
ORIGINAL RESEARCH
published: 11 January 2022

doi: 10.3389/fnins.2021.759807

Frontiers in Neuroscience | www.frontiersin.org 1 January 2022 | Volume 15 | Article 759807

Edited by:

Bipin Rajendran,

King’s College London,

United Kingdom

Reviewed by:

Enea Ceolini,

Leiden University, Netherlands

Bo Yuan,

Rutgers, The State University of New

Jersey, United States

*Correspondence:

Sarada Krithivasan

skrithiv@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 August 2021

Accepted: 14 October 2021

Published: 11 January 2022

Citation:

Krithivasan S, Sen S, Venkataramani S

and Raghunathan A (2022)

Accelerating DNN Training Through

Selective Localized Learning.

Front. Neurosci. 15:759807.

doi: 10.3389/fnins.2021.759807

Accelerating DNN Training Through
Selective Localized Learning

Sarada Krithivasan 1*, Sanchari Sen 2, Swagath Venkataramani 2 and Anand Raghunathan 1

1Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States, 2 IBM Research,

Yorktown Heights, NY, United States

Training Deep Neural Networks (DNNs) places immense compute requirements on

the underlying hardware platforms, expending large amounts of time and energy. We

propose LoCal+SGD, a new algorithmic approach to accelerate DNN training by

selectively combining localized or Hebbian learning within a Stochastic Gradient Descent

(SGD) based training framework. Back-propagation is a computationally expensive

process that requires 2 Generalized Matrix Multiply (GEMM) operations to compute the

error and weight gradients for each layer. We alleviate this by selectively updating some

layers’ weights using localized learning rules that require only 1 GEMM operation per

layer. Further, since localized weight updates are performed during the forward pass

itself, the layer activations for such layers do not need to be stored until the backward

pass, resulting in a reduced memory footprint. Localized updates can substantially boost

training speed, but need to be used judiciously in order to preserve accuracy and

convergence. We address this challenge through a Learning Mode Selection Algorithm,

which gradually selects and moves layers to localized learning as training progresses.

Specifically, for each epoch, the algorithm identifies a Localized→SGD transition layer

that delineates the network into two regions. Layers before the transition layer use

localized updates, while the transition layer and later layers use gradient-based updates.

We propose both static and dynamic approaches to the design of the learning mode

selection algorithm. The static algorithm utilizes a pre-defined scheduler function to

identify the position of the transition layer, while the dynamic algorithm analyzes the

dynamics of the weight updates made to the transition layer to determine how the

boundary between SGD and localized updates is shifted in future epochs. We also

propose a low-cost weak supervision mechanism that controls the learning rate of

localized updates based on the overall training loss. We applied LoCal+SGD to 8

image recognition CNNs (including ResNet50 and MobileNetV2) across 3 datasets

(Cifar10, Cifar100, and ImageNet). Our measurements on an Nvidia GTX 1080Ti GPU

demonstrate upto 1.5× improvement in end-to-end training time with ∼0.5% loss in

Top-1 classification accuracy.

Keywords: Deep Neural Networks (DNNs), localized learning, runtime efficiency, graphics process unit (GPU),

stochastic gradient decent algorithm

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.759807
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.759807&domain=pdf&date_stamp=2022-01-11
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:skrithiv@purdue.edu
https://doi.org/10.3389/fnins.2021.759807
https://www.frontiersin.org/articles/10.3389/fnins.2021.759807/full

Krithivasan et al. Accelerating Training via Localized Learning

1. INTRODUCTION

Deep Neural Networks (DNNs) have achieved continued success
in many machine learning tasks involving images (Krizhevsky
et al., 2017), videos (Ng et al., 2015), text (Zhou et al., 2015),
and natural language (Goldberg and Hirst, 2017). However,
training state-of-the-art DNN models is highly computationally
expensive, often requiring exa-FLOPs of compute as the models
are complex and need to be trained using large datasets.
Despite rapid improvements in the capabilities of GPUs and
the advent of specialized accelerators, training state-of-the-art
models using current platforms is still quite expensive and
often takes days to weeks. In this work, we aim to reduce
the computational complexity of DNN training through a new
algorithmic approach called LoCal+SGD1, which alleviates the
key performance bottlenecks in Stochastic Gradient Descent
(SGD) through selective use of localized learning.

Computational Bottlenecks in DNN Training. DNNs are
trained in a supervised manner using gradient-descent based cost
minimization techniques such as SGD (Bottou, 2010) or Adam
(Kingma and Ba, 2015). The training inputs, typically grouped
into minibatches, are iteratively forward propagated (FP) and
back propagated (BP) through the DNN layers to compute
weight updates that push the network parameters in the direction
that decreases the overall classification loss. Back-propagation is
computationally expensive, accounting for 65–75% of the total
training time on GPUs. This is attributed to two key factors: (i)
BP involves 2 Generalized Matrix Multiply (GEMM) operations
per layer, one to propagate the error and the other to compute the
weight gradients, and (ii) when training on distributed systems
using data/model parallelism (Dean et al., 2012; Krizhevsky
et al., 2012), aggregation of weight gradients/errors across devices
incurs significant communication overhead.

Prior Efforts on Efficient DNN Training. Prior research
efforts to improve DNN training time can be grouped into
a few directions. One group of efforts enable larger scales of
parallelism in DNN training through learning rate tuning (Goyal
et al., 2017; You et al., 2017a,b) and asynchronous weight
updates (Dean et al., 2012). Another class of efforts employ
importance-based sample selection during training, wherein
“easier” training samples are selectively discarded to improve
runtime (Jiang et al., 2019; Zhang et al., 2019). Finally, model
quantization (Sun et al., 2019) and pruning (Lym et al., 2019) can
lead to significant runtime benefits during training by enabling
the use of reduced-bitwidth processing elements.

LoCal+SGD: Combining SGD with Localized Learning.

Complementary to the aforementioned efforts, we propose a new
approach, LoCal+SGD, to alleviate the performance bottlenecks
in DNN training, while preserving model accuracy. Our hybrid
approach combines Hebbian or localized learning (Hebb, 1949)
with SGD by selectively applying it in specific layers and epochs.
Localized learning rules (Hebb, 1949; Oja, 1982; Zhong, 2005)
utilize a single feed-forward weight update to learn the feature
representations, eschewing the BP step. Careful formulation of

1In addition to combining localized and SGD based learning, LoCal+SGD is

Low-Calorie SGD or SGD with reduced computational requirements.

the localized learning rule can result in substantial computation
savings compared to SGD. Further, it also reduces memory
footprint as activations from FP need not be retained until
BP. The reduction in memory footprint can in turn allow
increasing the batch size during training, which leads to further
runtime savings due to better compute utilization and reduced
communication costs. It is worth noting that localized learning
has been extensively explored in the context of unsupervised
learning (van den Oord et al., 2018; Hénaff et al., 2019; Chen
et al., 2020). Further, the formulation of new neuro-inspired
learning rules remains an active area of research (Lee et al.,
2015; Nøkland, 2016). Our work is orthogonal to such efforts
and represents a new application of localized learning in a fully
supervised context, wherein we selectively employ it within an
SGD framework to achieve computational savings.

