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Accurate identification of the type of seizure is very important for the treatment plan
and drug prescription of epileptic patients. Artificial intelligence has shown considerable
potential in the fields of automated EEG analysis and seizure classification. However,
the highly personalized representation of epileptic seizures in EEG has led to many
research results that are not satisfactory in clinical applications. In order to improve the
clinical adaptability of the algorithm, this paper proposes an adversarial learning-driven
domain-invariant deep feature representation method, which enables the hybrid deep
networks (HDN) to reliably identify seizure types. In the train phase, we first use the
labeled multi-lead EEG short samples to train squeeze-and-excitation networks (SENet)
to extract short-term features, and then use the compressed samples to train the long
short-term memory networks (LSTM) to extract long-time features and construct a
classifier. In the inference phase, we first adjust the feature mapping of LSTM through
the adversarial learning between LSTM and clustering subnet so that the EEG of the
target patient and the EEG in the database obey the same distribution in the deep
feature space. Finally, we use the adjusted classifier to identify the type of seizure.
Experiments were carried out based on the TUH EEG Seizure Corpus and CHB-MIT
seizure database. The experimental results show that the proposed domain adaptive
deep feature representation improves the classification accuracy of the hybrid deep
model in the target set by 5%. It is of great significance for the clinical application of
EEG automatic analysis equipment.

Keywords: electroencephalography, seizure classification, deep learning, domain-invariant representation,
hybrid deep model

INTRODUCTION

According to the World Health Organization (WHO), nearly 50 million people suffer from
epilepsy worldwide, and it is estimated that 2.4 million people are diagnosed with epilepsy
annually (World Health Organization, 2019). In order to start anti-epileptic drugs or treatment,
timely and accurate diagnosis of epilepsy is very important. Nowadays, electroencephalogram
(EEG) plays a significant role in epilepsy diagnosis. EEG is the record of electrical
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activity collected through electrodes on the scalp to provide
spatial and temporal information of the brain. The neurologist
checks the EEG for abnormal brain electrical activity, identify
the type of seizure, and perform pathological analysis. However,
manual analysis of EEG records is very time-consuming,
especially with the increase of outpatient routine EEG and
inpatient long term monitoring, and neurologists often spend
several hours a day to review EEG (Krumholz et al., 2007).
Therefore, the intelligent EEG analysis and classification
algorithm has become the key to improving the level of
epilepsy treatment.

The automatic analysis process of EEG can be roughly divided
into several steps such as signal acquisition, preprocessing,
feature extraction, and pattern recognition. Due to random
and complex neural activity, EEG signals are inherently non-
linear, non-stationary, and highly random. The filtering and noise
reduction of the original EEG signal is very important for artifact
recognition and feature extraction (Chen et al., 2019). According
to clinical experience, epilepsy can cause changes in the waveform
and frequency of EEG. Therefore, time-frequency analysis tools
such as wavelet transform are widely used in EEG preprocessing
and feature engineering. Mahjoub adapted tunable-Q wavelet
transform and multivariate empirical mode decomposition to the
preprocessing and feature extraction of EEG (Mahjoub et al.,
2020). Slimen removed artifact by Savitzky–Golay filter and
multi-scale principal component analysis (Slimen et al., 2020).
He proposed a periodic overlapping group sparsity method for
sparse feature extraction (He et al., 2018). Hussain proposed a
novel entropy index permutation fuzzy entropy that significantly
improves the accuracy of a variety of machine learning algorithms
(Hussain et al., 2019). Gabara uses the CHB-MIT database to
study the machine learning algorithm for identifying EEG during
seizures. The experimental results suggest that indicators such as
Fractal Dimension, Fluctuation Index, Variation Coefficient, and
Kurtosis are more effective (Gabara et al., 2020).

