
ORIGINAL RESEARCH
published: 09 December 2021

doi: 10.3389/fnins.2021.773954

Frontiers in Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 773954

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Jason Eshraghian,

University of Michigan, United States

Elena Cerezuela,

Sevilla University, Spain

Yujie Wu,

Tsinghua University, China

*Correspondence:

Youngeun Kim

youngeun.kim@yale.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 10 September 2021

Accepted: 08 November 2021

Published: 09 December 2021

Citation:

Kim Y and Panda P (2021) Revisiting

Batch Normalization for Training

Low-Latency Deep Spiking Neural

Networks From Scratch.

Front. Neurosci. 15:773954.

doi: 10.3389/fnins.2021.773954

Revisiting Batch Normalization for
Training Low-Latency Deep Spiking
Neural Networks From Scratch
Youngeun Kim* and Priyadarshini Panda

Department of Electrical Engineering, Yale University, New Haven, CT, United States

Spiking Neural Networks (SNNs) have recently emerged as an alternative to deep

learning owing to sparse, asynchronous and binary event (or spike) driven processing,

that can yield huge energy efficiency benefits on neuromorphic hardware. However,

SNNs convey temporally-varying spike activation through time that is likely to induce

a large variation of forward activation and backward gradients, resulting in unstable

training. To address this training issue in SNNs, we revisit Batch Normalization (BN)

and propose a temporal Batch Normalization Through Time (BNTT) technique. Different

from previous BN techniques with SNNs, we find that varying the BN parameters at

every time-step allows the model to learn the time-varying input distribution better.

Specifically, our proposed BNTT decouples the parameters in a BNTT layer along the time

axis to capture the temporal dynamics of spikes. We demonstrate BNTT on CIFAR-10,

CIFAR-100, Tiny-ImageNet, event-driven DVS-CIFAR10 datasets, and Sequential MNIST

and show near state-of-the-art performance. We conduct comprehensive analysis on the

temporal characteristic of BNTT and showcase interesting benefits toward robustness

against random and adversarial noise. Further, by monitoring the learnt parameters

of BNTT, we find that we can do temporal early exit. That is, we can reduce the

inference latency by ∼ 5 − 20 time-steps from the original training latency. The code

has been released at https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-

Normalization-Through-Time.

Keywords: spiking neural network, batch normalization, image recognition, event-based processing,

energy-efficient deep learning

1. INTRODUCTION

Artificial Neural Networks (ANNs) have shown state-of-the-art performance across various
computer vision tasks. Nonetheless, huge energy consumption incurred for implementing ANNs
on conventional von-Neumann hardware limits their usage in low-power and resource-constrained
Internet of Things (IoT) environment, such as mobile phones, drones among others. In the context
of low-power machine intelligence, Spiking Neural Networks (SNNs) have received considerable
attention in the recent past (Cao et al., 2015; Diehl and Cook, 2015; Roy et al., 2019; Comsa
et al., 2020; Panda et al., 2020). Inspired by biological neuronal mechanisms, SNNs process visual
information with discrete spikes or events over multiple time-steps. Recent works have shown that
the event-driven behavior of SNNs can be implemented on emerging neuromorphic hardware to
yield 1–2 order ofmagnitude energy efficiency over ANNs (Akopyan et al., 2015; Davies et al., 2018).

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.773954
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.773954&domain=pdf&date_stamp=2021-12-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:youngeun.kim@yale.edu
https://doi.org/10.3389/fnins.2021.773954
https://www.frontiersin.org/articles/10.3389/fnins.2021.773954/full
https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-Normalization-Through-Time
https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-Normalization-Through-Time

Kim and Panda Temporal Batch Normalization in SNNs

Despite the energy efficiency benefits, SNNs have still not been
widely adopted due to inherent training challenges. The training
issue arises from the non-differentiable characteristic of a spiking
neuron, generally, Integrate-and-Fire (IF) type (Burkitt, 2006),
that makes SNNs incompatible with gradient descent training.

To address the training issue of SNNs, several methods,
such as, Conversion and Surrogate Gradient Descent have
been proposed. In ANN-SNN conversion (Diehl et al., 2015;
Rueckauer et al., 2017; Sengupta et al., 2019; Han et al.,
2020), off-the-shelf trained ANNs are converted to SNNs using
normalization methods to transfer ReLU activation to IF spiking
activity. The advantage here is that training happens in the ANN
domain leveraging widely used machine learning frameworks
like, PyTorch, that yield short training time and can be applied
to complex datasets. But the ANN-SNN conversion method
requires large number of time-steps (∼ 500 − 1, 000) for
inference to yield competitive accuracy, which significantly
increases the latency and energy consumption of the SNN.
On the other hand, directly training SNNs with a surrogate
gradient function (Wu et al., 2018; Neftci et al., 2019; Lee
et al., 2020) exploits temporal dynamics of spikes, resulting
in lesser number of time-steps (∼ 100 − 150). However,
the discrepancy between forward spike activation function and
backward surrogate gradient function during backpropagation
restricts the training capability. Therefore, naive SNNs without
additional optimization techniques are difficult to be trained
on large-scale datasets (e.g., CIFAR-100 and Tiny-ImageNet).
Recently, a hybrid method (Rathi et al., 2020) that combines
the conversion method and the surrogate gradient-based method
shows state-of-the-art performance at reasonable latency (∼
250 time-steps). However, the hybrid method incurs sequential
processes, i.e., training ANN from scratch, conversion of ANN
to SNN, and training SNNs using surrogate gradient descent,
that increases the total computation cost to obtain the final SNN
model. Overall, training high-accuracy and low-latency SNNs
from scratch still remains an open problem.

