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While promising for high-capacity machine learning accelerators, memristor devices
have non-idealities that prevent software-equivalent accuracies when used for online
training. This work uses a combination of Mini-Batch Gradient Descent (MBGD)
to average gradients, stochastic rounding to avoid vanishing weight updates, and
decomposition methods to keep the memory overhead low during mini-batch training.
Since the weight update has to be transferred to the memristor matrices efficiently,
we also investigate the impact of reconstructing the gradient matrixes both internally
(rank-seq) and externally (rank-sum) to the memristor array. Our results show that
streaming batch principal component analysis (streaming batch PCA) and non-negative
matrix factorization (NMF) decomposition algorithms can achieve near MBGD accuracy
in a memristor-based multi-layer perceptron trained on the MNIST (Modified National
Institute of Standards and Technology) database with only 3 to 10 ranks at significant
memory savings. Moreover, NMF rank-seq outperforms streaming batch PCA rank-
seq at low-ranks making it more suitable for hardware implementation in future
memristor-based accelerators.

Keywords: non-negative matrix factorization, gradient data decomposition, principal component analysis,
memristor, non-idealities, ReRAM

INTRODUCTION

As artificial intelligence (AI) applications become ubiquitous in medical care, autonomous driving,
robotics, and other fields, accuracy requirements and neural network complexity increase in
tandem, requiring extensive hardware support for training. For example, GPT-3 is made up of
≈175 billion parameters and requires 285,000 central processing unit (CPU) cores and 10,000
graphics processing units (GPUs) to be trained on tens of billions of web pages and book texts
(Langston, 2020). Moreover, the use of such significant computing resources has major financial
and environmental impacts (Nugent and Molter, 2014; Strubell et al., 2020). New neuroinspired
hardware alternatives are necessary for keeping up with increasing demands on complexity and
energy efficiency.

Emerging non-volatile memory (NVM) technologies, such as oxygen vacancy-driven resistive
switches, also known as ReRAM or memristors (Chang et al., 2011; Wong et al., 2012; Chen,
2020), can combine data processing and storage. Memristor matrices (crossbar arrays) use physical
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principles to enable efficient parallel multiply-accumulate (MAC)
operations (Hu et al., 2018). This in-memory computing
paradigm can achieve a substantial increase in speed and energy
efficiency (Ceze et al., 2016) without the bottleneck caused by
traditional complementary metal-oxide-semiconductor (CMOS)
transistor-based von Neumann architectures. However, due
to the inherent operational stochasticity of memristors in
addition to manufacturing yield and reproducibility challenges,
this emerging technology suffers from non-idealities. Thus,
the accuracy of a neural network implemented with non-
ideal memristor synaptic weights is not software-equivalent.
To alleviate the undesirable effects of these devices, it is
necessary to engineer better devices and improve the existing
training algorithms.

This work investigates the use of Mini-Batch Gradient Descent
(MBGD) for high accuracy training of neural networks with non-
ideal memristor-based weights together with the use of gradient
decomposition methods to alleviate the memory overhead due to
the storage of gradient information between batch updates. An
initial investigation (Gao et al., 2020) showed that the MBGD of
moderate batch sizes (e.g., 128) can overcome the low accuracy
of SGD for a one-hidden-layer perceptron network implemented
with non-ideal synaptic weights trained on MNIST dataset.
Accuracies of up to 86.5% were obtained for the batch sizes of
128 compared with only 50.9% for SGD. Although these results
are promising, they are still far from the software equivalency of
96.5% at our studied network size.

Moreover, MBGD is memory intensive—particularly at higher
batch sizes—since the gradient information needs to be stored
before the batch update. We propose using a hardware co-
processor to compress MBGD gradient data and work in tandem
with the resistive array to support efficient array-level updates
(Figure 1A). The first step toward this goal and the key question
addressed by this paper is what decomposition algorithm should
be mapped to a hardware co-processor to best support the
training, particularly in neural networks implemented with
non-ideal devices. Different common low-rank decomposition
methods are available and have been extensively used in
computer science literature to pre-process the dataset, remove
noise and reduce the number of the network parameters (Garipov
et al., 2016; Schein et al., 2016). Our prior work (Huang
et al., 2020a,b) proposed streaming batch Principal Component
Analysis (PCA) and showed that an accurate gradient matrix
can be recomposed with as few as 3 to 10 ranks depending
on the dataset complexity. Tests on CIFAR-10, CIFAR-100,
and ImageNet showed near equivalent accuracy to MBGD at
significant memory savings. However, in that work, non-ideal
neural networks were not investigated.