Preserving model accuracy and convergence with
LoCal+SGD requires localized updates to be applied
judiciously i.e., only to selected layers in certain epochs.
We address this challenge through the design of a learning
mode selection algorithm. At the start training, the algorithm
initializes the learning mode of all layers to SGD. As training
progresses, it identifies layers that will be moved to localized
learning. Specifically, for each epoch, the algorithm identifies a
Localized→SGD transition layer, which delineates the network
into two regions. Layers before the transition layer use localized
updates, while subsequent layers use gradient-based updates.
This allows BP to stop at the transition layer, as layers before it
have no need for the back-propagated errors. We explore both
static and dynamic learning mode selection algorithms. The
static algorithm utilizes a suitably chosen pre-defined function to
determine the position of the transition layer every epoch. The
dynamic algorithm analyzes the dynamics of the weight updates
of the Localized→SGD transition layer in deciding the new
position of the boundary. Further, we provide weak supervision
by modulating the learning rate of locally updated layers based
on the overall training loss.

To the best of our knowledge, LoCal+SGD is the first
effort that combines localized learning (an unsupervised learning
technique) within a supervised SGD context to reduced
computational costs while maintaining classification accuracy.
Across 8 image recognition CNNs (including ResNet50 and
MobileNet) and 3 datasets (Cifar10, Cifar100, and ImageNet), we
demonstrate thatLoCal+SGD achieves up to 1.5× improvement
in training time with ∼0.5% Top-1 accuracy loss on a Nvidia
GTX 1080Ti GPU.

2. MATERIALS AND METHODS:
LOCAL+SGD

The key idea in LoCal+SGD is to apply localized learning to
selected layers and epochs during DNN training to reduce the
overall training timewithminimal loss in accuracy. The following
design choices are critical to the effectiveness of LoCal+SGD:

• Localized Learning Rule Formulation. Eliminating BP would
be of little help if it is replaced with an equally expensive
learning rule. It is critical to choose a computationally efficient

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

rule that still enables learning in the contexts where it is
invoked.

• Learning Mode Selection. It is well known that universal use
of localized learning rules results in an accuracy that is much
lower than SGD. The key is to figure out when (which epochs)
and where (which layers) to apply localized learning to best
balance efficiency and accuracy. We refer to this as learning
mode selection.

• Weak Supervision. Since we are operating within an overall
supervised learning context where some layers are using global
information, it is natural to ask whether such information can
be used in a lightweight manner to improve the efficacy of
localized learning. To this end, we propose a weak supervision
technique, which modulates the learning rates of localized
learning based on the overall classification loss.

In the following sub-sections, we describe how we address these
design choices in greater detail.

2.1. Efficient Localized Learning
There has been growing interest toward the design of biologically
plausible learning algorithms, in part to address the high
computational requirements of stochastic gradient descent and
in part to realize bio-plausible artificial intelligence systems.
Learning rules such as feedback alignment Nøkland (2016)
resolve the weight transport problem (Liao et al., 2015) by
allowing for asymmetry in the weight values during forward
and backward propagation. Similarly, target propagation (Lee
et al., 2015) encourages neural activity to reach desired target
activations evaluated during forward propagation, instead of
utilizing loss gradients. Other learning rules such as equilibrium
propagation (Scellier and Bengio, 2017) update the weights
by evaluating gradients of locally defined objective functions,
thereby avoiding gradient propagation across the network.
However, many of these bio-plausible learning algorithms
end up being computationally more expensive than SGD,
such as feedback alignment (Nøkland, 2016). As the focus of
our work is primarily on improving training runtime while
achieving state-of-the-art accuracies, we propose the selective
use of computationally lightweight localized learning rules in
conjunction with SGD.

Localized learning has been extensively explored in the
context of unsupervised learning, demonstrating success on small
(<= 3 layer) networks using relatively simpler datasets (e.g.,

MNIST, Cifar-10) (Krizhevsky et al., 2009; Deng, 2012) with an
accuracy gap that is yet to be bridged on larger datasets (e.g.,
ResNet50 or MobileNetV2 on ImageNet; Deng et al., 2009). First
proposed in Hebb (1949), the key intuition behind localized
learning rules is to encourage correlations between neurons that
have similar activation patterns. Equation (1) depicts theHebbian
weight update proposed in Hebb (1949), for a synapse with
weightW, connecting a pair of input and output neurons whose
activation values are represented by x and y, respectively, with η

as the learning rate.

△W = η · x · y (1)

Considerable research has gone into evolving this equation over
the years to improve the performance of localized learning (Oja,
1982; Zhong, 2005). However, many of the proposed rules
are computationally complex, or are difficult to parallelize
on modern hardware platforms such as GPUs. Since our
primary goal is improving DNN training time, we adopt the
computationally simple localized learning rule presented in
Equation (1).

Note that the learning rule in Equation (1) assumes a distinct
synapse between each input and output neuron pair. While its
application to fully-connected (fc) layers is straightforward, we
need to consider the sharing of weights between neuron pairs
in convolutional (conv) layers. For updating a shared weight of
a conv layer, we calculate the individual updates due to each
pair of pre- and post-synaptic neurons sharing the weight and
sum all such updates. This essentially reduces to a convolution
operation between the input and output activations of the layer
and can be expressed by Equation (3) in Figure 1. For further
computational efficiency improvement, unlike Equation (1), we
consider the pre-activation-function values of the outputs i.e., zl
instead of their post activation value al. Further, we normalize the
localized update values as shown in Equation (4) of Figure 1, as
it was observed to achieve better convergence in practice.