Feature engineering reveals the difference between epileptic
EEG and normal EEG, and also reduces the dimensionality of
the data, so that machine learning models can be used to classify
samples. Since the database disclosed in the early years only
had two types of labels, normal and seizure, support vector
machines (SVM), an algorithm particularly suitable for two
classification problems, have been widely used. RM utilized SVM
to identify seizure EEG signal (Aileni et al., 2019). Li proposed
a novel EEG feature matrix generation algorithm based on
fast Fourier transform, then used principal component analysis
network for dimensionality reduction, and finally used SVM for
identification, which were implemented on the Bonn database
and the CHB-MIT database. The accuracy of 99 and 98% are
achieved (Li and Chen, 2021). He proposed a diagnosis method
based on sparse demodulation operator (He et al., 2019). Subasi
used particle swarm optimization to determine the optimum
parameters of SVM and increased the accuracy of epileptic
seizure to 99.38% (Subasi et al., 2019). Experiments conducted by
Shabarinath show that the combination of feature extraction via
discrete wavelet transform and seizure identification via extreme
learning machine achieved the highest accuracy, reported to be
90.1% (Shabarinath et al., 2019).

Despite many research cased combing feature engineering and
machine learning have achieved high recognition accuracy on
public databases. The modeling capabilities of machine learning
models are limited, and severe degradation has occurred on
large databases (Roy et al., 2019). The exciting thing is that,
owing to the accumulation of database, deep learning models
that can process big data through self-learning have been proven
to be similar to humans in biomedical data analysis (Rajpurkar
et al., 2017; Yıldırım et al., 2018; Arsenovic et al., 2020). Ozal
uses a one-dimensional convolutional neural network (CNN)
to analyze single-channel digital records to identify abnormal
EEG, and achieves an accuracy of 79% on the Temple University
Hospital EEG Abnormal Corpus (Yildirim et al., 2020). Liu
applied smoothing and collar technique to the outputs of CNN
and increased the sensitivity of seizure detection to 97% (Liu
et al., 2019). Wang calculated the sub-band mean amplitude
spectrum map (MAS) of the multi-channel EEG as a two-
dimensional representation of the EEG and then trained the
CNN to recognize the types of EEG samples (preictal, ictal,
interictal), and the overall accuracy reached 92.77% (Wang Y.
et al., 2019). Yang uses a convolutional autoencoder to extract
features from EEG records and then uses a long short-term
memory network (LSTM) to detect seizure (Li et al., 2020b).
Abdelhameed uses multi-lead EEG as a monitoring method,
uses a two-dimensional convolutional autoencoder to extract
features from a time-channel two-dimensional matrix, and then
uses LSTM to identify seizures. The accuracy achieved on the
CHB-MIT database is reported above 98 (Abdelhameed and
Bayoumi, 2021). Li uses the squeeze excitation module that can
model the relationship between channels to adaptively select
the EEG leads processed by the deep model. For the Temple
University Hospital EEG Seizure Corpus (TUSZ), the accuracy of
the proposed PSNE to identify epilepsy types is reported to reach
92% (Li et al., 2020a).

The series of deep models mentioned above achieve high
accuracy on the database used. However, the manifestation of
epilepsy in EEG is affected by various physiological indicators,
and it is difficult to collect all possible databases. When the
object monitored by the EEG classification model differs from the
training data, the classification accuracy will inevitably decrease.
The exciting thing is that deep learning experts provide a
possible solution, which is transfer learning (Wang S.-H. et al.,
2019; Cao et al., 2021; Zhuang et al., 2021). There have been
studies exploring the application of transfer learning to ECG
classification (Alghamdi et al., 2020; Naz et al., 2021). Wang
proposed a continuous index adaptive algorithm, which extended
the domain adaptive learning to the continuously changing
domain (Wang et al., 2020). Owing to the powerful feature
extraction of the deep model, deep domain adaptation has
succeeded in machine vision, fault diagnosis, and other fields.
Constraints were imposed on the deep representation, such as
the maximum mean discrepancy (Cao et al., 2020), to align
the distribution of the target domain samples and the source
domain samples in the deep feature space, thereby improving
the classification accuracy of the classifier in the target domain.
Yin applies domain adaptation to personalized ECG monitoring
combined with IR-UWB radar (Yin et al., 2019). Wang proposed
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an arrhythmia heartbeat classification method for ECG based on
unsupervised domain adaptation.

In order to improve the reliability of EEG monitoring
equipment in detecting seizure and classification in clinical
applications, a hybrid deep network is proposed in this work,
and a domain adaptive training method is proposed accordingly.
First, we use the labeled samples in the database to train hybrid
deep networks (HDN) to construct the deep feature map of EEG.
Then, we use the unlabeled samples of the target patient to carry
out domain adaptive learning, and fine-tune the HDN to improve
the domain invariance of the deep re-representation. We realize
the accurate classification of seizure.