In this paper, we investigate the temporal characteristics of
Batch Normalization (BN) for more advanced SNN training. The
BN layer (Ioffe and Szegedy, 2015) has been used extensively in
deep learning to accelerate the training process of ANNs. It is
well known that BN reduces internal covariate shift (or soothing
optimization landscape Santurkar et al., 2018) mitigating the
problem of exploding/vanishing gradients. In SNN literature,
there are a few recent works that leverage BN layers during
training and have shown competitive performance for image
classification tasks with low latency. Ledinauskas et al. (2020)
use a standard BN layer and show the scalability of SNNs
toward deep architectures with BN layers. Fang et al. (2020)
propose a learnable membrane time constant with a standard
BN layer. Zheng et al. (2020) present the advantage of scaling
BN parameter according to the neuronal firing threshold. Even
though the previous BN approaches show performance/latency
improvement, we assert that there is need to explore the
advantage of BN in the temporal dimension since SNNs convey
information through time. The previous BN works with SNNs
use a single BN parameter across all time-steps.We are essentially
motivated by the question,Can a single learnable parameter in the

BN layer learn the temporal characteristics of the input spikes that
vary across different time-steps?

Different from previous works, we highlight the importance
of temporal characterization of BN technique. To this end, we
propose a new SNN-crafted batch normalization layer called
Batch Normalization Through Time (BNTT) that decouples the
parameters in the BN layer across different time-steps. BNTT is
implemented as an additional layer in SNNs and is trained with
surrogate gradient backpropagation. To investigate the effect of
our BNTT, we compare the statistics of spike activity of BNTT
with previous approaches: Conversion (Sengupta et al., 2019)
and standard Surrogate Gradient Descent (Neftci et al., 2019), as
shown in Figure 1. Interestingly, different from the conversion
method and surrogate gradient method (without BNTT) that
maintain reasonable spike activity during the entire time period
across different layers, spike activity of layers trained with BNTT
follows a gaussian-like trend. BNTT imposes a variation in
spiking across different layers, wherein, each layer’s activity peaks
in a particular time-step range and then decreases. Moreover,
the peaks for early layers occur at initial time-steps and latter
layers peak at later time-steps. This phenomenon implies that
learnable parameters in BNTT enable the networks to pass the
visual information temporally from shallow to deeper layers in
an effective manner.

The newly observed characteristics of BNTT brings several
advantages. First, similar to BN, the BNTT layer enables SNNs
to be trained stably from scratch even for large-scale datasets.
Second, learnable parameters in BNTT enable SNNs to be trained
with low latency (∼ 25 − 50 time-steps) and impose optimum
spike activity across different layers for low-energy inference.
Finally, the distribution of the BNTT learnable parameter (i.e.,
γ) is a good representation of the temporal dynamics of spikes.
Hence, relying on the observation that low γ value induces low
spike activity and vice-versa, we further propose a temporal early
exit algorithm. Here, an SNN can predict at an earlier time-step
and does not need to wait till the end of the time period to make
a prediction.

In summary, our key contributions are as follows: (i) We
explore the temporal characteristics of BN for SNNs and propose
a temporally adaptive BN approach, called BNTT. (ii) BNTT
allows SNNs to be implemented in a low-latency and low-
energy environment. (iii) We further propose a temporal early
exit algorithm at inference time by monitoring the learnable
parameters in BNTT. (iv) To ascertain that BNTT captures
the temporal characteristics of SNNs, we mathematically show
that proposed BNTT has similar effect as controlling the
firing threshold of the spiking neuron at every time step
during inference.

2. BATCH NORMALIZATION

Batch Normalization (BN) reduces the internal covariate shift (or
variation of loss landscape Santurkar et al., 2018) caused by the
distribution change of input signal, which is a known problem
of deep neural networks (Ioffe and Szegedy, 2015). Instead
of calculating the statistics of total dataset, the intermediate

Frontiers in Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 1 | Visualization of the average number of spikes in each layer with respect to time-steps. Compared to (A) ANN-SNN conversion and (B) surrogate

gradient-based backpropagation, our (C) BNTT captures the temporal dynamics of spike activation with learnable parameters, enabling low-latency (i.e., small

time-steps) and low-energy (i.e., less number of spikes) training. All experiments are conducted on CIFAR-10 with VGG9.

representations are standardized with a mini-batch to reduce the
computation complexity. Given a mini-batch B = {x1,...,m}, the
BN layer computes the mean and variance of the mini-batch as:

µB =
1

m

m∑

b=1
xb; σ 2

B
= 1

m

m∑

b=1
(xb − µB)

2. (1)

Then, the input features in the mini-batch are normalized with
calculated statistics as:

x̂b =
xb − µB√

σ 2
B
+ ǫ

, (2)

where, ǫ is a small constant for numerical stability. To further
improve the representation capability of the layer, learnable
parameters γ and β are used to transform the input features
that can be formulated as BN(xi) = γ x̂i + β . At inference time,
BN uses the running average of mean and variance obtained
from training. In this work, different from the static BN, we
explore the temporal characteristics of BNwith SNNs by enabling
temporally-varying parameters in BN.

3. METHODOLOGY

3.1. Spiking Neural Networks
Different from conventional ANNs, SNNs transmit information
using binary spike trains. To leverage the temporal spike
information, Leaky-Integrate-and-Fire (LIF) model (Dayan and
Abbott, 2001) is widely used to emulate neuronal functionality in
SNNs, which can be formulated as a differential equation:

τm
dUm

dt
= −Um + RI(t), (3)

where, Um represents the membrane potential of the neuron that
characterizes the internal state of the neuron, τm is the time
constant of membrane potential decay. Also, R and I(t) denote
the input resistance and the input current at time t, respectively.
Following the previous work (Wu et al., 2019), we convert this
continuous dynamic equation into a discrete equation for digital

simulation. For a single post-synaptic neuron i, we can represent
the membrane potential uti at time-step t as:

uti = λut−1i +
∑

j

wijo
t
j . (4)

Here, j is the index of a pre-synaptic neuron, λ is a leak factor with
value less than 1, oj is the binary spike activation, and wij is the
weight of the connection between pre- and post-neurons. From
Equation (4), the membrane potential of a neuron decreases
due to leak and increases due to the weighted sum of incoming
input spikes.