Overall, we utilize Equations (3) and (4) from Figure 1 to
perform the weight updates in all layers that are earlier than the
Localized→SGD transition layer during a certain epoch. All other
layers continue to be updated using SGD-based BP, expressed by
Equations (5–7) in Figure 1. SGD updates are applied to batch-
normalization layers present after the Localized→SGD transition
layer, and are otherwise skipped. Clearly, Equation (3) has the
same computational complexity as Equation (6) of SGD-based

FIGURE 1 | Comparing localized updates and SGD-based BP.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

BP for conv and fc layers. Thus, from Figure 1, we can directly
infer that our localized learning rule will be considerably faster
than SGD-based BP. In practice, we measured this improvement
to be more than 2× on a NVIDIA GTX 1080Ti GPU for the
ImageNet-ResNet50 benchmark, across all conv and fc layers. In
addition, localized learning also reduces the memory footprint
of SGD-based BP. This is because DNN software frameworks
commonly store all activation values computed during FP for
use during SGD-based BP [al−1 in Equation (6) of Figure 1].
In contrast, the localized update for a layer can be performed
as soon as the FP through the layer is complete. The activation
tensor al of layer L can be discarded or over-written as soon as
FP proceeds to the next layer in the network, thereby freeing up a
significant portion of on-device memory during training. In turn,
this can allow larger minibatch sizes to be accommodated on a
given hardware platform, when the localized updates are applied
on a sufficient number of layers.

2.2. Learning Mode Selection Algorithm
The compute benefits of localized learning come at the cost of
potential loss in accuracy with respect to SGD. To address this
challenge, we propose a learning mode selection algorithm to
judiciously choose when and where to apply localized learning.
The algorithm identifies the learning mode of each layer in
every epoch to create a favorable tradeoff between training time
and accuracy.

Before describing the proposed learning mode selection
algorithms, we first study the effects of different spatio-temporal
patterns of localized learning on the computational efficiency
and accuracy of a neural network. We specifically investigate
whether localized learning is more suitable for specific layers in
the network and specific phases in the training process.

Impact on runtime: We first analyze the impact of spatial
patterns, i.e., whether applying localized learning to specific
layers in the network results in better runtime. In a particular
epoch, if a convolutional layer L, updated with SGD precedes
a convolutional layer K, that is updated locally, calculating
the SGD-based error gradients of Layer L, i.e., δL, requires
error propagation through the locally updated layer K. From a
compute efficiency perspective, the benefits of using localized-
updates in layer K vanish. Thus, it makes sense to partition
the network into two regions—a prefix (set of initial layers)
that are updated using localized learning, followed by layers
that are updated with SGD. In such a setting, SGD-based BP is
simply stopped at the junction of the two regions. Naturally, the
compute benefits increase when the number of locally updated
layers are higher and thus the boundary, which we refer to
as the Localized→SGD transition layer, is moved deeper into
the network.

The impact of different temporal patterns on runtime
efficiency is quite straightforward, with higher number of
locally updated epochs leading to proportionally higher benefits.
Further, as the compute complexity of localized updates is
constant across different epochs, these benefits are agnostic of the
specific epochs in which localized learning is utilized.

Impact on accuracy: To analyze the impact on accuracy, we
first examine the nature of features learnt by different layers
trained by SGD. It is commonly accepted that the initial layers

of a network perform feature extraction (Agrawal et al., 2014),
while later layers aid in the classification process. As localized
learning demonstrates better performance for feature extraction,
applying it more aggressively, i.e., for higher number of epochs,
in the initial layers has a much smaller impact accuracy. For later
layers in the network, the number of localized learning epochs
should be progressively reduced to preserve accuracy.

Overall, based on the impact of localized learning on both
runtime and accuracy, we find that a good learning mode
selection algorithm should favor application of localized learning
to a contiguous group of initial layers, while employing fewer
localized learning epochs in later layers. We impose an additional
constraint in order to ensure stability and convergence of
training. We allow each layer to transition from one learning
mode to another at most once during the entire training process.
We empirically observe that utilizing SGD as the initial learning
mode allows the network to achieve a higher accuracy than
utilizing localized learning as the initial mode. In other words,
SGD provides a better initialization point for the parameters of
all layers, and the subsequent use of localized updates enables
the training to converge with good accuracy. Taken together, the
aforementioned constraints imply that if a layer L switches from
the SGD learning to localized learning at epoch E, layer L + 1

may switch at an epoch E
′

>= E. This is depicted graphically in
Figure 2, where the Localized→SGD transition layer must move
toward the right in successive epochs.

Static Learning Mode Selection Algorithm: In a static
learning mode selection algorithm, the Localized→SGD
transition layer is computed using a pre-determined schedule
(Figure 3). Many functions can be used to impose the desired
schedule, wherein the number of locally updated layers increases
monotonically with the epoch index. These functions must be
chosen such that the schedule is neither too conservative in the
application of localized updates (which may lead to sub-optimal
compute and memory benefits), nor too aggressive (which
may lead to a large drop in accuracy). In our experiments, we
observed that using a quadratic function provides a good tradeoff
between efficiency and accuracy. We illustrate this in Figure 4,
wherein we compare the performance of quadratic, exponential
and linear schedules for the Cifar10-ResNet18 benchmark. The
proposed linear, quadratic and exponential scheduling functions
that specifies the index of the Localized→SGD transition layer
Nl,E at every epoch E are expressed as:

N = ⌊max(c1 · Emax + c2 · E, 0)⌋ (2)

N = ⌊max(c1 − c2 · (E− Emax)
2, 0)⌋ (3)

N = ⌊max((ec2·E − c1 · Emax), 0)⌋ (4)

where c1 and c2 are hyper-parameters, and Emax is the total
number of training epochs. As shown in Figure 3 for quadratic
schedules, c1 controls the maximum number of layers that are
updated locally across the training process, while c2 controls
the epoch at which localized updates begin. The values of c1
and c2 are determined with the aim of maximizing the area

Frontiers in Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

FIGURE 2 | Overview of the learning mode selection algorithm.

FIGURE 3 | Transition layer schedules.

FIGURE 4 | Impact of different scheduling functions on Cifar10-ResNet18

training.

under the curve, i.e., employing localized updates as many
layers and epochs as possible, while maintaining a competitive
classification accuracy.

Algorithm 1 Learning Mode Selection Algorithm.

Input: TE (Index of the transition layer at epoch E), ||△WE|| (L2
norm of the weight update of the transition layer at epoch E),
Lshift (number of layers to shift boundary)

Output: TE+1 (Index of the transition layer at epoch E+1)
1: if || △WE|| <= α ·WAvg

2: TE+1 = TE + Lshift
3: else

4: TE+1 = TE

Dynamic Learning Mode Selection Algorithm: As shown in
Figure 4, the efficacy of the learning mode selection algorithm
is dependent on the scheduling function chosen. Given the
long training runtimes, identifying the optimal schedule for
every network is a cumbersome process, and it is beneficial
if the learning mode selection algorithm is free of hyper-
parameters. To that end, we propose a dynamic learning mode
selection algorithm that automatically identifies the position of
the boundary every epoch.