METHODS

Overview of the Proposed Method and
Hybrid Deep Networks
The pipeline of the proposed method is illustrated in Figure 1,
and the utilized HDN consists of three sub-networks, 1-D
squeeze-and-excitation networks (SENet), LSTM, and Multilayer
Perceptron (MLP). SENet and LSTM are responsible for
extracting deep features of multiple time spans from EEG, and
MLP is responsible for identifying seizure types based on the
deep features of EEG. Firstly, the EEG monitoring device is used
to collect the EEG of patients and then store it as a channel-
time two-dimensional matrix. Taking the current moment as the
origin, eight short-term EEG samples with a duration of 2 s are
successively cropped to the previous. Firstly, we input the 2-s
multi-lead EEG matrix into the 1-D CNN to extract deep features.

1-dimensional squeeze-and-excitation networks

Long short-term memory networks

NN seizure classifier

Seizure classification result

FIGURE 1 | The architecture of the utilized hybrid deep networks (HDN).

The utilized 1-D CNN has as many input channels as EEG leads,
and each input channel accepts one lead of EEG data. Then,
the short-term deep feature vectors of the eight short-term EEG
samples are sequentially input to the LSTM to extract long-term
deep features. Finally, a classifier is used to identify the health
status of EEG and predict the type of seizure.

Short-Term Feature Extraction via
Squeeze-and-Excitation Networks
According to the professional knowledge of neurology, epilepsy
is manifested as changes in waveform and frequency in EEG.
The superior performance of CNN in extracting waveform
and frequency features has been widely verified in the field
of machine vision and natural language processing. On the
other hand, different types of seizure will cause changes in
different leads, for example, local seizure only shows variation
in several leads. Therefore, the deep network used should be
able to model the relationship between channels and identify
the differences between different leads. For this reason, this
research adapted SENet to extract deep features from short-
term EEG samples and reduce the dimensionality. The utilized
SENet consists of five SE-Res blocks connected in series. The
number of channels of each block is 20, 40, 80, 160, and
160. The length of the convolution kernel of each block is
16, 8, 5, 3, and 3.

The utilized SE-Res block constants consist of two
convolutional layer, a global maximum pooling layer, an
embedded fully connected neural network (NN), a scale block,
a skip path, and an Add operation. The convolutional layer
extracts feature from each channel and adjusts the number of
channels. The global maximum pooling maps the feature maps
to channel indices. The embedded NN takes the output of the
global pooling layer as the input layer and then outputs the
activation value of each channel. In order to simplify training
and reduce calculations, the embedded NN uses only one hidden
layer. The inventor of the SE module proposes to set the number
of neurons in the hidden layer to one-sixteenth of the number
of input channels. Considering the small number of channels in
each module in this study, the number of neurons in the hidden
layer is consistently set to 20. The first fully connected layer uses
the ReLU activation function. The second fully connected layer
uses the sigmoid activation function to map the activation value
of the channel to the interval [0,1]. The scaling block assigns the
activation value of the channel to each feature map. The structure
of all SE-Res blocks in the model remains the same.

Long-Term Feature Extraction via Long
Short-Term Memory Network
The representation of seizure in EEG has strong individuality. It
is difficult to balance the accuracy and generalization ability with
a single short-term EEG sample to identify the seizure type of
the patient. To this end, we use LSTM to extract the long-term
features of EEG after SENet. Three LSTM modules are stacked to
form a deep network, and after each LSTM module, the pooling
layer is used for down-sampling. Inside the LSTM, a four-layer
fully connected neural network is used to control each gate.
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Suppose that xt−1 and xt are the feature vectors extracted
by SENet from the short-term EEG samples at time t − 1
and time t, respectively. ht−1 is the output of LSTM with the
input of xt−1, which is also called the hidden cell state. Three
neural networks are used determine which historical information
should be inherited into the processing of the feature vector
at the current moment, which historical information should be
updated, and extract features from the current input feature
vector. The forget gate and input gate in LSTM are merged into
an update gate ut , which determines which parts of the current
information should be output and at the same time determines
which historical information should be forgotten 1− ut . One
sub-network is reduced, and calculation is easier. The output of
LSTM and the operation of each gate in it are defined by the
following equations:

ht
= (1− ut)