If the membrane potential u exceeds a pre-defined firing
threshold θ , the LIF neuron i generates a binary spike output oi.
After that, we perform a soft reset, where the membrane potential
ui is reset by reducing its value by the threshold θ . Compared to
a hard reset (resetting the membrane potential ui to zero after
neuron i spikes), the soft reset minimizes information loss by
maintaining the residual voltage and carrying it forward to the
next time step, thereby achieving better performance (Han et al.,
2020). Figure 2A illustrates the membrane potential dynamics of
a LIF neuron.

For the output layer, we discard the thresholding functionality
so that neurons do not generate any spikes. We allow the output
neurons to accumulate the spikes over all time-steps by fixing
the leak parameter (λ in Equation 4) as one. This enables the
output layer to compute probability distribution after softmax
function without information loss. As with ANNs, the number
of output neurons in SNNs is identical to the number of classes
C in the dataset. From the accumulated membrane potential, we
can define the cross-entropy loss for SNNs as:

L = −
∑

i

yilog(
eu

T
i

∑C
k=1 e

uT
k

), (5)

where, y is the ground-truth label, and T represents the total
number of time-steps. Then, the weights of all layers are updated
by backpropagating the loss value with gradient descent.

To compute the gradients of each layer l, we use back-
propagation through time (BPTT), which accumulates the
gradients over all time-steps (Wu et al., 2018; Neftci et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 2 | (A) Illustration of spike activities in Leaky-Integrate-and-Fire neurons. (B) The approximated gradient value with respect to the membrane potential.

These approaches can be implemented with auto-differentiation
tools, such as PyTorch (Paszke et al., 2017), that enable
backpropagation on the unrolled network. To this end, we
compute the loss function at time-stepT and use gradient descent
optimization. Mathematically, we can define the accumulated
gradients at the layer l by chain rule as:

∂L

∂Wl
=

∑
t(

∂L
∂Ot

l

∂Ot
l

∂Ut
l

+ ∂L

∂Ut+1
l

∂Ut+1
l

∂Ut
l

)
∂Ut

l
∂Wl

, if l = hidden layer

∑
t

∂L
∂UT

l

∂UT
l

∂Wl
. if l = output layer

(6)
Here, Ol and Ul are output spikes and membrane potential at
layer l, respectively. For the output layer, we get the derivative
of the loss L with respect to the membrane potential uTi at final
time-step T:

∂L

∂uTi
= eu

T
i

∑C
k=1 e

uT
k

− yi. (7)

This derivative function is continuous and differentiable for all
possible membrane potential values. On the other hand, LIF
neurons in hidden layers generate spike output only if the
membrane potential uti exceeds the firing threshold, leading to
non-differentiability. To deal with this problem, we introduce an
approximate gradient (Figure 2B):

∂oti
∂uti
= αmax{0, 1− |u

t
i − θ

θ
|}, (8)

where, α is a damping factor for back-propagated gradients. Note,
a large α value causes unstable training as gradients are summed
over all time-steps. Hence, we set α to 0.3. Overall, we update
the network parameters at the layer l based on the gradient value
(Equation 6) asWl =Wl − η1Wl.

3.2. Batch Normalization Through Time
(BNTT)
In this work, we present a new temporally-variant Batch
Normalization for accelerating SNN training. We first visualize

the distribution of the input signal of standard BN at layer 5 in
VGG9 SNN with surrogate-gradients based training (Figure 3).
The results show that the input signal to the BN layer varies with
time. Therefore, we assert that if we enable temporal flexibility
to BN parameters (e.g., global mean µ, global variation σ , and
learnable parameter γ), the representation power of the networks
might be improved.

To this end, we vary the internal parameters in a BN layer
through time, that we define as, BNTT. Similar to the digital
simulation of LIF neuron across different time-steps, one BNTT
layer is expanded temporally with a local learning parameter
associated with each time-step. This allows the BNTT layer to
capture temporal statistics (see section 3.3 for mathematical
analysis). The proposed BNTT layer is easily applied to SNNs by
inserting the layer after convolutional/linear operations as:

uti =λut−1i + BNTTγ t (
∑

j

wijo
t
j)

=λut−1i + γ t
i (

∑
j wijo

t
j − µt

i√
(σ t

i)
2 + ǫ

).

(9)

During the training process, we compute the mean µt
i and

variance σ t
i from the samples in a mini-batchB for each time step

t, as shown in Algorithm 1. Note, for each time-step t, we apply
an exponential moving average to approximate global mean µ̄t

i
and variance σ̄ t

i over training iterations. These global statistics
are used to normalize the test data at inference. Also, we do not
utilize β as in conventional BN, since it adds redundant voltage
to the membrane potential of SNNs.

Adding the BNTT layer to LIF neurons changes the gradient
calculation for backpropagation. Given that xti =

∑
j wijo

t
j is an

input signal to the BNTT layer, we can calculate the gradient
value passed through lower layers by the BNTT layer as:

∂L

∂xt
b

= 1

m
√
(σ t)2 + ǫ

(
m

∂L

∂ x̂t
b

−
m∑

k=1

∂L

∂ x̂t
k

− x̂tb

m∑

k=1

∂L

∂ x̂t
k

x̂tk

)
.

(10)

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 3 | SNNs with standard BN: (A) Distributions of the input activation of BN at time-step 1, 10, and 20. (B) While the mean of input activation varies with time,

stored mean in standard BN layer has constant value at inference. This will create discrepancy and inhibit the BN layer to learn well. This suggests a temporally varying

BN technique.

Here, we omit a neuron index i for simplicity. Also,
m and b denote the batch size and batch index (see
Supplementary Material A for more detail). Thus, for every
time-step t, gradients are calculated based on the time-specific
statistics of input signals. This allows the networks to take into
account temporal dynamics for training weight connections.
Moreover, a learnable parameter γ is updated to restore the
representation power of the batch normalized signal. Since we
use different γ t values across all time-steps, γ t finds an optimum
over each time-step for efficient inference. We update gamma
γ t = γ t − η1γ t where:

1γ t = ∂L

∂γ t
= ∂L

∂ut
∂ut

∂γ t
=

m∑

k=1

∂L

∂ut
k

x̂tk. (11)

3.3. Mathematical Analysis
In this section, we discuss the connections between BNTT and
the firing threshold of a LIF neuron. Specifically, we formally
prove that using BNTT has a similar effect as varying the firing
threshold over different time-steps, thereby ascertaining that
BNTT captures temporal characteristics in SNNs. Recall that
BNTT normalizes the input signal using stored approximated
global average µ̄t

i and standard deviation (σ̄i
t)2 at inference.

