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Electroencephalography (EEG) is a widely used cerebral activity measuring device for

both clinical and everyday life applications. In addition to denoising and potential

classification, a crucial step in EEG processing is to extract relevant features. Topological

data analysis (TDA) as an emerging tool enables to analyse and understand data from

a different angle than traditionally used methods. As a higher dimensional analogy

of graph analysis, TDA can model rich interactions beyond pairwise relations. It also

distinguishes different dynamics of EEG time series. TDA remains largely unknown to the

EEG processing community while it fits well the heterogeneous nature of EEG signals.

This short review aims to give a quick introduction to TDA and how it can be applied

to EEG analysis in various applications including brain-computer interfaces (BCIs). After

introducing the objective of the article, the main concepts and ideas of TDA are explained.

Next, how to implement it for EEG processing is detailed, and lastly the article discusses

the benefits and limitations of the method.

Keywords: topological data analysis (TDA), electroencephalography (EEG), persistent homology, brain-computer

interface (BCI), machine learning

1. INTRODUCTION

Electroencephalography (EEG) records brain electrical activity in a non-invasive way and contains
rich information about the underlying brain state and function. It is intensively used in diagnosis
and analysis of various neurological disorders such as epilepsy, schizophrenia and autism spectrum
disorder (ASD) (van der Stelt and Belger, 2007; Billeci et al., 2013; Acharya et al., 2015) as well as
for non-clinical applications such as sport and sleep monitoring (Borbély et al., 1981; Thompson
et al., 2008).

A key step in EEG processing is to extract relevant features or markers for the considered
application. Many techniques have been developed, ranging from traditional spectral analysis, to
non-linear analysis, as well as to recent deep learning techniques (Muthuswamy and Thakor, 1998;
Müller et al., 2008; Murugappan et al., 2008; Subha et al., 2010; Craik et al., 2019). Since the brain
is a huge network of neurons wired together and its function is based on the synchronization of
neurons, it is natural to study EEG signals using functional connectivity metrics as features (Sporns,
2013). Most of the current work use graph theory as tools to extract features e.g., small-worldness,
global clustering coefficient and characteristic path length (Ismail and Karwowski, 2020). While
being powerful tools, graph models oversimplify the interactions between neurons by reducing
them to nodes and edges, thus capturing only low-dimensional information (0 and 1). In contrast,
topological data analysis (TDA) allows to explore higher-dimensional information by using higher
dimensional representations called simplicial complexes (a set of points, segments, triangles and
their higher dimensional analogs, cf. section 2.1 for a formal definition).
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Although it is not novel to classify time series by extracting
topological features using TDA (Seversky et al., 2016; Umeda,
2017), it is only recently that this technique has attracted
attention in the domain of EEG processing, especially for clinical
applications. Some pioneering work has shown that topological
features extracted from EEG signals reveal relevant information
for various neurological disorders (Wang et al., 2018; Ibáñez-
Marcelo et al., 2019; Yamanashi et al., 2021).

In this mini review, we aim to identify where and how
TDA can be used for EEG processing by reviewing the current
literature, and point out potential directions for future work. The
organization is as follows: section 2 is a short presentation of the
main principle of TDA; section 3 summarizes various ways to
apply TDA in EEG processing based on the current literature;
section 4 discusses the advantages and limitations of TDA for
EEG analysis and the gaps in current research.

2. TOPOLOGICAL DATA ANALYSIS

Topological data analysis is a young but rapidly growing domain
at the intersection of algebraic topology and data science. There
already exist some good tutorials for non-mathematicians like
data scientists or neuroscientists (Sizemore et al., 2019; Chazal
and Michel, 2021). For a more mathematical introduction to
algebraic topology, the books of Hatcher (2000) andGhrist (2014)
could be a good starting point. In this section we briefly describe
the main idea of TDA and refer the interested readers to the
above references. All the definitions are gathered in section 2.1
to facilitate the reading.

2.1. Definitions
DEFINITION 1. Two functions f , g :X → Y are said to be
homotopic if there exist a continuous function H :X× [0, 1] → Y
such that H(·, 0) = f and H(·, 1) = g. Two topological spaces X
and Y are homotopic if there exist continuous functions f :X → Y
and g :Y → X such that f ◦ g and g ◦ f are homotopic to idY and
idX , respectively.