In this study, we investigate the device-algorithm interaction
which highlights the importance of hyperparameter optimization
and stochastic rounding for overcoming the low-bit precision
coding of the memristor weights. We propose an expansion
of MBGD for larger batch sizes in conjunction with two
gradient decomposition methods - Streaming Batch PCA and
non-negative matrix factorization (NMF) - and recomposition
methods based on rank summation (rank-sum) vs. rank-by-rank
update (rank-seq) applied to a network with realistic memristor

hardware models. For a m × n gradient matrix with batch size
B, the MBGD cost is approximated at 2Bmn. By comparison,
Streaming Batch PCA and NMF have asymptotic complexities of
k(m+n) and k2(m+n)2, respectively (see Figure 1B). The issue
of gradient recomposition in order to support weight updating
is also investigated, considering that rank-sum would require
additional overhead on the training co-processor, while for rank-
seq it is possible to envision a series of rank-1 array level updates
that support recomposition on the array itself. However, it is
important to point out that these decomposition algorithms
have high complexity requiring QR decompositions or iterative
calculations when implemented at the algorithmic level and
executed on a CPU. Dedicated hardware decomposers can be
envisioned that support streaming operation on data flows.

The remainder of the paper is organized as follows.
Section 2 has background information related to memristors
and their applicability to neural networks, as well as an
overview of decomposition algorithms. Section 3 describes the
methodological details, the simulation environment, and the
algorithms used. Section 4 introduces the evaluation of the
proposed methodology on MNIST and its comparison with SGD
and MBGD. Section 5 concludes with a discussion of the results.

RELATED WORK

Resistive Switching Phenomena and
Memristor Technology
The resistive switching phenomena was discovered in aluminum
oxide in the early 1960s (Hickmott, 1962) and in other materials
in the following decades (Argall, 1968; Dearnaley et al., 1970;
Oxley, 1977; Pagnia and Sotnik, 1988). Due to the focus on silicon
integrated circuits of the time, the technological potential of this
phenomenon was not explored until the early 2000s, sparked
by industry’s interest in the one transistor and one memristor
(1T1R) cell for digital memories (Baek et al., 2004; Seo et al., 2004;
Rohde et al., 2005).

These devices have a simple structure: the upper and lower
layers are metal electrodes, and the middle layer is a dielectric
layer, typically a transition metal oxide. The device behavior
is driven by complex multi-physics phenomena, and it is not
yet fully understood. However, the main model is based on
the formation and reshaping of conductive filaments. When a
voltage pulse is applied, the electronic and ionic conduction
driven by local Joule heating causes the filament to reshape, thus
changing the device resistance and programming the weight.
When the voltage is removed, and the local Joule heating
stops, the ions in the structure “freeze” in place, thus retaining
the filament shape and its associated resistance/weight state
providing memory to the system.

Due to the inherent stochastic nature of the ionic movement
under Joule heating, the devices exhibit non-ideal characteristics,
such as programming variability from cycle to cycle and from
device to device, the asymmetry between the resistance increase
(turn OFF – long term depression) and resistance decrease
(turn ON – long term potentiation), read noise, and limited
ON/OFF ratio or accessible resistance states. Other device
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A
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FIGURE 1 | Training co-processor for decomposition. (A) Sketch showing an integrated system – a digital training co-processor will implement the best identified
algorithm in an efficient way to support neural network training on non-ideal analog arrays. (B) Computational complexity for Mini-Batch Gradient Descent (MBGD),
streaming batch principal component analysis (PCA), and non-negative matrix factorization (NMF), as well recomposition methods – rank summation (rank-sum) vs.
rank-by-rank update (rank-seq). The respective eigenvectors are color coded.

indicators, such as device yield, read noise, and retention also
impact their practical applicability (Gokmen and Vlasov, 2016;
Lin et al., 2019).