⊙
ht−1ut

+ ut
⊙

h̃t (1)

h̃t
= tanh(Fo([ht−1

⊙
rt, xt
])) (2)

ut
= σ(Fu([ht−1, xt

])) (3)

rt
= σ(Fr([ht−1, xt

])) (4)

Among them,
⊙

denotes pointwise multiplication and [·, ·]
denotes vector connection. Fo(·), Fu(·), andFr(·) denotes the sub-
network of output, update gate, and reset gate, respectively. σ(·)
denotes sigmoid activation function, and tanh(·) denotes tanh
activation function. The sigmoid activation function maps the
input to [0,1] to realize the function of the gate. The tanh
activation function is used to adjust the range of alternative states
to avoid gradient explosion.

Training Strategy
The proposed HDN adopts a step-by-step training strategy.
Firstly, the short-term feature extractor SENet is trained
supervised. The SENet is divided into two parts, the last two fully
connected layers form a short-term classifier f1, and the front-end
part forms a short-term feature extractor g1. Using the labeled

short-term EEG samples to train g1 and f1, with cross-entropy
loss function, the optimization target is as follows:

min2g1 ,2f1

1
Nb

Nb∑
i=1

M∑
c=1

yi,clog(ŷi,c) (5)

Then, the long-term feature extractor LSTM is trained
supervised. The short-term feature vector sequence output by
g1 is used as the input of LSTM. When training LSTM, the
parameters of g1 are fixed and no longer updated. Use g2 to denote
the parameters of the LSTM and f2 to denote the parameters of
the seizure classifier MLP. The cross-entropy loss function is also
used. The optimization target is as follows:

min2g2 ,2f2

1
Nb

Nb∑
i=1

M∑
c=1

yiclog(ŷic) (6)

Finally, the LSTM is fine-tuned via adversarial domain
adaptation to realize domain-invariant deep representation. As
shown in Figure 2, HDN, seizure classifier f2, and domain
discriminator fd form an adversarial learning network. Among
them, f2 and fd both take the deep features output by HDN as
input, and both are MLPs containing two hidden layers. In the
domain adaptive learning phase, there are two inputs and two
outputs. The model uses two datasets for train: one is the EEG
dataset that has been labeled, and the other is the unlabeled EEG
sample from target patient. The domain discriminator fd and
HDN are optimized alternately. First, we freeze HDN and seizure
classifier, and train fd. Because the domain index is known, the
binary cross-entropy loss function is used. The optimization goal
is shown as follows:

min2fd

1
Nb

Nb∑
i=1

dilog(d̂i)+ (1− di)log(1− d̂i) (7)

After the domain classification loss converges, we freeze the
parameters of fd, fine-tune the LSTM, and reduce the distribution
discrepancy between the target domain and the source domain
in the deep feature space. At the same time, the seizure classifier
should be fine-tuned to maintain the classification accuracy in the

Domain
discriminator

Domain

Classification loss

Deep feature

HDN
Seizure

classifier
Seizure

Classification loss

EEG from 
database

EEG from
target patient

HDN

FIGURE 2 | Domain adaptation of the proposed HDN based on adversarial learning.
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source domain. Therefore, at this phase, the optimization target
consists of two sub-items, as shown in Eq. 8.

min2g2 ,2f2

1
Nb

Nb∑
i=1

M∑
c=1

yiclog(ŷic)−
1

Nb

Nb∑
i=1

dilog(d̂i)

+ (1− di)log(1− d̂i) (8)

The EEG classifier learns the spatial distribution of deep
features under the supervision of labeled samples and optimizes
the classifier. By minimizing the classification loss, the classifier
can classify the labeled samples accurately. By minimizing the
loss of deep distribution differences, the encoder can extract
deep features from samples of different ages and different body
mass index (BMI) that obey the same distribution. In this way,
when EEG monitoring equipment is applied to people of different
ages and BMI, it is not necessary to label the EEG of the target
population manually. The unlabeled EEG can drive the model
to adjust adaptively and realize the personalized arrhythmia
monitoring based on EEG.