The dynamic learning mode selection algorithm, described
in Algorithm 1, analyzes the changes in the L2 norm of the
SGD weight update of the Localized→SGD transition layer, and
determines whether the boundary can be shifted deeper into
the network for the next epoch. The exponentially running
average of the norm update, Wavg , is first evaluated (line 1).
If the norm of the weight update in epoch E is significantly
smaller than Wavg , i.e., less than some fraction α, the boundary
is shifted right by Lshift layers (line 2). Else, the boundary remains
stationary (line 4). The rationale for this criterion is that sustained
high magnitudes of SGD weight updates in the transition layer
indicate that they are potentially critical to accuracy, in which
case the transition layer must continue being updated with SGD.

Naturally, α and Lshift provide trade-offs between accuracy
and runtime savings—higher values of either quantity result in

Frontiers in Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

aggressive applications of localized updates and hence better
runtimes, but at the cost of degradations in accuracy. Our
experiments suggest that values of α between 0.1 and 0.5, and
Lshift between 10 and 15%, provide good performance across all
the benchmarks studied. In section 3, we explore this trade-off
space in greater detail.

To summarize, we propose static and dynamic learning
mode selection algorithms that help identify the position of the
transition layer for every epoch. Each algorithm comes with its
own benefits—static algorithms can be hand-tuned to provide
superior performance, but at the cost of additional effort involved
in tuning the hyperparameters.

2.3. Weak Supervision
To further bridge the accuracy gap between our hybrid and

end-to-end SGD training, we introduce weak supervision in the
locally updated layers. Unlike the SGD, the localized learning
rules described thus far do not take advantage of the information
provided by supervision, i.e., the classification error evaluated at
the output. We incorporate this information through a low-cost
weak supervision scheme that consists of a single signal sent to
all layers updated locally in a particular epoch. This feedback is
derived from the classification loss observed over past few epochs.
The weak supervision scheme is described in Algorithm 2.

The key principle behind the weak supervision scheme is to
control the learning rates of the locally updated layers based
on the rate at which the overall classification loss changes. For
example, if the overall classification loss has increased across
consecutive epochs, we reverse the direction of the updates
(line 3) in the next epoch. In contrast, the update direction is
maintained if the overall loss is decreasing (line 5). We find that
this weak supervision provides better accuracy results than other
learning ratemodulation techniques for the locally updated layers
such as Adam or momentum-based updates.

We would like to highlight that traditional SGD provides fine-
grained supervision and involves evaluating the error gradients
for every neuron in the network. In contrast, the proposed
weak supervision scheme provides coarse-grained supervision
by forcing all weights to re-use the same loss information.
Overall, our weak supervision scheme is not developed with
the intent to compete with SGD updates, but is rather a
simple, approximate and low-cost technique that brings the final
accuracy of LoCal+SGD closer to end-to-end SGD training.

Algorithm 2Weak Supervision Scheme.

Input: Li (Overall classification loss at epoch i), lrL (original
learning rate of layer L)

Output: WL (Weight update of layer L)
1: △WL = conv(al−1, zl)
2: if Li−1 < Li
3: WL =WL - lrL ·

△WL
||△WL||

4: else

5: WL =WL + lrL ·
△WL

||△WL||

3. RESULTS AND DISCUSSION

In this section, we present the results of our experiments
highlighting the compute benefits achieved by LoCal+SGD. We
evaluate the benefits across a suite of 8 image-recognition DNNs
across 3 datasets. We consider the ResNet18 (He et al., 2015)
and VGG13 (Simonyan and Zisserman, 2015) networks for the
Cifar10 (Krizhevsky et al., 2009) and Cifar100 (Krizhevsky et al.,
2009) datasets; and the ResNet34, ResNet50 (He et al., 2015) and
MobileNetV2 (Sandler et al., 2018) networks for the ImageNet
dataset (Deng et al., 2009).

3.1. Experimental Setup
This subsection describes the experimental setup used for
realizing the baseline and proposed LoCal+SGD training
schemes. We conduct our experiments on the complete training
and test datasets of each benchmark, using the PyTorch (Paszke
et al., 2019) framework. All experiments are conducted on Nvidia
GTX 1080Ti GPUs with the batch size set to 64 per GPU, unless
otherwise mentioned.

Baseline: We consider end-to-end SGD training as the
baseline in our experiments. The hyper-parameters used in SGD
training of each of the benchmarks are described below.

ImageNet: For experiments in section 3.2 we utilize a batch-
size of 64 per GPU, for all benchmarks. For the ResNet50 and
ResNet34 benchmarks the initial learning rate set to 0.025. The
learning rate is decreased by 0.1 every 30 epochs, for a total
training duration of 90 epochs, and the weight decay is 4e − 5.
The MobileNetV2 benchmark utilizes an initial learning rate of
0.0125. We use a cosine learning rate decay schedule, as in Li
et al. (2019) for 150 epochs. The weight decay is set to 4e − 5.
Both benchmarks use an input size of 224*224*3.

For the experiments in section 3.3, the total batch-size at
epoch 1 is 256 (64*4), with the initial learning rate set to
0.1 for the ResNet benchmarks and 0.05 for the MobileNetV2
benchmark. All other parameters remain the same.

Cifar10 and Cifar100: All Cifar10 and Cifar100 experiments
utilize a batch-size of 64. The Cifar10 benchmarks are trained
with an initial learning rate of 0.05 that is decayed by 0.1 every 10
epochs, across 90 epochs. The initial learning rate of the Cifar100
benchmarks is 0.025 and decayed by 0.5 every 20 epochs, for 150
epochs in total. The weight decay is set to 5e−4. Both benchmarks
utilize an input size of 32*32*3.

LoCal+SGD: In the proposed LoCal+SGD training scheme,
the layers updated with SGD are trained with the same
hyper-parameters used in the baseline implementation. Further,
LoCal+SGD training is conducted using the same number
of epochs as baseline SGD training. When a layer is updated
locally, the initial learning rate is 0.01 and is decayed by factors
of 2 and 10 every 30 epochs for the Cifar and the ImageNet
benchmarks, respectively. In all experiments, the α parameter
is set to 0.8. We measure the accuracy and runtime of the
proposed scheme for the same number of training epochs as the
baseline implementations. Further, we utilize the same random
seed to initialize the weights of the network when comparing the
performance of LoCal+SGD against the baseline. Speed-up and
accuracy results are averaged over 10 runs for each benchmark.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

3.2. Single GPU Execution Time Benefits
ImageNet: Table 1 presents the performance of the
baseline (end-to-end SGD training) and the proposed
LoCal+SGD algorithm (both static and dynamic versions)
on the ImageNet benchmarks in terms of the Top-1 classification
error and runtime observed on a single GPU. For all benchmarks
listed here, the static and dynamic versions of LoCal+SGD apply
localized updates for nearly 50–60% of the layers. Further, the
LoCal+SGD algorithms achieve upto ∼1.4× reduction in
runtime compared to the baseline, while sacrificing <0.5% loss
in Top-1 accuracy. The static LoCal+SGD algorithm exhibits
slightly superior runtime performance for similar accuracies
compared to the dynamic algorithm. However, as noted earlier,
the dynamic algorithm eliminates the effort required to identify
an optimal scheduling function.