Memristor-Based Neural Network
Training
A memristor crossbar can efficiently implement vector matrix
multiplication using Ohm’s law for the input voltage to synaptic
weight conductance multiplication and Kirchhoff’s law for the
addition of the resulting currents. Together, these principles
give rise to a vector dot product, which is the fundamental
operation needed for fully-connected neural network layers
(Prezioso et al., 2015). However, memristor non-idealities make
the training process difficult (Adam et al., 2018). Therefore, the
classification accuracies of in-situ training using non-volatile-
memory hardware have generally been less than those of
software-based training.

Several approaches have been used to mitigate these
memristor device non-idealities. At the software level, binary
neural networks (Chen et al., 2018) can use the devices as
ON/OFF switches to reduce the impact of variability and
conductance quantization. Alternatively, stochastic networks can
exploit inherent cycle-to-cycle variability (Payvand et al., 2019;
She et al., 2019). At the hardware level, more complex multi-
memristor cells can be used (Boybat et al., 2018) to overcome

asymmetry, limited bit precision and device variability at the
expense of increased hardware overhead. Feedback circuitry
can also be used to set the device to a well-defined value and
mitigate the cycle-to-cycle variability of the devices (Serb et al.,
2015). These solutions can be similarly applied to other types
of emerging non-volatile memory technologies such as phase-
change memory (Kim et al., 2019), magnetoresistive memory
(Hirtzlin et al., 2019), ferroelectric-based memories (Berdan et al.,
2020), among others.

A recent solution proposed by Ambrogio et al. (2018)
has shown that batch analog systems can achieve equivalent
training performance to that of the software but only at
the costs of doubling the memory and exerting additional
efforts in closed-loop training. Their proposed accelerator
uses an analog short-term memory based on capacitors and
transistors for fast and highly linear programming during
training with only infrequent transfer to an analog long-term
memory based on phase changes. The capacitive short-term
memory is used to correct problems due to the imperfections
in programming long-term phase change memories (Haensch
et al., 2018). This approach, which combines the advantages
of two device technologies, is feasible. However, it relies on
duplicate short-term and long-term memories. Additionally,
any imperfections of the short-term memory also need to
be managed in hardware. A working prototype has not yet
been demonstrated. Nevertheless, understanding how to leverage
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alternative algorithms and architectures is critical since evidence
suggests that certain algorithms, like batch update, are more
resilient to the non-idealities of various devices (Kataeva et al.,
2015; Gao et al., 2020; Gokmen and Haensch, 2020).

Matrix Decomposition Algorithms
Rather than using a duplicative short-term memory, linear
algebra techniques can be used to compress gradient
data and support efficient array-level updates. Principal
component analysis (PCA), a commonly used decomposition
method, projects high-dimensional data into low-dimensional
subspaces. Through computing and analyzing the underlying
eigenspectrum, the variance in the data is maximized. Streaming
PCA (Oja, 1982), streaming history PCA (Burrello et al., 2019;
Hoskins et al., 2019), and streaming batch PCA (Huang et al.,
2020b) were all developed based on the core PCA algorithm.
Streaming batch PCA can extract an approximation of a full
matrix from samples of its contributed parts by combining
bi-iterative stochastic power iterations (Vogels et al., 2019)
with QR factorization to produce low rank approximations of
stochastic rectangular matrices. This method reduces gradient
storage and processing requirements brought by MBGD and is
composed of a batch of randomly generated rank-1 matrices of
forward propagated activations and backpropagated errors.

However, streaming batch PCA has no restriction on the sign
of the data element, so negative values can appear in the matrix
factorization. Even if all the values are strictly positive, such as in
an image, the decomposition may include negative terms. This
oscillatory behavior, while usually harmless, causes challenges
when computation is done at the physical level: for instance,
summation on memristor devices which are not inherently
reversible in their programming behavior. By contrast, the Non-
Negative Matrix Factorization (NMF) algorithm (Paatero and
Tapper, 1994; Wang et al., 2015) calculates the decomposition
by adding the non-negative constraints which results in
additive features.