RESULTS

EEG Database
The multi-class seizure type classification was implemented using
the version 1.5.2 of Temple University Hospital (TUH) EEG
Seizure Corpus (Roy et al., 2019). The train set of TUH EEG
Seizure Corpus v1.5.2 collected 592 patient EEGs and recorded
a total of 2,377 seizures. A total of eight types of seizure were
recorded, of which three types had more than 50 seizures. The
number of occurrences of other types is too less to train the
deep model; they are not considered in this study. Therefore,
in this study, the TUH database is used to carry out four
classification experiments, which are Normal, Focal Non-Specific
Seizure (FNSZ), Generalized Non-Specific Seizure (GNSZ), and
Complex Partial Seizure (CPSZ).

The CHB-MIT database (Goldberger et al., 2000; Shoeb and
Guttag, 2010) was also used in this research to verify the
generalization of the proposed method when the test samples and
training samples come from different hospitals and patients. The
CHB-MIT database comes from 23 pediatric patients at Boston
Children’s Hospital and an adult patient at Beth Israel Deaconess
Medical Center. A total of 173 seizures judged by experts were
recorded. The EEG is digitized at a sampling frequency of 256 Hz
and divided into 1-h records for storage. After review by experts,
the onset and end time of each seizure were recorded.

Performance of Hybrid Deep Networks
to Classify Seizure of EEG From Same
Database
In this section, we use the TUH database to verify the
classification accuracy of the proposed HDN after supervised
training. We clip two samples from the EEG record of each
seizure, one of which is centered on the midpoint of the seizure,
and the other is centered on the starting point of the seizure.

A total of 3,000 normal samples, 3,072 FNSZ samples, 818 GNSZ
samples, and 566 CPSZ samples were clipped. The samples were
randomly divided into six parts, of which six were used for
training and one was used for testing, and a sixfold crossover
experiment was performed. The Adam optimizer is utilized.
The batch size is set to 128. The learning rate is set to 0.001.
Figure 3 shows the change curve of accuracy and loss in the
second training phase. The accuracy rate reaches 85% within
50 epochs and then rises slowly and steadily. At the 700th
epoch, it reached 95% and stabilized. After the first phase of
supervised learning, SENet achieved an accuracy rate of over
80%. Therefore, the accuracy of HDN can be increased quickly
in the second training phase.

Generalization of the Proposed Method
to Classify Seizure for New Patients
In this section, we test the proposed method on different
seizure classification tasks. We use different databases to train
HDN and then test on different databases. The CHB-MIT
database has only two types of labels, normal and seizure.
Correspondingly, when using the TUH database to train the
model, the samples are also relabeled as normal or seizure.
Table 1 lists the test accuracy of using different methods to
train HDN in each task. In each task, the training set is
further divided into a training set and a validation set, and
a sixfold crossover experiment is carried out to optimize the
hyper-parameters and then tested on the test set. In order
to comprehensively verify the superiority of the proposed
method, we also trained the HDN using samples in the test
set, and list the validation accuracy. Obviously, when the test
set and training set are the same, HDN achieves the highest
classification accuracy.

The fourth column of Table 1 lists the training accuracy
achieved by HDN using each database for supervised learning.
Among them, the CHB-MIT set is a normal/seizure two
classification, and HDN achieves the highest training accuracy
rate, reaching 97.8%. The training accuracy achieved in the TUH

FIGURE 3 | The learning process of HDN under the supervision of the expert
label.
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TABLE 1 | The classification accuracy of hybrid deep networks (HDN) in the target domain trained by different method.

Train set Test set Trained with only train set Trained with only test set The proposed method

TUH train set TUH dev set 92.4% 94.2% 94.7%

TUH dev set TUH train set 71.2% 95.3% 80.3%

TUH train set CHB-MIT set 89.7% 97.8% 96.3%

TUH dev set CHB-MIT set 85.5% 97.8% 92.1%

CHB-MIT set TUH dev set 80.3% 94.2% 86.7%

train set is the second, 95.3%. The training accuracy achieved in
TUH dev set is the lowest at 94.2%. The author infers that this is
because the same is a multi-classification task, but the TUH dev
set samples are fewer.