From Equation (9), we can calculate a membrane potential at
time-step t = 1, given that initial membrane potential u0i has a
zero value:

u1i =γ 1
i (

∑
j wijo

1
j − µ̄1

i√
(σ̄ 1

i)
2 + ǫ

)

≈ γ 1
i√

(σ̄ 1
i)

2 + ǫ

∑

j

wijo
1
j =

γ 1
i√

(σ̄ 1
i)

2 + ǫ

ũ1i .

(12)

Here, we assume µ̄1
i can be neglected with small signal

approximation due to the spike sparsity in SNNs, and ũ1i =∑
j wijo

1
j is membrane potential at time-step t = 1 without

BNTT (obtained from Equation 4). We can observe that the
membrane potential with BNTT is proportional to themembrane

potential without BNTT at t = 1. For time-step t > 1,
we should take into account the membrane potential from the
previous time-step, which is multiplied by leak λ. To this end, by
substituting (Equation 12) in the BNTT equation (Equation 9),
we can formulate the membrane potential at t = 2 as:

u2i ≈ λu1i +
γ 2
i√

(σ 2
i)

2 + ǫ

∑

j

wijo
2
j

= (
λγ 1

i√
(σ 1

i)
2 + ǫ

)ũ1i +
γ 2
i√

(σ 2
i)

2 + ǫ

∑

j

wijo
2
j

≈ γ 2
i√

(σ 2
i)

2 + ǫ

{λũ1i +
∑

j

wijo
2
j } =

γ 2
i√

(σ 2
i)

2 + ǫ

ũ2i .

(13)

In the third line, the learnable parameter γ t
i and σ t

i have similar
values in adjacent time intervals (t = 1, 2) because of continuous
time property. Hence, we can approximate γ 1

i and σ 1
i as γ 2

i and
σ 2
i , respectively. Finally, we can extend the equation of BNTT to

the time-step t:

uti ≈
γ t
i√

(σ t
i)

2 + ǫ

ũti . (14)

Considering that a neuron produces an output spike activation
whenever the membrane potential ũti exceeds the pre-defined
firing threshold θ , the spike firing condition with BNTT can be
represented uti ≥ θ . Comparing with the threshold of a neuron
without BNTT, we can reformulate the firing condition as:

ũti ≥

√
(σ t

i)
2 + ǫ

γ t
i

θ . (15)

Thus, we can infer that using a BNTT layer changes the firing

threshold value by
√
(σ t

i)
2 + ǫ/γ t

i at every time-step. In practice,

BNTT results in an optimum γ during training that improves
the representation power, producing better performance and

Frontiers in Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

Algorithm 1: BNTT layer

Input:mini-batchB at time step t (xt{1...m}), learnable parameter (γ t), update

factor (α)

Output: {yt = BNTTγ t (xt)}

1: µt ← 1
m

∑m
b=1 x

t
b

2: (σ t)2 ← 1
m

∑m
b=1(x

t
b
− µt)2

3: x̂t = xt−µt√
(σ t)2+ǫ

4: yt ← γ t x̂t ≡ BNTTγ t (xt)

5: % Exponential moving average

6: µ̄t ← (1− α)µ̄t + αµt

7: σ̄ t ← (1− α)σ̄ t + ασ t

Algorithm 2: Training process with BNTT

Input:mini-batch (X); label set (Y); max_timestep (T)

Output: updated network weights

1: for i← 1 tomax_iter do

2: fetch a mini batch X

3: for t← 1 to T do

4: O← PoissonGenerator(X)

5: for l← 1 to L− 1 do

6: (Ot
l
,Ut

l
)← (λ,Ut−1

l
, BNTTγ t (Wl ,O

t−1
l−1))

7: end for

8: % For the final layer L, stack the voltage

9: Ut
L←(Ut−1

L , BNTTγ t (Wl ,O
t−1
L−1))

10: end for

11: % Calculate the loss and back-propagation

12: L← (UT
L ,Y)

13: end for

low-latency SNNs.This observation allows us to consider the
advantages of time-varying learnable parameters in SNNs. This
implication is in line with previous work (Han et al., 2020),
which insists that manipulating the firing threshold improves the
performance and latency of the ANN-SNN conversion method.
However, Han et al. change the threshold value in a heuristic
way without any optimization process and fix the threshold
value across all time-steps. On the other hand, our BNTT yields
time-specific γ t which can be optimized via back-propagation.

3.4. Early Exit Algorithm
The main objective of early exit is to reduce the latency during
inference (Panda et al., 2016; Teerapittayanon et al., 2016). Most
previous methods (Wu et al., 2018; Sengupta et al., 2019; Han
et al., 2020; Lee et al., 2020; Rathi et al., 2020) accumulate
output spikes till the end of the time-sequence, at inference,
since all layers generate spikes across all time-steps as shown
in Figures 1A,B. On the other hand, learnable parameters in
BNTT manipulate the spike activity of each layer to produce a
peak value, which falls again (a gaussian-like trend), as shown
in Figure 1C. This phenomenon shows that SNNs using BNTT
convey little information at the end of spike trains.

Inspired by this observation, we propose a temporal early exit
algorithm based on the value of γ t . From Equation (15), we know
that a low γ t value increases the firing threshold, resulting in

low spike activity. A high γ t value, in contrast, induces more
spike activity. It is worth mentioning that (σ t

i)
2 shows similar

values across all time-steps and therefore we only focus on γ t .
Given that the intensity of spike activity is proportional to γ t , we
can infer that spikes will hardly contribute to the classification
result once γ t values across every layer drop to a minimum
value. Therefore, we measure the average of γ t values in each
layer l at every time-step, and terminate the inference when γ t

value in every layer is below a pre-determined threshold. For
example, as shown in Figure 4, we observe that all averaged γ t

values are lower than threshold 0.1 after t > 20. Therefore,
we define the early exit time at t = 20. Note that we can
determine the optimum time-step for early exit before forward
propagation without any additional computation. In summary,
the temporal early exit method enables us to find the earliest
time-step during inference that ensures integration of crucial
information, in turn reducing the inference latency without
significant loss of accuracy.