The NMF decomposition is particularly meaningful when
the gradient information is mapped on a memristor matrix for
physical recomposition. NMF can decrease the overlap between
ranks, eliminating the oscillatory behavior during summation
that exists in a standard PCA decomposition. This is crucial for
devices that do not have a linear and symmetric weight update.

The streaming batch PCA algorithm and NMF decomposition
algorithms will be used in the following sections to approximate
the MBGD gradient and train a fully connected network to
classify MNIST handwritten digits with high accuracy, despite
device non-idealities.

METHOD DETAILS

Streaming Batch Principal Component
Analysis
Streaming batch PCA or SBPCA (Huang et al., 2020b) is used to
decompose the gradient information from MBGD. It compresses
batch data in the neural network training period through rank-k
outer product updates. The streaming batch PCA can expedite

gradient descent training and decrease the memory cost by
generating a stochastic low-rank approximation of the gradient.
Gradient descent reduces the error between the predicted value
of the neural network and the actual value by updating the
parameters to minimize the result of the loss function,

2p = 2p−α ∗ ∇2l,

where 2p is the weight matrix of layer p, α is learning rate, l(2)

is the loss function, and ∇2l =
∂ l(2p)

∂2p
is the gradient.

To extract significant batch gradient data, average out the
noise due to non-ideal memristor weights, and improve the
network accuracy, a streaming low-rank approximation of ∇̂(k,B)2 l
is obtained by the Streaming Batch PCA. The gradient is
approximated for a batch of size B and the top-k most important
k ranks as follows:

∇̂
(k,B)
2 l = X̂ · 6̂ · 4̂T ,

where X̂ ∈ Rn×kand 4̂ ∈ Rn×k denote the left singular matrix
and right singular matrix, respectively. 6̂ = diag(−→σ ) ∈ Rk×k is
a diagonal matrix, which has on its diagonal the corresponding
singular values −→σ for the top k ranks. In the Streaming Batch
PCA algorithm, the input−→x ∈ R1×m and the error

−→
δ ∈ R1×n

help to update X̂ and 4̂. Based on Oja’s rule and stochastic
power iterations (Oja, 1992; Huang et al., 2020a), X̂ and 4̂ are
updated separately and bi-iteratively in a streaming fashion with
an averaged block size b< B, followed by re-orthogonalization via
QR factorization. Our QR factorization is defined to have non-
increasing values on the diagonal of the R matrix. For updating
X̂, we use

X̂← QR

[
i

i+ 1
· X̂ +

1
i+ 1

·
x̂T δ̂4̂6̂

−1

b

]
,

where i
i+1 represents the convergence coefficient and X̂ decays

with each QR factorization, running from i = 1 until reaching
i = B/b. The update of 6̂ is similar,

6̂←
i

i+ 1
· 6̂ +

1
(i+ 1)

∑
rows

(̂xX̂)
⊙(

δ̂4̂
)

b
,

where
⊙

is the Hadamard (elementwise) matrix product.
From the standpoint of computational complexity, Streaming

Batch PCA with k-ranks requires 4Bk(m+n)+B
b ·4k(m+n)

floating point operations (FLOPs) where B
b ·4k(m+n) is for the

batch size (B) / block size (b) times QR factorizations. Overall,
the complexity tends to scale as k(m+n), leading to an overall
reduced computational load as compared to MBGD. However,
the recomposition complexity scales as kmn, What this means
is that recreating the approximation of the gradient is more
computationally expensive than getting the most important
eigenvectors making the recomposition calculation the most
expensive part the algorithm.

Non-negative Matrix Factorization
The Non-Negative Matrix Factorization (NMF) (Lee and
Seung, 1999) algorithm decomposes a non-negative matrix into
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two non-negative left and right matrices X̂ ∈ Rm×k
+ and 4̂ ∈

Rk×n
+ , respectively.