Table 1 also compares the performance of
LoCal+SGD against existing research efforts designed to
improve training efficiency. We perform this analysis against
two efforts, namely (i) Training with stochastic depth (Huang
et al., 2016) and (ii) Structured Pruning during Training (Lym
et al., 2019). Training with stochastic depth, as the name
suggests, stochastically bypasses residual blocks by propagating
input activations/error gradients via identity or downsampling
transformations, resulting in improved training time. However,
the approach is targeted toward extremely deep networks and as
seen in Table 1, it incurs a noticeable accuracy loss on networks
such as ResNet34, ResNet50 and MobileNetV2. Compared to
training with stochastic depth, our proposal clearly achieves
better accuracy as well as training runtime benefits. The key
principle behind the pruning during training approach is
to reduce the size of the weight and activation tensors in a
structured manner during training, thereby providing speed-ups

TABLE 1 | ImageNet.

Network Training strategy Top-1 error (%) Speed-up

ResNet34 Baseline SGD 26.6 1×

LoCal+SGD (Static) 27 1.34×

LoCal+SGD (Dynamic) 27.04 1.26×

Training with Stochastic depth 27.89 1.13×

Freezing layers during training 27.32 1.36×

ResNet50 Baseline SGD 24.02 1×

LoCal+SGD (Static) 24.51 1.42×

LoCal+SGD (Dynamic) 24.45 1.37×

Training with Stochastic depth 26.76 1.08×

Pruning during training 24.89 1.32×

Freezing layers during training 24.84 1.49×

MobileNetV2 Baseline SGD 28.41 1×

LoCal+SGD (Static) 28.90 1.32×

LoCal+SGD (Dynamic) 28.98 1.27×

Training with Stochastic depth 30.53 1.17×

Freezing layers during training 29.31 1.54×

All experimental results pertaining to LoCal+SGD are highlighted in bold.

on GPU/TPU platforms. However, on complex benchmarks
such as ResNet50, such techniques achieve speed-ups at the cost
of significant drop in accuracy (∼ 1.5%). To further demonstrate
the utility of localized updates in our approach, we consider a
third technique, wherein layers selected to be updated locally
for a given epoch are instead frozen, i.e., the parameters are
held fixed during that epoch. While this achieves better runtime
savings, it incurs considerably higher loss in accuracy, further
underscoring the benefits of LoCal+SGD.

In Figure 5, we depict the validation accuracy curves for
the ResNet50 and MobileNetV2 benchmarks trained with
LoCal+SGD and SGD, normalized to SGD training runtime. For
the sake of brevity, we have presented the curves when using
the dynamic learning mode selection algorithm. As can be seen,
after a few epochs have passed since localized updates began,
LoCal+SGD achieves better accuracies for the same runtime.

CIFAR-10 and CIFAR-100: Table 2 presents the accuracy
and corresponding compute benefits of the baseline and the
proposed technique, as well as training with stochastic depth
and layer freezing, for the CIFAR-10 and CIFAR-100 datasets.
Stochastic depth is applicable only to residual blocks and is hence
not considered for the VGG-13 network. Across benchmarks,
we observe upto a 1.51× improvement in training runtime.
Compared to the ImageNet benchmarks, LoCal+SGD applies
localized updates more aggressively in the CIFAR-10 and CIFAR-
100 benchmarks i.e., more layers are updated locally for a higher
number of epochs. This leads to superior compute benefits on
these benchmarks.

In Table 3 we compare the final accuracy obtained by
LoCal+SGD against the baseline for the same time budget across
all our benchmarks. We note that the time budget considered is
the time taken by LoCal+SGD to complete all epochs of training.
Clearly, within the same time budget LoCal+SGD achieves
better accuracy than baseline SGD.

3.3. Execution Time Benefits for Multi-GPU
Training
We analyze the memory footprint of the ResNet50 network when
trained with LoCal+SGD on the ImageNet dataset (Figure 6).
Training first commences with all layers updated with SGD,
resulting in a high memory footprint. Due to the 10 GB capacity
of the chosen GPU, the mini-batch size is limited to 64 per
GPU. As the Localized→SGD transition layer progresses across
the network, the memory footprint required also gradually
reduces across epochs. We take advantage of this reduction in
memory footprint in the context of distributed training using 4
GPUs with data parallelism. Specifically, we extract additional
runtime benefits by increasing the batch size on each GPU,
which reduces the frequency of gradient aggregation between
devices and alleviates the communication overhead. At epoch
33, the memory footprint per GPU reduces to <5 GB, allowing
training with an increased mini-batch size of 128 per GPU from
epoch 33 onwards. As seen in Table 4, the doubling of the batch-
size provides an additional 6% improvement in total training
time. We note that other training techniques such as training

Frontiers in Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

FIGURE 5 | Validation accuracies across training runtime for (A) ResNet50 and (B) MobileNetV2.

TABLE 2 | Cifar10 and Cifar100.

Network

(Dataset)

Training strategy Top-1 err. (%) Speed-up

ResNet18 Baseline SGD 6.06 1×

(Cifar10) LoCal+SGD (Static) 6.17 1.53×

LoCal+SGD (Dynamic) 6.23 1.43×

Training with Stochastic depth 6.79 1.35×

Freezing layers during training 6.51 1.65×

VGG13

(Cifar10)

Baseline SGD 7.16 1×

LoCal+SGD (Static) 7.28 1.32×

LoCal+SGD (Dynamic) 7.25 1.28×

Freezing layers during training 7.43 1.42×

ResNet18

(Cifar100)

Baseline SGD 23.39 1×

LoCal+SGD (Static) 23.61 1.47×

LoCal+SGD (Dynamic) 23.63 1.44×

Training with Stochastic depth 23.97 1.35×

Freezing layers during training 23.74 1.62×

VGG13

(Cifar100)

Baseline SGD 31.36 1×

LoCal+SGD (Static) 31.56 1.3×

LoCal+SGD (Dynamic) 31.59 1.32×

Freezing layers during training 31.94 1.42×

All experimental results pertaining to LoCal+SGD are highlighted in bold.

TABLE 3 | Comparing accuracy at Iso-runtime.