3.5. Overall Optimization
Algorithm 2 summarizes the whole training process of SNNs
with BNTT. Our proposed BNTT acts as a regularizer, unlike
previous methods (Lee et al., 2016, 2020; Sengupta et al., 2019;
Rathi et al., 2020) that use dropout to perform regularization.
Our training scheme is based on widely used rate coding
where the spike generator produces a Poisson spike train
(see Supplementary Material B) for each pixel in the image
with frequency proportional to the pixel intensity (Roy et al.,
2019). For all layers, the weighted sum of the input signal is
passed through a BNTT layer and then is accumulated in the
membrane potential. If themembrane potential exceeds the firing
threshold, the neuron generates an output spike. For last layer,
we accumulate the input voltage over all time-steps without
leak, that we feed to a softmax layer to output a probability
distribution. Then, we calculate a cross-entropy loss function and
gradients for weight of each layer with the approximate gradient
function. During the training phase, a BNTT layer computes
the time-dependent statistics (i.e., µt and σ t) and stores the
moving-average global mean and variance. At inference, we
first define the early exit time-step based on the value of γ in
BNTT. Then, the networks classify the test input (note, test data
normalized with pre-computed global µ̄t , σ̄ t BNTT statistics)
based on the accumulated output voltage at the pre-computed
early exit time-step.

4. EXPERIMENTS

In this section, we carry out comprehensive experiments
on public classification datasets. We first compare our
BNTT with previous SNNs training methods. Then, we
quantitatively and qualitatively demonstrate the effectiveness of
our proposed BNTT.

4.1. Experimental Setup
We evaluate our method on three static datasets (i.e., CIFAR-
10, CIFAR-100, Tiny-ImageNet), one neuromophic dataset (i.e.,
DVS-CIFAR10), and one sequential dataset (i.e., Sequential

Frontiers in Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 4 | The average value of γ t at each layer over all time-steps (upper panel). Maximum averaged γ t for each time-step (lower panel). Early exit time can be

calculated as t = 20 since γ t values at every layer have lower value than threshold 0.1 after time-step 20 (blue shaded area). Here, we use a VGG9 architecture on

CIFAR-10.

MNIST). CIFAR-10 (Krizhevsky and Hinton, 2009) consists of
60,000 images (50,000 for training/10,000 for testing) with 10
categories. All images are RGB color images whose size are 32 ×
32. CIFAR-100 has the same configuration as CIFAR-10, except
it contains images from 100 categories. Tiny-ImageNet is the
modified subset of the original ImageNet dataset. Here, there are
200 different classes of ImageNet dataset (Deng et al., 2009), with
100,000 training and 10,000 validation images. The resolution
of the images is 64×64 pixels. DVS-CIFAR10 (Li et al., 2017)
has the same configuration as CIFAR-10. This discrete event-
stream dataset is collected by moving the event-driven camera.
We follow the similar data pre-processing protocol and a network
architecture used in previous work (Wu et al., 2019) (details
in Supplementary Material C). Sequential MNIST (Le et al.,
2015) is the variant of MNIST (LeCun et al., 1998). Instead of
showing the whole image to the networks, this dataset presents
each pixel in an image pixel by pixel. Our implementation is
based on Pytorch (Paszke et al., 2017). We train the networks
with standard SGDwithmomentum 0.9, weight decay 0.0005 and
also apply random crop and horizontal flip to input images. The
base learning rate is set to 0.3 and we use step-wise learning rate
scheduling with a decay factor 10 at 50, 70, and 90% of the total
number of epochs. Here, we set the total number of epochs to
120, 240, 90, and 60 for CIFAR-10, CIFAR-100, Tiny-ImageNet,
and DVS-CIFAR10, respectively.

4.2. Comparison With Previous Methods
On public datasets, we compare our proposed BNTT method
with previous rate-coding based SNN training methods,
including ANN-SNN conversion (Cao et al., 2015; Sengupta et al.,

2019; Han et al., 2020), surrogate gradient back-propagation (Lee
et al., 2020), and hybrid (Rathi et al., 2020) methods. From
Table 1, we can observe some advantages and disadvantages
of each training method. The ANN-SNN conversion method
performs better than the surrogate gradient method across all
datasets. However, they require large number of time-steps for
training and testing, which is energy-inefficient and impractical
in a real-time application. The hybrid method aims to resolve
this high-latency problem, but it still requires over hundreds of
time-steps. The surrogate gradient method (denoted as Baseline)
suffers from poor optimization and hence cannot be scaled
to larger datasets such as CIFAR-100 and Tiny-ImageNet. The
results show that the performance improvement of SNN models
is because of BNTT, and not because of applying the loss to
the membrane potential which can improve the performance
of SNNs (Eshraghian et al., 2021). Using standard BN with
surrogate gradient training (i.e., Baseline + standard BN)
improves the optimization capability of SNNs enabling us
to train deep SNNs for complex datasets, however, there is
performance degradation. Increasing the number of time-steps
to > 100 − 150 does improve the performance, but that would
also lead to increased computation. Our BNTT is based on
the surrogate gradient method (i.e., Baseline + BNTT), and
it enables SNNs to achieve high performance even for more
complicated datasets. At the same time, we reduce the latency due
to the inclusion of learnable parameters and temporal statistics
in the BNTT layer. As a result, BNTT can be trained with
25 time-steps on a simple CIFAR-10 dataset, while preserving
state-of-the-art accuracy. For CIFAR-100, we achieve about 40×
and 2× faster inference speed compared to the conversion

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

TABLE 1 | Classification accuracy (%) on CIFAR-10, CIFAR-100, and Tiny-ImageNet.