However, the gradient ∇2l is not non-negative. This is why
in our NMF algorithm, we first start with a batch size B
approximation of ∇2l, and then use the rectified linear unit
(ReLU) activation function to restrict the sign of gradient ∇2l
by its unilateral inhibition feature, whereby ReLU(v) = max(v,
0). The goal is to approximate the positive and negative parts
separately with two sets of k-rank matrices such that ∇̂lP =
X̂P · 4̂P and ∇̂lN = X̂N · 4̂N . Four random matrices X̂P, X̂N ∈

Rm×k
+ and 4̂P, 4̂N ∈ Rn×k

+ are randomly initialized from a
Gaussian distribution at the beginning of training with a standard
deviation calculated from the root of the mean values of the
gradient over the rank k,

√
∇2lP

k and
√
∇2lN

k . Then, we use a
modified version of the Fast HALS (Hierarchical Alternating
Least Squares) (Cichocki and Phan, 2009) algorithm to alternately
update the left and right matrices. To do the minimization, we

assume a pair of loss functions of the form 1
2 ||∇2l(k)P −X̂Pk4̂

T
Pk||

2
F,

where k is the rank and F is the Frobenius norm, with one
loss function for the positive matrix and a similar one for
the negative matrix. This product of the left (X̂Pk) and right
(4̂T

Pk) matrices best approximates the non-negative gradient
when these loss functions are minimized. During the non-
negative part iteration update, the quantities X̂T

P X̂P and 4̂P4̂
T
P

are calculated. The diagonal matrices DX ← Diag(X̂T
P X̂P)

−1

and D4 ← Diag(4̂P4̂
T
P )
−1 are calculated to scale the updates

(Cichocki et al., 2009). Similar quantities are calculated for X̂N
and 4̂N . With this basic framework in mind, we can iteratively,
for as many as P cycles, update the positive (or negative)
decomposition by

X̂P ← ReLU(X̂P + (−X̂P4̂P4̂
T
P +∇2lP4̂T

Pk)D4), and

4̂P ← ReLU+ (4̂P + (−4̂PX̂T
P X̂P +∇2lPX̂Pk)DX)).

The number of iterations, P, will depend on the desired level of
convergence as well as the initialization. The number of iterations
can be reduced by streaming the current best estimates for
X̂P, 4̂P and X̂N, 4̂N from batch to batch after the first random
initialization, as we do in our case. In this work, we explored
using a fixed, 200 iterations to understand the impact of NMF
factorization on training. We also studied doing these operations
with one iteration to see how streaming would impact training,
see Section 3 and Supplementary Figure 2.

After convergence, the new left gradient matrix ∇̂lP = X̂P ·

4̂P and right matrix ∇̂lN = X̂N ·4̂N would be generated. At the
end, the low-rank matrix approximation is ∇̂(k,B)2 l = ∇̂lP−∇̂lN .
It is important to understand that, while this method produces
a potentially optimal and non-oscillating decomposition, it
still relies on summing and reconstructing the batch gradient.
This makes it much more computationally complex than the
Streaming Batch PCA algorithm. However, its memory overhead
could be improved and its hardware mapping will be explored
in the future. For this work, we are primarily interested in the
impact of the decomposition on training.

Assuming the sequential least squares minimization
(e.g., HALS) is done in p iterations, the FLOPs required
for NMF scales with 3mn+ 2mk+ 2nk+ 2mnk (n−1)+
2p
(
k2( (m+ n)2−m−n

)
+mnk (m+ n−4)+ 4k (m + n + 1

2 ).
The

(
k2( (m+ n)2−m−n

)
+mnk (m+ n−4)+ 4k(m+ n+

1
2 )) calculations are for the X̂P and 4̂P or X̂N and 4̂N updates
in one iteration. As noted previously, the overall computational
complexity scales as k2(m+n)2 making it at this time more
computationally complex than MBGD. However, should this
performance be improved, it would be very advantageous since
the NMF algorithm has a better performance when training
networks rank-by-rank, or using the rank-seq operation as
discussed below.

Rank Gradient Recomposition Methods
The contrast between the oscillatory behavior of the streaming
batch PCA and the additivity of the NMF decomposition
methods becomes significant when considering the memristor
weight updates in hardware. How these updates are performed
is important for understanding the choice of algorithm on
performance. One option is to do gradient summation across
the ranks of interest outside the analog memory crossbar array
before transfer. During training, individual samples are used to
update the compressed k-rank representation of the gradient
∇̂
(k,B)
2 l based on the calculated X̂, 6̂, and 4̂. At the end of a

training batch, the gradient is recomposed and then added to
the matrix in total ∇̂(k,B)2 l = X̂ · 6̂ · 4̂T by sequentially updating
each weight one by one. We call this approach the rank-sum
update and summarize it in Figure 2.