Dataset Network Top-1 err. with

LoCal+SGD (%)

Top-1 err. with

baseline SGD (%)

ImageNet ResNet34 27.04 27.36

ResNet50 24.41 24.67

MobileNetV2 28.94 29.18

Cifar10 VGG13 7.25 7.56

ResNet18 6.23 6.47

Cifar100 VGG13 31.59 31.9

ResNet18 23.63 23.97

FIGURE 6 | Analyzing memory footprint and batch-size variation.

TABLE 4 | Analyzing impact of increasing batch-size on ImageNet.

Network Training strategy Top-1 err. (%) Speed-up

ResNet50 Baseline SGD (fixed batch-size) 24.06 1×

LoCal+SGD (fixed batch-size) 24.48 1.27×

LoCal+SGD (variable batch-size) 24.51 1.34×

All experimental results pertaining to LoCal+SGD are highlighted in bold.

with stochastic depth cannot exploit this feature, since they do
not impact memory footprint substantially.

3.4. Visualizing Activation Distributions
LoCal+SGD utilizes localized updates to adjust the weights
of the initial feature-extraction layers. As discussed previously,
these localized updates have been demonstrated to approximate
popular unsupervised learning algorithms such as principal
component analysis, k-means clustering, etc. We illustrate this
in the context of LoCal+SGD. To this end, after training is
complete, we extract the top 2 principal components of the
activation outputs of the locally updated layers. For comparison,
this procedure is repeated for the same layers when they are
updated with SGD instead. In Figure 7, we have plotted the

Frontiers in Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

dominant components of activations of the second and fourth
convolutional layers of the ResNet18-Cifar10 benchmark, when
trained with SGD and LoCal+SGD. Interestingly, we find
that LoCal+SGD provides comparable (Figures 7B,C), or in
some cases even better separation (Figure 7A) between the
classes compared to SGD. We illustrate this further in Figure 8,
wherein we plot the L2 difference between the top-2 principal
components of either class across selected layers of the network.
It is noteworthy that LoCal+SGD achieves these separations
while requiring a substantially lower number of operations per
convolutional layer.

3.5. Ablation Studies
As mentioned in section 2, the efficacy of the static and
dynamic learning mode selection algorithms are controlled

by different hyper-parameters. The performance of the static
selection algorithm is dictated by c1 and c2, while α and
Lshift impact the dynamic algorithm. Different values of these
parameters can result in different learning mode configurations
during training, resulting in different points in the computational
efficiency vs. accuracy trade-off space. To understand this trade-
off, we individually study the impact of each parameter. Further,
we also discuss the impact of the weak supervision scheme
on accuracy.

We begin by first analyzing the impact of the α and
Lshift parameters used in the dynamic learning mode selection
algorithm.

Impact of α: Figures 9A,B illustrate the runtime savings and
accuracy achieved for different values of α, for the ResNet50 and
MobileNetV2 benchmarks on ImageNet. For both benchmarks,

FIGURE 7 | Comparing the top 2 principal components at different layers of the ResNet18-Cifar10 benchmark for the following classes (A) Truck and Bird (B) Frog

and Ship (C) Automobile and Dog.

FIGURE 8 | Analyzing L2 difference between the principal components across the layers.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

increasing α from 0.1 until 0.5 improves the runtime benefits as
the application of localized updates increases, while maintaining
the loss in accuracy to within 0.2–0.3%. However, once α

exceeds 0.6, the degradations in accuracy exceed 0.5% on both
benchmarks. The speedups increase to 1.6×when around 1% loss
in accuracy is tolerable.

Impact of Lshift : In Figures 9C,D we highlight the impact of
different Lshift values (recall that Lshift denotes the amount by
which we shift the transition layer). Note that we have normalized
Lshift to the total network depth. The graphs indicate that for
Lshift values between 10 and 15% of the total number of layers
in the network, the loss in accuracy remains within 0.5%, and the
runtime savings increase with increasing Lshift . However, when
Lshift exceeds 15%, the accuracy begins to degrade. This can be
attributed to the simultaneous transition in the learning mode of
a large number of layers affecting convergence of training.

From Figure 9, we make an additional observation—across
ResNet50 to MobileNetV2, similar values of α and Lshift provide
a good trade-off. We find that this observation holds for other
ImageNet benchmarks analyzed, such as ResNet34. We therefore
utilize a common set of hyper-parameter values for all networks
of a particular dataset. This eliminates the need to conduct a
hyper-parameter search process to determine α and Lshift for
every new network that is to be trained.

The static learning mode selection algorithm is controlled by
two parameters c1 and c2. c1 represents the maximum number of
layers to which localized updates are applies, while c2 controls the
epoch at which localized updates begin. In Figure 10, we present
the accuracy and runtime benefits obtained when varying these
parameters for the ResNet18 network on the Cifar10 dataset. c1
is represented as a fraction of the total number of layers in the
network, while c2 is expressed as a fraction of the total training

FIGURE 9 | Compute efficiency vs. accuracy trade-off on ImageNet when (A) α is varied for ResNet50 (B) α is varied for MobileNetV2 (C) Lshift is varied for ResNet50

(D) Lshift is varied for MobileNetV2.

FIGURE 10 | Compute efficiency vs. accuracy trade-off obtained by varying (A) c1 and (B) c2 in the static learning mode selection algorithm for ResNet18 on the

Cifar10 dataset.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

TABLE 5 | Impact of weak supervision on accuracy.

Dataset Network Top-1 err. with weak

supervision (%)

Top-1 err. without

weak supervision (%)

ImageNet ResNet34 27.04 27.1

ResNet50 24.41 24.49

MobileNetV2 28.94 29.03

Cifar10 VGG13 7.25 7.39

ResNet18 6.23 6.41

Cifar100 VGG13 31.59 31.7

ResNet18 23.63 23.75

TABLE 6 | Accuracy and runtime benefits of LoCal+Adam.

Training technique Top-1 error (%). Speed-up

Adam 7.7 1×

LoCal+Adam 7.96 1.48×

epochs. We observe that to achieve a good trade-off, setting c1
between 0.5 and 0.7, and c2 in the range of 0.2–0.3 provides best
results. As with the dynamic learning mode selection algorithm,
we find that common c1 and c2 values can be used for all
networks of a particular dataset, with only marginal impact on
performance.

Impact of weak supervision: InTable 5, we highlight the impact
of the weak supervision technique on final classification accuracy.
Across all our benchmarks, the weak supervision technique
improves accuracy by 0.06–0.17%, bringing the final accuracy of
LoCal + SGD closer to baseline SGD. This improvement comes
at no cost in runtime, since the overhead of modulating the
learning rate of locally updated layers is negligible.