Dataset Training method Architecture Time-steps Accuracy (%)

Cao et al. (2015) CIFAR-10 ANN-SNN Conversion 3Conv, 2Linear 400 77.4

Sengupta et al. (2019) CIFAR-10 ANN-SNN Conversion VGG16 2500 91.5

Lee et al. (2020) CIFAR-10 Surrogate Gradient VGG9 100 90.4

Rathi et al. (2020) CIFAR-10 Hybrid VGG16 200 92.0

Han et al. (2020) CIFAR-10 ANN-SNN Conversion VGG16 2048 93.6

Baseline CIFAR-10 Surrogate Gradient VGG9 100 88.7

Baseline + standard BN CIFAR-10 Surrogate Gradient VGG9 25 84.3

Baseline + BNTT (ours) CIFAR-10 Surrogate Gradient VGG9 25 90.5

Baseline + BNTT + Early Exit (ours) CIFAR-10 Surrogate Gradient VGG9 20 90.3

Sengupta et al. (2019) CIFAR-100 ANN-SNN Conversion VGG16 2500 70.9

Rathi et al. (2020) CIFAR-100 Hybrid VGG16 125 67.8

Han et al. (2020) CIFAR-100 ANN-SNN Conversion VGG16 2048 70.9

Baseline CIFAR-100 Surrogate Gradient VGG11 n/a n/a

Baseline + standard BN CIFAR-100 Surrogate Gradient VGG11 50 43.0

Baseline + BNTT (ours) CIFAR-100 Surrogate Gradient VGG11 50 66.6

Baseline + BNTT + Early Exit (ours) CIFAR-100 Surrogate Gradient VGG11 30 65.8

Sengupta et al. (2019) Tiny-ImageNet ANN-SNN Conversion VGG11 2500 54.2

Baseline Tiny-ImageNet Surrogate Gradient VGG11 n/a n/a

Baseline + standard BN Tiny-ImageNet Surrogate Gradient VGG11 30 32.7

Baseline + BNTT (ours) Tiny-ImageNet Surrogate Gradient VGG11 30 57.8

Baseline + BNTT + Early Exit (ours) Tiny-ImageNet Surrogate Gradient VGG11 25 56.8

methods and the hybrid method, respectively. Interestingly, for
Tiny-ImageNet, BNTT achieves better performance and shorter
latency compared to previous conversion method. Note that
ANN with VGG11 architecture used for ANN-SNN conversion
achieves 56.3% accuracy. Moreover, using an early exit algorithm
further reduces the latency by ∼ 20%, which enables the
networks to be implemented with lower-latency and energy-
efficiency. It is worth mentioning that surrogate gradient method
without BNTT (Baseline in Table 1) only converges on CIFAR-
10. For neuromorphic DVS-CIFAR10 dataset (Table 2), using
BNTT improves the stability of training compared to a surrogate
gradient baseline, and achieves state-of-the-art performance.
These results show that our BNTT technique is very effective
on event-driven data and hence well-suited for neuromorphic
applications. We also compare the performance of BNTT with
previous works on Sequential MNIST in Table 3. Here, we use
3-layer SNN architecture: FC(1,256)-FC(256,256)-FC(256,10).
Without BNTT, Baseline has difficulty in capturing the sequential
pattern of input data, resulting in low performance. Adding
BNTT to Baseline enhances the training capability of SNNs,
resulting in a slightly better performance than the state-of-the-art
(Bellec et al., 2018).

4.3. Comparison With the Previous BN
Techniques for SNNs
We compare our temporal BNTT technique with the previous
BN approaches for SNN in Table 4. The approaches with the
standard BN (Fang et al., 2020; Ledinauskas et al., 2020) do not

TABLE 2 | Classification accuracy (%) on DVS-CIFAR10.

Method Type Accuracy (%)

Orchard et al. (2015) Random forest 31.0

Lagorce et al. (2016) HOTS 27.1

Sironi et al. (2018) HAT 52.4

Sironi et al. (2018) Gabor-SNN 24.5

Wu et al. (2019) Surrogate gradient 60.5

Baseline Surrogate gradient n/a

Baseline + BNTT (ours) Surrogate gradient 63.2

TABLE 3 | Classification accuracy (%) on sequential MNIST.

Method Accuracy (%)

LIF (Bellec et al., 2018) 63.3

LSNN (Bellec et al., 2018) 93.7

DEEP R LSNN (Bellec et al., 2018) 96.4

Baseline 36.2

Baseline + BNTT (ours) 96.6

show scalability to complicated datasets such as CIFAR-100 and
Tiny-ImageNet. Compared to this, our approach enables training
SNNs with low latency on such datasets. Zheng et al. (2020)
show the advantage of scaling BN parameter according to the
firing threshold, which shows good performance for large-scale

Frontiers in Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

TABLE 4 | Comparison between different BN techniques for SNNs.

Method CIFAR-10 CIFAR-100 Tiny-imageNet ImageNet

Ledinauskas et al. (2020) Standard BN 90.2 58.5 - -

Fang et al. (2020) Standard BN 93.5 - - -

Zheng et al. (2020) Threshold-dependent BN 93.2 - - 67.1

BNTT (ours) Temporal BN 90.5 66.6 57.8 -

FIGURE 5 | Visualization layer-wise spike activity (log scale) in VGG9 on CIFAR-10 dataset.

datasets, including ImageNet. Our objective is to study the
effect of BN in temporal domain, not enhance the capability of
BN itself, which is different from their approach. Combining
these two orthogonal approaches in order to achieve further
performance gain can be a good topic for future work.

4.4. Spike Activity Analysis
We compare the layer-wise spiking activities of our BNTT with
two widely-used methods, i.e., ANN-SNN conversion method
(Sengupta et al., 2019) and surrogate gradient method (without
BNTT) (Neftci et al., 2019). Specifically, we calculate the spike
rate of each layer l, which can be defined as the total number
of spikes at layer l over total time-steps T divided by the
number of neurons in layer l (see Supplementary Material D

for the equation of spike rate). In Figure 5, converted SNNs
show a high spike rate for every layer as they forward spike
trains through a larger number of time-steps compared to other
methods. Even though the surrogate gradient method uses less
number of time-steps, it still requires nearly hundreds of spikes
for each layer. Compared to these methods, we can observe
that BNTT significantly improves the spike sparsity across all

layers. In addition, we conduct further energy comparison on
Neuromorphic architecture in Supplementary Material E.