However, rank-sum is inefficient since (a) the data must be
multiplied out and summed on the array and (b) the data
must be transferred one by one into each of the individual
memristor devices. The estimated computational complexity of
this operation, as noted in Figure 1, is 2kmn. A more efficient
implementation for pipelining requires the gradient summation
inside the array using the update properties of the memristor
devices. After producing an approximation of the gradient, the
weight matrix is updated rank by rank, and the gradient is
summed on the memory devices using outer product update
operations. Outer product operations can be done in multiple
ways, either using pulses on the rows and columns (Kataeva
et al., 2015; Gokmen and Vlasov, 2016) or by relying on an
exponential dependence on the applied bias on the rows and
columns to multiply out the gradient (Kataeva et al., 2015). Outer
product operations restrict the updates, because of the limited
row/column access, to rank-1 updates. Consequently, ∇̂(j,B)2 l is
a rank-1 matrix for the jth rank from the matrix product for
the column j in X̂, 6̂, and 1̂ : ∇̂(j,B)2 l = X̂m,j6̂j1̂

T
n,j. The column

number is less than or equal to rank k. Unlike the rank-sum
method, the rank-seq method does not pre-sum ∇̂(k,B)2 l for all
the ranks k. The matrix ∇̂(j,B)2 l is used to calculate the necessary
updates for rank j to be transferred to the memristor matrix
where the gradient is recomposed at the physical level. We
call this method the rank-seq update and show its principles
in Figure 3.
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FIGURE 2 | Transfer principle of the gradient approximation information to the memristor array for the rank summation outside the array (rank-sum). The training
co-processor would have to support rank-k gradient recomposition, thus increasing the hardware overhead.
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FIGURE 3 | Transfer principle of the gradient approximation information to the memristor array via rank-by-rank (rank-seq) transfer. The gradient recomposition can
be done by physical summation of rank-1 updates at the array level, thus reducing the hardware overhead for the training co-processor.

It is worth pointing out that in a traditional floating-point
software implementation, the two algorithms are equivalent
within rounding error. However, when the gradient information
needs to be transferred to a non-ideal memristor circuit, the
two methods differ. Rank-sum updates the gradient information
to the memristor crossbar only once, while the rank-seq needs
k updates for k ranks. Updates to non-ideal memristors are
accompanied by a loss in gradient precision, which is the
reason that rank-seq to be expected to have lower accuracy

than rank-sum for non-overlapping ranks. However, rank-seq
is more efficient since it requires less digital computation and
hardware overhead.

Stochastic Rounding
As part of the gradient transfer, the accuracy of the quantization
of the weight update is also investigated in relation to the
device properties. Although in theory the memristor has analog
programmability to any desired state between the ON and the
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OFF, the device in practice has low bit precision. The reason
for low bit precision is that each state can naturally decay
and can be impacted by reading disturbs or be impacted by
the programming of neighboring devices (Lin et al., 2019).
Therefore, the number of conductance levels reliably accessible
and distinguished from each other is limited. This quantization of
the weight update introduces errors due to the lower bit precision.
Since the memristor conductance change is related to the number
of applied pulses (an integer), the respective weight modification
needs to be rounded appropriately to a lower bit precision.
Rounding-to-nearest is the method commonly used (Chen et al.,
2017). However, it seems to cause a premature conversion to sub-
optimal accuracies at higher batch sizes due to small gradients
and low bit precision causing delta weight approximation to zero.

In this work, stochastic rounding is investigated instead to
overcome this quantization error vanishing gradient issue in
limited precision weights. Stochastic rounding, proposed in the
1950s and 1960s (Forsythe, 1950; Barnes et al., 1951; Hull and
Swenson, 1966), can be particularly useful in deep network
training with low bit precision arithmetic (Gupta et al., 2015).
A real value r which lies between floor value (r1) and ceiling
value (r2) is stochastically rounded up to r2 with probability
(r-r1)/(r2-r1) and down to r1 with probability (r2-r)/(r2-r1).
The average error of this rounding method is zero, since the
expected value of the result of stochastically rounding r is r
itself. Using this stochastic rounding method, some of the sub-bit
information that is discarded by a deterministic rounding scheme
can be maintained.