3.6. LoCal+Adam
We analyze the impact of combining localized learning with
other gradient descent based learning algorithms such as Adam.
In Table 6, we successfully demonstrate LoCal+Adam on the
Cifar10-ResNet18 benchmark. We note that all other aspects of
the design such as the learning mode selection algorithm etc.,
remain unchanged. These results thus speak to the widespread
applicability of our technique, irrespective of the gradient descent
learning algorithm used.

3.7. Applicability of LoCal+SGD to Other
Networks
In this paper, LoCal+SGD has been explored and demonstrated
with a focus on convolutional neural networks. We demonstrate
the applicability of LoCal+SGD to segmentation networks such
as U-Net (Ronneberger et al., 2015). The long-range connections
in U-Net are handled similar to the shortcut connections in
ResNets. Consider a Layer K, whose input and output activations
are AK−1 and AK . Further, let us assume Layer K receives
activation input AJ from a preceding layer J. The weight update
for Layer K is performed by convolving the summed activation
AK + AJ , with AK−1. Table 7 demonstrates the applicability

TABLE 7 | Accuracy and runtime benefits of LoCal+SGD on U-Net.

Training technique Dice coefficient. Speed-up

Baseline SGD 0.948 1×

LoCal+SGD 0.943 1.26×

of LoCal+SGD to U-Net training on the ISBI 2012 challenge
dataset (Arganda-Carreras et al., 2015).

4. RELATED WORK

This section discusses research directions that are related to
LoCal+SGD. These efforts can be broadly categorized into
two classes. The first class of efforts focus on improving
the computational efficiency of gradient-descent based DNN
training. The second class of efforts involve the design of neuro-
inspired learning rules such as feedback alignment, etc. (Nøkland,
2016). Our work is orthogonal to both classes of efforts,
since our focus is on how to selectively combine localized
learning rules with SGD for better computational efficiency. In
section 3, we demonstrated how LoCal+SGD achieves superior
accuracy vs. computational efficiency trade-off than some of these
efforts. We next elaborate upon the research efforts in both
aforementioned directions.

Hyper-parameter tuning: Many efforts are directed toward
achieving training efficiency by controlling the hyper-parameters
involved in gradient-descent, notably the learning rate. For
example (Akiba et al., 2017; Goyal et al., 2017; You et al.,
2017a,b) propose learning rate tuning algorithms that accelerate
training with no loss in accuracy, and scale to hundreds of
CPU/GPU cores.

Model size reduction during training: Model size reduction
via pruning and quantization is a popular technique to reduce
compute costs during inference. In many of these efforts, a
dense or full precision model is re-trained or fine-tuned to
obtain a pruned or quantized model. However, recent efforts
have also investigated dynamically pruning (Lym et al., 2019)
or quantizing (Sun et al., 2019) a model during training
itself, resulting in training speed-ups. Taking a slightly different
approach (Huang et al., 2016) proposes stochastically dropping
residual blocks on extremely deep networks such as ResNet-1202,
not only for training runtime benefits but also better accuracies
due to improved gradient strength.

Instance importance based training: Recent research efforts
have discovered that not all training samples are required for
improving loss minimization during SGD training (Jiang et al.,
2019; Zhang et al., 2019). That is, a sizable fraction of the samples
can be skipped during several epochs, depending on their impact
on the classification loss evaluated during FP. This translates to
a reduction in mini-batches per epoch, providing considerable
runtime benefits.

Neuro-inspired learning rules: Back-propagation algorithms
utilized in DNN training are not biologically plausible,
i.e., they greatly differ from how learning happens in the
brain. To this end, there have been several efforts that

Frontiers in Neuroscience | www.frontiersin.org 11 January 2022 | Volume 15 | Article 759807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

propose biologically plausible learning algorithms. These
algorithms have demonstrated considerable success on complex
networks and datasets. For example, feedback alignmnent
algorithms (Nøkland, 2016) tackle the weight transport
problem (Liao et al., 2015) by allowing for asymmetry in the
weight values during forward and back propagation. Likewise,
target propagation (Lee et al., 2015) encourages neural activity
to reach desired target activations evaluated during forward
propagation, instead of utilizing loss gradients. In equilibrium
propagation (Scellier and Bengio, 2017), the gradients of locally
defined objective functions are used to update the weights of a
layer, thereby eliminating the propagation of gradients across
the network.

LoCal+SGD represents a new direction wherein we combine
localized learning and SGD in the context of an overall supervised
learning framework, with the goal of reducing training time.
Therefore, we surmise that advances in either SGD-based
learning or localized learning can be incorporated within
LoCal+SGD to further advance its benefits.

5. CONCLUSION

In this paper, we introduce a new approach to improve the
training efficiency of state-of-the-art DNNs. Specifically, we take
advantage of the computationally efficient nature of localized

learning rules and selectively update some layers with these
rules instead of SGD. We design a learning mode selection
algorithm that determines the learning mode for the layers of the
network in every epoch in order to achieve a favorable tradoff
between training time and accuracy. Further, we also implement
a low-cost weak supervision scheme that brings the accuracy of
the proposed scheme closer to traditional SGD-based training.
Across a benchmark suite of 8 DNNs, we achieve upto 1.5×
reduction in training times on a modern GPU platform.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SK devised and conducted experiments. All authors contributed
to the formulation of the problem statement.

FUNDING

This work was supported in part by Semiconductor Research
Corporation (SRC).

REFERENCES

Agrawal, P., Girshick, R. B., and Malik, J. (2014). Analyzing the

performance of multilayer neural networks for object recognition.

arXiv.[Preprint].arXiv:1407.1610. doi: 10.1007/978-3-319-10584-0_22

Akiba, T., Suzuki, S., and Fukuda, K. (2017). Extremely large

minibatch SGD: training resnet-50 on imagenet in 15 minutes.

arXiv.[Preprint].arXiv:1711.04325.

Arganda-Carreras, I., Turaga, S. C., Berger, D. R., Cireşan, D., Giusti,

A., Gambardella, L. M., et al. (2015). Crowdsourcing the creation of

image segmentation algorithms for connectomics. Front. Neuroanat. 9:142.

doi: 10.3389/fnana.2015.00142

Bottou, L. (2010). “Large-scale machine learning with stochastic gradient descent,”

in Proceedings of COMPSTAT’2010, eds Y. Lechevallier and G. Saporta

(Princeton, NJ: Physica-Verlag HD), 103–189.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). “A simple framework

for contrastive learning of visual representations,” in Proceedings of the 37th

International Conference on Machine Learning, Vol.119, eds. H. D. III and A.

Singh (Proceedings of Machine Learning Research PMLR), 1597–1607.