4.5. Analysis on Learnable Parameters in
BNTT
The key observation of our work is the change of γ across time-
steps. To analyze the distribution of the learnable parameters in
our BNTT, we visualize the histogram of γ in conv1, conv4, and
conv7 layers in VGG9 as shown in Figure 6. Interestingly, all
layers show different temporal evolution of gamma distributions.
For example, conv1 has high γ values at the initial time-steps
which decrease as time goes on. On the other hand, starting
from small values, the γ values in conv4 and conv7 layers peak
at t = 9 and t = 13, respectively, and then shrink to zero
at later time-steps. Notably, the peak time is delayed as the
layer goes deeper, implying that the visual information is passed
through the network sequentially over a period of time similar to
Figure 1C. This gaussian-like trend with rise and fall of γ across
different time-steps can support the explanation of overall low
spike activity compared to other methods (Figure 5).

Frontiers in Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 6 | Histogram visualization (x axis: γ value, y axis: frequency) at conv1 (row1), conv4 (row2), and conv7 (row3) layers in VGG9 across all time-steps. We

normalize the frequency into range [0, 1] for better visualization. The experiments are conducted on CIFAR-10 with 25 time-steps.

FIGURE 7 | Visualization of accuracy and early exit time with respect to the threshold value for γ . (A) CIFAR-10. (B) CIFAR-100. (C) Tiny-ImageNet.

4.6. Analysis on Early Exit
Recall that we measure the average of γ values in each layer
at every time-step, and stop the inference when all γ values
in every layer is lower than a predetermined threshold. To
further investigate this, we vary the predetermined threshold
and show the accuracy and exit time Texit trend. As shown in
Figure 7, we observe that high threshold enables the networks
to infer at earlier time-steps. Although we use less number
time-steps during inference, the accuracy drops marginally. This
implies that BNTT rarely sends crucial information at the end
of spike train (see Figure 1C). Note that the temporal evolution
of learnable parameter γ with our BNTT allows us to exploit
the early exit algorithm that yields a huge advantage in terms
of reduced latency at inference. Such strategy has not been
proposed or explored in any prior works that havemainly focused
on reducing the number of time-steps during training without
effectively using temporal statistics.

4.7. Analysis on Robustness
Finally, we highlight the advantage of BNTT in terms of the
robustness to noisy input. To investigate the effect of our BNTT

for robustness, we evaluate the performance change in the SNNs
as we feed in inputs with varying levels of noise. We generate
the noisy input by adding Gaussian noise (0, σ 2) to the clean
input image. From Figure 8A, we observe the following: (i)
The accuracy of conversion method degrades considerably for
σ > 0.4. (ii) Compared to ANNs, SNNs trained with surrogate
gradient back-propagation shows better performance at higher
noise intensity. Still, they suffer from large accuracy drops in
presence of noisy inputs. (iii) BNTT achieves significantly higher
performance than the other methods across all noise intensities.
This is because using BNTT decreases the overall number
of time-steps which is a crucial contributing factor toward
robustness (Sharmin et al., 2020). These results imply that, in
addition to low-latency and energy-efficiency, our BNTTmethod
also offers improved robustness for suitably implementing SNNs
in a real-world scenario.

In order to further validate the robustness of BNTT, we
conduct experiments on adversarial inputs. We use FGSM
(Goodfellow et al., 2014) to generate adversarial samples for
ANN. For a given image x, we compute the loss function L(x, y)
with the ground truth label y. The objective of FGSM attack is to

Frontiers in Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

FIGURE 8 | (A) Performance change with respect to the standard deviation of the Gaussian noise. (B) Performance change with respect to the attack intensity (ǫ,

denoted in x-axis) of the FGSM attack.

change the pixel intensity of the input image that maximizes the
cost function:

xadv = x+ ǫ × sign(∇xL(x, y)). (16)

We call xadv as “adversarial sample.” Here, ǫ denotes the strength
of the attack. To conduct the FGSM attack for SNN, we use
the SNN-crafted FGSM method proposed in Sharmin et al.
(2020). In Figure 8B, we show the classification performance
for varying intensities of FGSM attack. The SNN approaches
(e.g., BNTT and Surrogate BP) show more robustness than
ANN due to the temporal dynamics and stochastic neuronal
functionality.We highlight that our proposed BNTT showsmuch
higher robustness compared to others. Thus, we assert that BNTT
improves robustness of SNNs in addition to energy efficiency
and latency.

4.8. Comparison With Layer Norm
Layer Normalization (LN) (Ba et al., 2016) is an optimization
method for recurrent neural networks (RNNs). The authors
asserted that directly applying BN layers is hardly applicable
since RNNs vary with the length of the input sequence. To this
end, an LN layer calculates the mean and the variance for every
single layer. As SNNs also take time-sequence data as input, we
compare our BNTT with Layer Normalization in Table 5. For
all experiments, we use a VGG9 architecture. Also, we set a base
learning rate to 0.3 and we use step-wise learning rate scheduling
as described in section 4.1. The results show that BNTT is more
suitable structure to capture the temporal dynamics of Poisson
encoded spikes.

TABLE 5 | Comparison with layer normalization on CIFAR-10 dataset.