RESULTS

Network Structure and Simulation
Environment
A multi-layer perceptron to be trained on the MNIST dataset
is chosen. It has high software accuracies and weight matrices
map directly to memristor crossbars, making it suitable for
exploring device-algorithm interactions. The impact of the
proposed methods can be quantified without any interfering
effects from a training optimizer, potentially unoptimized deep
network or an overly challenging dataset. The network structure
is 400 (input layer) - 100 (hidden layer) - 10 (output layer). The
hardware mapping and training on the MNIST dataset is available
in NeuroSim V3.0. NeuroSim V3.0 is an open-source integrated
simulation framework based on C++ for benchmarking synaptic
devices and array architectures via system-level learning accuracy
and hardware performance indicators (Chen et al., 2017). As part
of this work, modules for MBGD, streaming batch PCA and NMF
as well as two weight transfer methods: rank-sum and rank-seq
were implemented and integrated with the existing NeuroSim
V3.0 capabilities.

The algorithmic flow between the modules and the device
models used are shown in Figure 4.

The gradient information obtained during backpropagation
is decomposed according to the desired method. The desired
weight update is calculated in the form of pulses to update
the conductance in hardware. This paper uses the ideal

device model and the non-ideal (real) device model with
the 1T1R configuration of NeuroSim V3.0 to avoid leakage
effects. The ideal device model assumes a reproducible linear
relationship between the applied number of pulses and the
obtained conductance (Figure 4B). In the non-ideal device
model, there is non-linearity between the applied pulses and
the conductance, which leads to imperfect weight programming
and variability in the operation. The nonlinearity values for long
term potentiation (LTP) and long term depression (LTD) are
2.40 and−4.88, respectively. The cycle-to-cycle variation is 3.5%.
This stochasticity is sufficiently large that sending an “increase
weight” pulse can even randomly lead to a “decreased weight”
and vice versa (Figure 4C). Other hardware parameters are the
default values of NeuroSim, for example, the read noise is 0,
and the minimum and maximum conductance are ∼3nS and 38
nS, respectively. These default values are extracted from fitting
experimental weight update data derived from Ag:a-Si devices
(Jo et al., 2010; Chen et al., 2017). For this work, a device
with 500 levels is assumed (approximately 9-bit precision). Each
change in level is assumed to correspond to one update pulse,
with 500 pulses ultimately putting the device in the fully OFF
or fully ON state.

Rounding Effects of the Weight Update
Figure 5 shows the training on the MLP network with software
(64-bit floating-point precision), ideal memristor device (500
levels, 9-bit) and real device model (500 levels, 9-bit with
cycle-to-cycle variability and non-linearity). The MNIST testing
accuracies in the regular round-to-nearest truncation vs. the
stochastic truncation is determined across various batch sizes
in a logarithmic search of the learning rate domain. It can be
observed that a network implemented with limited precision
memristor devices, but no other non-idealities, achieves SGD
accuracy 96.5% similar to a traditional software floating-
point implementation. However, the quantization of the weight
update shrinks the learning rate window dramatically. Whereas
the floating-point implementation can achieve an accuracy >
95% for any learning rate between 0.001 and 1, the low
precision memristor-based network can only train with a
learning rate between 0.1 and 1 (Figure 5A). When stochastic
rounding is used, the learning rate window for the quantized
memristor model widens significantly, resembling the floating-
point implementation (Figure 5B). This result highlights the
importance of hyperparameter optimization and hardware-
sensitive rounding in these low-precision networks.