Comparing the third and fourth columns, you can find the
degradation of the trained HDN when applied to different
test sets. The HDN trained with the TUH train set achieves
a test accuracy of 92.4% in the TUH dev set, which is 2.9%
lower than the training accuracy achieved by the HDN in
the TUH train set, and is more accurate than the training
achieved by the HDN in the TUH dev set. The rate dropped
by 1.8%. This shows that under the condition of sufficient
training samples, the recommended HDN has quite superior
generalization ability. The high test accuracy of 89.7% achieved
by the HDN trained with the TUH train set on the CHB-
MIT set further validates this point. The HDN trained with
the TUH dev set has the lowest test accuracy in the TUH
train set, which is only 71.2%. Although HDN has achieved
a training accuracy rate of over 94% in the TUH dev set,
in the face of a larger and more complex TUH train set,
the accuracy rate has dropped by more than 20%, losing
its clinical application value. This verifies the importance of
accumulating training data for automatic EEG analysis and
diagnosis.

Finally, we compare column five and column three to verify
the advantage of the proposed method. Following the proposed
method, HDN first conducts supervised learning based on the
training set. Then, we use the test set to carry out transfer
learning to construct domain-invariant deep representation,
thereby improving the adaptability of HDN in the test set. In task
1, the proposed method achieves a test accuracy of 94.7%, which
exceeds the training accuracy achieved by HDN in the TUH dev
set. When the training set is TUH dev set and the test set is
TUH train set, the performance improvement of the proposed
training method is the most significant, and the test accuracy rate
is increased by 9.1%. When the test set and training set come
from different patient groups, the proposed method increases the
accuracy of HDN testing by more than 6 percentage points.

DISCUSSION

In this paper, we proposed a seizure classification method based
domain-invariant deep representation of EEG. The proposed
method is implemented by the HDN responsible for feature
extraction and classification and the domain discriminator
responsible for fine-tuning the deep representation. Benefiting

from the advantages of the convolution kernel in extracting
waveform features, after supervised learning, the CNN extracts
deep features from the short-term EEG. The SE-Res module
enables the modeling of the internal relationship of each lead,
which improves the multi-classification capability of SENet. In
the end, a seizure classification accuracy rate of 85.7 was achieved
on the TUH database, which is a significant improvement
compared to the machine learning model, but still cannot meet
the needs of clinical applications. The author infers that this is
because of the heterogeneity of seizure’s representation in EEG
and the interference of complex and diverse non-stationary noise.
The separability of short-term EEG samples in the deep feature
space is insufficient, and it is difficult for a MLP to optimize
an accurate classification hyperplane. CNNs can process EEG
samples for a longer period of time, but require a huge amount
of calculation, which conflicts with the limited computing power
of monitoring equipment. Therefore, this article uses the trained
SENet as a short-term deep feature extractor, and then uses an
LSTM that is good at processing time series to extract long-
term deep features. SENet, LSTM, and NN classifiers together
form HDN. After stepwise supervised learning, a classification
accuracy rate of more than 92% is finally achieved on the
TUH database. The accuracy of detecting seizure on the CHB-
MIT database reached 97.8%. The objective reasons include
two points. One is that the CHB-MIT database contains far
fewer patients than the TUH database, and the other is that the
normal/seizure two-class classification task is more important
and simple. However, under different combinations of training
set and test set, the test accuracy of HDN has dropped by 3–
13 percentage points compared to the evaluation accuracy. This
shows that the generalization ability of HDN is still insufficient.
What is exciting is that adversarial learning based on labeled
data in the training set and unlabeled data in the test set can
drive HDN to fine-tune the deep feature representation, so
that the test set samples and training set samples are aligned
in the deep space, thereby improving the test accuracy of the
classifier. In task 2 where the test set is larger than the training
set, the fine-tuning re-representation increased the test accuracy
by 9.1 percent to 80.3%. When the test set and training set
come from different hospitals and patient groups, the fine-
tuning re-representation increased the test accuracy by more
than 5 percentage points. In summary, the constructed HDN
has strong EEG feature extraction capabilities, and the proposed
adversarial learning method can adjust the deep feature mapping
to achieve excellent domain-independent properties, which has
important value for the clinical application of seizure automatic
classification equipment.
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