DEFINITION 2. A k-simplex, noted as 1k = [v0, . . . , vk], is the
convex hull of a set of k+ 1 linearly independent points.

DEFINITION 3. A simplicial complex is a collection of simplices
satisfying following conditions: every subset and their intersections
are also simplices in the collection.

DEFINITION 4. The boundary of a k-simplex1k = [v0, . . . , vk]
is defined as an alternating formal sum of (k−1)-simplices, ∂k1k =∑

i(−1)i[v0, . . . , v̂i, . . . , vk] where v̂i means omitting vi.

EXAMPLE 1. Take a 2-simplex 12 = [v0, v1, v2] for example:
∂212 = [v1, v2]− [v0, v2]+ [v0, v1] = [v1, v2]+ [v2, v0]+ [v0, v1].
Its boundary is in fact the loop formed by its edges.

REMARK1. A simple yet important property is that the boundary
of a boundary is always zero: ∂k◦∂k+1 = 0,∀k ≥ 0. In other words,
im ∂k+1 ⊆ ker ∂k. Homology is defined based on this property.

EXAMPLE 2. To have an intuition of what goes on here, we could
take the same example above. ∂1 ◦ ∂2 12 = ∂1([v1, v2]− [v0, v2]+
[v0, v1]) = v2 − v1 − v2 + v0 + v1 − v0 = 0.

DEFINITION 5. The k-dimensional homology of a simplicial
complex C is defined as the quotient space Hk(C) : =

ker ∂k/ im ∂k+1, in which two elements that differ by a k-boundary
are considered as the same element. The dimension of Hk(C) is
called the kth Betti number.

2.2. Topology and Homology in a Nutshell
Topology is the mathematical branch which studies the
properties that are preserved by continuous deformation, such
as scaling, twisting but not tearing. It could be viewed as
“geometry without metric.” Distance is of no importance in
topology, instead the whole theory is based on the notion of
“closeness.” More precisely, what we call topological properties
are those invariant under homeomorphism (continuous map
whose inverse is also continuous). However, homeomorphism
is often too strict. A looser but useful notion is homotopy (see
Definition 1). It is not only useful in the theory, but also in
practice since a lot of noise in the real world data can also be
viewed in a homotopic way, such as an blurred edge is homotopic
(but not homeomorphic) to the ideal edge in a digital image.

Based on the notion of homotopy, homotopy groups can be
defined and distinguish different topological spaces. But they are
difficult to compute in general. An alternative notion is homology
(see Definition 5), which is based on simplicial complex (see
Definition 3) and can be computed effectively using the “divide
and conquer” strategy.

Intuitively, the k-dimensional homology catches k-
dimensional “holes,” i.e., independent cycles that are not
filled. Homology is a homotopy invariant and the dimensions
of the homology group, i.e., Betti numbers, are among the
first topological statistics applied in real world applications
(Giusti et al., 2015).

2.3. Persistent Homology
What makes TDA powerful and particularly suitable to capture
hierarchical features is persistent homology, a method that
extracts persistent topological features across scales. The key
notion is filtration, which is a nested family of subcomplexes
indexed by a parameter. The homology of these subcomplexes
evolves as the parameter grows, giving rise to the barcode or
persistence diagram as a description of persistence of connected
components (described with components’ birth and death) by 0-
dimensional homology, and of multidimensional holes by higher
dimensional homology.

Figure 1 illustrates two kinds of filtration that are frequently
used. Let f be a map from R to R as shown in Figure 1A.
Then the sublevel filtration consists of the family of subcomplexes
Sl = {1 ∈ R : f (1) < l}. For this example the only non
trivial topological information is carried by a 0-dimensional
homology since we have only segments (as shown at the bottom
of Figure 1A) and no loops. We see as the parameter l increases,
there are new components emerge, marked as birth, and also
some component merges with the other one, leading to its death
(by convention the elder rule is applied that keeps the older one).
The parameters corresponding to birth and death form a family
of intervals. Chazal et al. (2012) demonstrated that this family
of intervals is unique up to reordering and can be used as a
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FIGURE 1 | Examples of filtration and the associated barcode. (A) shows the sublevel filtration of function f (x). The first and second connected component appear at

point a and b respectively and merge together at point c, giving rise to two bars: one from a till infinity and the other from b to c. (B) shows several stages of Rips

filtration. At first, all points are isolated and we have the same number of bars and points. As balls grow larger, some balls start to merge together, giving death to

certain bars. Then one loop appears, marked as a 1-dimensional feature corresponding to the blue line in the barcode. Finally the loop is filled so the blue bar stops

and every point merges into one component living forever.

topological feature named barcode. We could also mark on the
plan R

2 the point at which the x and y coordinates correspond to
birth and death of a feature, respectively. These points, together
with the diagonal, are called persistence diagram.