Method Acc (%)

Layer normalization (Ba et al., 2016) 75.4

BNTT 90.5

5. CONCLUSION

In this paper, we revisit the batch normalization technique
and propose a novel mechanism for training low-latency,
energy-efficient, robust, and accurate SNNs from scratch. Our
key idea is to investigate the temporal characteristics of Batch
Normalization (BN) with time-specific learnable parameters and
statistics. Note, BN is known as an effective way of addressing
vanishing/exploding gradients problem in ANNs. We discover
that optimizing time-dependent learnable parameters γ captures
the temporally varying input distribution so that it stabilizes the
backward gradients during training and enables better learning
of SNN representations. Our experiments reveal interesting
benefits of BNTT for temporal early exit during inference as
well as sturdy robustness against adversarial attacks. As previous
SNN-based BN works (Fang et al., 2020; Ledinauskas et al.,
2020; Zheng et al., 2020), this work showcases the importance
of incorporating dynamic time-dependent parameters during
surrogate gradient-based training to enable large-scale SNN
implementations. By showing the importance of addressing the
unstable gradient problem in SNN, we suggest future direction
for better SNN training. Today, SNNs have few advanced
optimization techniques (such as, weight initialization, skip
connection that are common in ANN optimization suite) for
addressing such issues. Our proposed BNTT can be considered to

Frontiers in Neuroscience | www.frontiersin.org 11 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

be one SNN-crafted optimization technique that can relieve the
gradient problem, resulting in performance improvement.
We hope this work fosters future work on advanced
SNN optimization.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YK and PP conceived the work and contributed to the
writing of the manuscript. YK carried out experiments.

Both authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported in part by the Center for Brain-
inspired Computing (C-BRIC) which is a JUMP center
sponsored by DARPA and SRC, the National Science Foundation
(Grant#1947826), the Technology Innovation Institute, Abu
Dhabi and the Amazon Research Award.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.773954/full#supplementary-material

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long

short-term memory and learning-to-learn in networks of spiking neurons.

arXiv preprint arXiv:1803.09574.

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron

model: I. homogeneous synaptic input. Biol. Cybern. 95, 1–19.

doi: 10.1007/s00422-006-0068-6

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Comsa, I. M., Fischbacher, T., Potempa, K., Gesmundo, A., Versari, L., and

Alakuijala, J. (2020). “Temporal coding in spiking neural networks with

alpha synaptic function,” in ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Barcelona: IEEE),

8529–8533.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: A neuromorphic manycore processor with on-chip learning.

IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. vol. 806.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: a

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (Miami, FL: IEEE), 248–255.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8.

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., et al.

(2021). Training spiking neural networks using lessons from deep learning.

arXiv preprint arXiv:2109.12894.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2020).

Incorporating learnable membrane time constant to enhance learning of

spiking neural networks. arXiv preprint arXiv:2007.05785.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572.

Han, B., Srinivasan, G., and Roy, K. (2020). “Rmp-snn: residual membrane

potential neuron for enabling deeper high-accuracy and low-latency spiking

neural network,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (IEEE), 13558–13567.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Krizhevsky, A., and Hinton, G. (2009). Learning multiple layers of features from

tiny images.

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R. B. (2016). Hots:

a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent

networks of rectified linear units. arXiv preprint arXiv:1504.00941.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Ledinauskas, E., Ruseckas, J., Juršėnas, A., and Buračas, G. (2020). Training deep

spiking neural networks. arXiv preprint arXiv:2006.04436.

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset

for object classification. Front. Neurosci. 11:309. doi: 10.3389/fnins.2017.00309

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks. IEEE Signal. Process. Mag. 36, 61–63.

doi: 10.1109/MSP.2019.2931595

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015). Hfirst: a temporal approach to object

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040.

doi: 10.1109/TPAMI.2015.2392947

Panda, P., Aketi, S. A., and Roy, K. (2020). Toward scalable, efficient,

and accurate deep spiking neural networks with backward residual

connections, stochastic softmax, and hybridization. Front. Neurosci. 14:653.

doi: 10.3389/fnins.2020.00653

Panda, P., Sengupta, A., and Roy, K. (2016). “Conditional deep learning for energy-

efficient and enhanced pattern recognition,” in 2016 Design, Automation Test in

Europe Conference Exhibition (DATE) (Dresden: IEEE), 475–480.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in pytorch,” in NIPS-W. Long Beach, CA.

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation. arXiv preprint arXiv:2005.01807.

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Frontiers in Neuroscience | www.frontiersin.org 12 December 2021 | Volume 15 | Article 773954

https://www.frontiersin.org/articles/10.3389/fnins.2021.773954/full#supplementary-material
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.3389/fnins.2020.00653
https://doi.org/10.1038/s41586-019-1677-2
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kim and Panda Temporal Batch Normalization in SNNs

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). “How does

batch normalization help optimization?” in Advances in Neural Information

Processing Systems (Montreal, CA), 2483–2493.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: Vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Sharmin, S., Rathi, N., Panda, P., and Roy, K. (2020). Inherent adversarial

robustness of deep spiking neural networks: effects of discrete input

encoding and non-linear activations. arXiv preprint arXiv:2003.10399.

doi: 10.1007/978-3-030-58526-6_24

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman, R. (2018).

“Hats: histograms of averaged time surfaces for robust event-based object

classification,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Salt Lake City, UT: IEEE), 1731–1740.

Teerapittayanon, S., McDanel, B., and Kung, H.-T. (2016). “Branchynet: fast

inference via early exiting from deep neural networks,” in 2016 23rd

International Conference on Pattern Recognition (ICPR) (Cancun: IEEE),

2464–2469.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). Direct training for

spiking neural networks: faster, larger, better. Proc. AAAI Conf. Artif. Intell. 33,

1311–1318. doi: 10.1609/aaai.v33i01.33011311

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2020). Going deeper with directly-

trained larger spiking neural networks. arXiv preprint arXiv:2011.05280.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Kim and Panda. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 December 2021 | Volume 15 | Article 773954

https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch
	1. Introduction
	2. Batch Normalization
	3. Methodology
	3.1. Spiking Neural Networks
	3.2. Batch Normalization Through Time (BNTT)
	3.3. Mathematical Analysis
	3.4. Early Exit Algorithm
	3.5. Overall Optimization

	4. Experiments
	4.1. Experimental Setup
	4.2. Comparison With Previous Methods
	4.3. Comparison With the Previous BN Techniques for SNNs
	4.4. Spike Activity Analysis
	4.5. Analysis on Learnable Parameters in BNTT
	4.6. Analysis on Early Exit
	4.7. Analysis on Robustness
	4.8. Comparison With Layer Norm

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

