the size of the
matrix C. The classification accuracies of NRLRL with different
m are shown in Figure 3. The parameter m controls the data
structure of the low-rank space. When m is too small, the
low-rank representation related to the data is not enough to
model its structure in the low-rank space. When m is too
large, the redundant information will produce errors of low-rank
representation. From the results in Figure 3, we can set m = 240.

The pinball loss parameter p is the important parameter in
aLS-SVM classifier in NRLRL. The value range of the pinball loss
parameter is {0.5, 0.83, 0.95, 0.99}. The classification accuracies
of NRLRL with different p are shown in Figure 4. With different
values of p, the NRLRL algorithm has achieved high classification
accuracy. It shows that the NRLRL algorithm is not sensitive
to the p parameter, so the value of p can be fixed to 0.95
in the experiment.
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CONCLUSION

In this study, the NRLRL algorithm is proposed for EEG
signal classification. Different from noise-insensitive SVM learns
the classification hyperplane in the original space or kernel
space, NRLRL learns a low-rank subspace as the transformation
from the original data space to the label space, to improve
the overall classification effect. By introducing the criteria
of low-rank representations for minimum within-class and
maximum between-classes, the discriminative ability of the
model has been greatly improved. The pinball loss function is
also helpful to improve the noise insensitivity of the model.
The effectiveness of the proposed algorithm is verified on
the noisy Bonn EEG dataset. Since our algorithm directly
uses the EEG sample point as the input features, we will
consider applying various feature extraction methods to the
NRLRL algorithm in the next stage. The seizure data is often
insufficient in epilepsy detection or prediction tasks. To obtain
an effective algorithm model, the down-sampling strategy is
often performed to make the class balanced. This strategy
will cause the loss of signal data. Therefore, research on
appropriate imbalanced data classification methods is the focus
of the next stage.
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