Figure 1B is an example of Rips filtration. Given a set of points
X and a positive number α, the Rips complex Ripsα(X) is the
simplicial complex including all simplices in which the distance
between any two of their vertices is smaller than α. Rips filtration
consists of the family of Rips complex {Ripsα(X)}α indexed by

α. In the example in R
2, we could imagine balls with increasing

radius around the initial point cloud. As the balls become bigger,
they merge with each other, leading to the death of certain
connected components but also the birth of some loops (only one
for the example in Figure 1B). The larger the scale of the loop is,
the more persistent it is in the barcode. In most cases, long bars
correspond to significant features while short bars correspond to
noise. As α goes from 0 to∞, the topology of each Rips complex
goes from one trivial case, disjoint unions of points, to another
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TABLE 1 | Summary of applications of TDA to EEG analysis (ordered by publication date).

References Domain Transformation Method Features Classifier Dataset

Altındiş et al. (2021) MI-BCI - Time delay

embedding

Persistence diagram - Graz dataset

Bischof and Bunch (2021) Eyes-open/eyes-closed

classification

- Time delay

embedding

Betti-numbers CNN Bonn dataset

Yamanashi et al. (2021) Delirium - Time delay

embedding

Area of the 1-dimensional

Betti curve

- Private dataset

Majumder et al. (2020) Autism Spectrum

Disorder (ASD)

- Sublevel filtration Persistent entropy SVM Private dataset

Wang et al. (2020b) Aphasia ICA Sublevel filtration Persistence landscape - Private dataset

Wang et al. (2020a) Aphasia ICA Gradient filtration Persistence landscape - Private dataset

Ibáñez-Marcelo et al. (2019) Hypnotizability ICA Connectivity Homological scaffold - Private dataset

Nasrin et al. (2019) Brain state classification - Sublevel filtration Persistence diagram Bayesian learning US Army

Aberdeen Proving

Ground (APG)

simulation dataset

Wang et al. (2019) Seizure localization Fourier transform Sublevel filtration Persistence landscape - Private dataset

Altindis et al. (2018) MI-BCI - Time delay

embedding

Betti numbers kNN Graz dataset

Piangerelli et al. (2018) Epileptic seizure - Sublevel filtration Persistent entropy Linear classifier Physionet

Wang et al. (2018) Epilepsy Fourier transform Sublevel filtration Persistence landscape - Private dataset

trivial case, all points merged to one connected component. The
persistence homology records the evolution between the two
extreme cases, in the middle of which interesting features come
to light. So, unlike hard thresholding methods usually used in the
construction of graphs, TDA preserves more information.

3. TDA APPLIED ON EEG DATA

In order to retrieve and evaluate in a comprehensive manner all
research works related to TDA and EEG processing, a systematic
search was conducted as described here after. Hence, using
(topological data analysis, TDA) and (electroencephalography,
EEG) as search terms, we found 70 publications on PubMed and
85 publications on Web of Science. Then we examined the title
and abstract of each non-redundant publication and excluded
those concerning recording methods other than EEG (e.g., MEG,
fMRI) or using graph theory analysis instead of TDA as tools. The
remaining publications are summarized in Table 1.

We note that besides standard preprocessing steps, e.g., band-
pass filtering, downsampling, and artifacts removal, few authors
have chosen to transform data into another space. Independent
component analysis (ICA) is the one mostly used with the
purpose of getting source components, then followed by Fourier
transform for the purpose of denoising data.