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., et al. (2012).

“Large scale distributed deep networks,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems, Vol. 1, NIPS’ 12 (Red

Hook, NY: Curran Associates Inc.), 1223–1231.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet: a

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition (Miami, FL: IEEE).

Deng, L. (2012). The mnist database of handwritten digit images for machine

learning research. IEEE Signal Process. Mag. 29, 141–142.

Goldberg, Y., and Hirst, G. (2017). Neural Network Methods in Natural Language

Processing (Bar-Ilan University, Israel: Morgan Claypool Publishers)

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola, A.,

et al. (2017). Accurate, large minibatch SGD: training imagenet in 1 hour.

arXiv[Preprint[.arXiv:1706.02677.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image

recognition. arXiv[Prerpint].arXiv:1512.03385. doi: 10.1109/CVPR.2016.90

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory.

Hillsdale, NJ: Psychology Press, p. 378.

Hénaff,O. J., Srinivas, A., Fauw, J.D., Razavi, A.,Doersch, C., Eslami, S.M. A., et

al. (2019).Data-Efficient Image RecognitionWith Contrastive Predictive Coding.

arXiv:1905.09272.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016).

Deep networks with stochastic depth. arXiv[Preprint].arXiv:1603.09382.

doi: 10.1007/978-3-319-46493-0_39

Jiang, A. H., Wong, D. L. K., Zhou, G., Andersen, D. G., Dean, J., Ganger, G.

R., et al. (2019). Accelerating Deep Learning by Focusing on the Biggest Losers.

arXiv:1910.00762

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,”

in 3rd International Conference on Learning Representations, ICLR 2015, eds

Y. Bengio and Y. LeCun, May 7–9, 2015, Conference Track Proceedings (San

Diego, CA).

Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-10 (canadian institute for

advanced research).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems, Vol. 1,

NIPS’ 12 (Red Hook, NY: Curran Associates Inc), 1097–1105.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification

with deep convolutional neural networks. Commun. ACM 60, 84–90.

doi: 10.1145/3065386

Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. (2015). “Difference target

propagation,” in Proceedings of the 2015th European Conference on Machine

Learning and Knowledge Discovery in Databases, Vol. Part I, ECMLPKDD’15,

Gewerbestrasse 11 CH-6330 (Cham: CHE. Springer), 498–515.

Li, D., Zhou, A., and Yao, A. (2019). “Hbonet: Harmonious bottleneck on two

orthogonal dimensions,” in The IEEE International Conference on Computer

Vision (ICCV) (Seoul: IEEE).

Liao, Q., Leibo, J. Z., and Poggio, T. A. (2015). How important is weight symmetry

in backpropagation? arXiv[Preprint].arXiv:1510.0506.

Lym, S., Choukse, E., Zangeneh, S., Wen, W., Erez, M., and Shanghavi, S.

(2019). Prunetrain: Gradual structured pruning from scratch for faster neural

Frontiers in Neuroscience | www.frontiersin.org 12 January 2022 | Volume 15 | Article 759807

https://doi.org/10.1007/978-3-319-10584-0_22
https://doi.org/10.3389/fnana.2015.00142
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1145/3065386
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Krithivasan et al. Accelerating Training via Localized Learning

network training. arXiv[Preprint].arXiv:1901.09290. doi: 10.1145/3295500.33

56156

Ng, J. Y., Hausknecht, M. J., Vijayanarasimhan, S., Vinyals, O., Monga, R.,

and Toderici, G. (2015). Beyond short snippets: Deep networks for video

classification. arXiv[Preprint].arXiv:1503.08909.

Nøkland, A. (2016). “Direct feedback alignment provides learning in deep neural

networks,” in Proceedings of the 30th International Conference on Neural

Information Processing Systems, NIPS’16 (Red Hook, NY: Curran Associates

Inc.), 1045–1053.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“Pytorch: An imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32, eds. H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Vancouver,

BC: Curran Associates, Inc.), 8024–8035.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks

for biomedical image segmentation. arXiv[Preprint].arXiv:1505.04597.

doi: 10.1007/978-3-319-24574-4_28

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L.

(2018). Inverted residuals and linear bottlenecks: Mobile networks for

classification, detection and segmentation. arXiv[Preprint].arXiv:1801.04381.

doi: 10.1109/CVPR.2018.00474

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap

between energy-based models and backpropagation. Front. Comput. Neurosci.

11:24. doi: 10.3389/fncom.2017.00024

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks

for large-scale image recognition,” in International Conference on Learning

Representations (New York, NY: Springer), 235–239.

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., et al.

(2019). “Hybrid 8-bit floating point (hfp8) training and inference for deep

neural networks,” in NeurIPS.

van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with

contrastive predictive coding. arXiv:1807.03748.

You, Y., Gitman, I., and Ginsburg, B. (2017a). Scaling SGD batch size to 32k for

imagenet training. arXiv[Preprint].arXiv:1708.03888.

You, Y., Zhang, Z., Hsieh, C., and Demmel, J. (2017b). 100-epoch

imagenet training with alexnet in 24 minutes. arXiv[Preprint].arXiv:1709.

05011.

Zhang, J., Yu, H., and Dhillon, I. S. (2019). Autoassist: a framework to

accelerate training of deep neural networks. arXiv[Preprunt].arXiv:1905.

03381.

Zhong, S. H. (2005). “Efficient online spherical k-means clustering,” Proceedings

2005 IEEE International Joint Conference on Neural Networks, 2005 (Montreal,

QC: IEEE), 3180–3185.

Zhou, C., Sun, C., Liu, Z., and Lau, F. C. M. (2015). A C-LSTM neural network for

text classification. arXiv[Preprint].arXiv:1511.08630.

Conflict of Interest: SS and SV are employed by IBM Research.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Krithivasan, Sen, Venkataramani and Raghunathan. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 January 2022 | Volume 15 | Article 759807

https://doi.org/10.1145/3295500.3356156
https://doi.org/10.1007/BF00275687
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.3389/fncom.2017.00024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Accelerating DNN Training Through Selective Localized Learning
	1. Introduction
	2. Materials and methods: LoCal+SGD
	2.1. Efficient Localized Learning
	2.2. Learning Mode Selection Algorithm
	2.3. Weak Supervision

	3. Results and Discussion
	3.1. Experimental Setup
	3.2. Single GPU Execution Time Benefits
	3.3. Execution Time Benefits for Multi-GPU Training
	3.4. Visualizing Activation Distributions
	3.5. Ablation Studies
	3.6. LoCal+Adam
	3.7. Applicability of LoCal+SGD to Other Networks

	4. Related Work
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