From the papers that were collected, three methods of
employing TDA emerge: the first one applies it directly onto
the EEG signals; the second one applies it onto the connectivity
network; and the third one onto the phase space. For the
first group, sublevel filtration illustrated in Figure 1A is applied
directly on the EEG time series of each channel which is as the

function f in the example. For the second group, Rips filtration,
as illustrated in Figure 1B, is applied on the point cloud in
which each point represents a channel or a source component,
and the distance is measured by connectivity measures such
as Pearson correlation. For the third group, even though it is
possible to embed data spatially, all authors have followed time-
delay embedding well backed by Takens’ theorem (Takens, 1981)
which gives the minimum dimension of embedding in order to
reconstruct attractors (a set of points in the phase space that
is invariant under dynamics and “attracts” neighboring points)
up to diffeomorphism. Time-delay embedding of a time series
{x(t)}t is formed by keeping k observations before current time
(x(t − k+ 1), x(t − k+ 2), . . . , x(t − 1), x(t)). In the phase space
each point represents the state at a certain time. Takens’ theorem
guarantees that the differential, so topological, properties of the
attractors are preserved by time delay embedding, which permits
to distinguish different EEG time series based on the topology of
the attractors in the phase space.

A barcode or persistence diagram is constructed along with
the filtration process as shown in section 2.3. A metric structure
is still needed in order to measure differences between barcodes
or persistence diagrams. The Bottleneck distance, or Wasserstein
distance, measures the distance between persistence diagrams by
pairing points in the two diagrams.

There are many other ways to extract topological features
from persistence diagrams other than measuring distance in
the original space. The simplest way might be extracting
Betti numbers. Another simple method is persistence entropy
(Chintakunta et al., 2015) which gives a scalar description of
the barcode. Additionally, persistence landscapes introduced
by Bubenik (2015) smartly embed persistence diagrams into a
Hilbert space where most machine learning algorithms can be
applied, which makes them a popular choice.
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Finally, after the feature extraction step, a classifier might
be applied or not depending on the application at hand (e.g.,
diagnostic, active brain-computer interface, or mental state
estimation via a passive brain-computer interface). The most
used ones are linear classifiers due to the small size of clinical
datasets. However, when the amount of data allows, deep learning
methods show promising performance (Bischof and Bunch,
2021). TDA can also be combined with other frameworks such
as Bayesian networks (Nasrin et al., 2019).

4. DISCUSSION

TDA has many advantages. Firstly, topological features are
by nature robust and invariant to transformations such as
translation, amplitude and frequency scaling (Wang et al.,
2018). Secondly, TDA is well suited for neuroscience, especially
analyses involving connectivity networks. Neurons far apart can
communicate with each other since some axons extend up to
one meter or more, so it’s how they are connected, i.e., the
topological structure of the network, and not the distance that
counts. Thirdly, TDA can capture global and higher dimensional
features where other methods such as graph theory fails.

Themain limitation of TDA stems also from its strength. Since
it neglects all metric related information, this harms its ability
to distinguish data of different categories. Considering the pros
and cons of TDA, it is recommended to combine TDAwith other
methods to use it to its full potential. One promising direction is
the combination of TDA with deep learning techniques. There
have been some pioneering work e.g., the work of Carriere
et al. (2020), Kim et al. (2020), and Royer et al. (2021). Much
more still remains to be explored, especially leveraging the
particular structure of EEG signals. Another direction is to
associate TDA with statistics. The topological features could be
seen not as deterministic but random variables. The notions such
as convergence rate, consistency, confidence region etc. of the
extracted topological features could be studied.

Although there are theoretical results showing the robustness
of persistence diagrams under perturbations (Cohen-Steiner

et al., 2007; Bubenik, 2015), in practice the technical details of
applying TDA for EEG signals need to be further investigated.
Altındiş et al. (2021) started in this direction by trying to find the
optimal embedding dimension, time delay and time window size
using false nearest neighbor (FNN) test. The paired t-test showed
that the significance level of extracted topological features was
very sensitive to the choice of embedding parameters and hence
it was important to use the optimal parameters.

The current domain of application is still quite restricted to
clinical studies to improve the diagnostic of neurological diseases.
However, TDA is also quite suitable for other non-clinical
EEG related areas, e.g., EEG based brain-computer interface
(BCI; Wolpaw et al., 2000) which allows the explicit control of
machines or implicit mental state estimation using only EEG
signals. Further, the datasets used in current publications are
mostly private datasets, which if possible should be replaced
by publicly available ones for increased reproducibility and
comparison with other work.

TDA is going through rapid development, both in theory and
in application. With better theoretical foundation andmore open
source software and code published online1, we believe that it
will become part of the arsenal of tools for a broader scientific
community. Hopefully we will see more publications on EEG
processing using TDA in the future.
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