Learning rate optimization was used to obtain these best
accuracy results. The convergence curves for different device
models, different batch sizes, and the two rounding methods
were run for learning rates spanning eight orders of magnitude
from 10−6 (0.000001) to 101.6 (≈ 40). To optimize the search,
this range was explored in logarithmic steps. The learning rates
corresponding to the best accuracy for each test set are plotted
in Figure 5E. As the batch size increased, the value of the
optimal learning rate also increased. The learning rates for the
round-to-nearest method are higher than the stochastic rounding
method, despite their accuracies being similar. This might be due
to the fact that stochastic rounding applied to these limited-bit
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precision systems can still, over many operations in the time
series, on average, keep track of some sub-bit information. The
stochastic rounding applied across the weights in the array can
preserve statistically more gradient information and carry it over
to the next back propagation iterations (Gupta et al., 2015).
By comparison, the round-to-nearest truncation discards such
gradient information.

Overall, it can be observed that the accuracy increases almost
linearly with the log of the batch size for medium batch sizes
(up to 128) for both round-to-nearest and stochastic rounding
(Figure 5F). It plateaus at higher batch sizes converging to the
MBGD floating-point software accuracy for higher batch sizes
(Table 1). For our implementation, the MBGD at large batch
sizes are similarly needed to overcome the gradient noise due
to the non-ideal memristor synaptic weights. These results show

that ideal memristor behavior, while desirable, is not needed on
a single layer perceptron. The effects are likely to be even more
apparent in larger fixed precision networks due to compounding
effects as seen by related work (Gupta et al., 2015). Existing
memristors can be used successfully despite their non-idealities
and neural networks implemented with real memristor models
can achieve software equivalency using appropriate algorithmic
methods for training

Streaming Batch PCA With Ideal vs.
Non-ideal Weights
An in-depth investigation was done to explore how the accuracy
changes with the rank, batch size and transfer method, and the
difference between streaming batch PCA algorithm and full rank
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TABLE 1 | Best accuracy observed between the rounding methods at different batch sizes.

MBGD Rounding-to-nearest MBGD Stochastic Rounding

Synaptic weight B Best LR Best Accuracy (%) Best LR Best Accuracy (%)

64-FP (benchmark) 1 10−0.8 = 0.1585 96.81 Same

Ideal device 1 10−0.2 = 0.6310 96.53 10−0.4 = 0.3981 96.5

Real device 1 10−1.4 = 0.0398 48.17 10−4 = 0.0001 48.45

2 10−1.2 = 0.0631 51.71 10−3.8 = 0.0002 53.34

4 10−0.1 = 0.1000 56.68 10−3.4 = 0.0004 60.28

8 10−0.8 = 0.1585 65.88 10−3.4 = 0.0004 61.13

16 10−0.6 = 0.2512 74.02 10−2.6 = 0.0025 69.34

32 10−0.2 = 0.6310 80.58 10−2.2 = 0.0063 78.24

64 101 = 1.0000 85.50 10−1.6 = 0.0251 83.35

128 100.2 = 1.5849 88.24 10−1.2 = 0.0631 86.49

256 100.2 = 1.5849 87.48 100.2 = 0.2512 88.53

512 100.2 = 1.5849 85.43 10−0.2 = 0.6310 90.06

1024 100 = 1.0000 28.38 100 = 1.0000 91.28

2048 10−0.6 = 0.2512 31.20 100.4 = 2.5119 91.99

4096 10−0.2 = 0.6310 29.99 100.6 = 3.9811 91.93

64-FP 4096 100.2 = 1.5849 93.42 Same

8192 100.2 = 1.5849 90.73 Same

MBGD. Two batch sizes were investigated: 128 and 4096. The
learning rates used for this streaming batch PCA investigation
correspond to the best accuracies obtained by these batch sizes for
MBGD. The decomposition method was applied to both layers at
the same rank. The ranks investigated were 1, 3, and 10.

Figure 6 summarizes the rank-sum results and as expected,
the accuracy of the rank 1 results was lower than that of rank 3
and rank 10 for both batch size 128 and 4096 for both the device
models. The performance for the ideal device model shows that
the performance slightly decrease for MBGD at high batch size.
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However, the performance for non-ideal devices increases with
the batch size. The rank-3 decomposition does seem to perform
well by comparison with MBGD, particularly at the larger batch
size. The convergence performance of rank 10 is at the same level
as that of MBGD for the rank-sum transfer method. Additionally,
with the increase in the rank, the convergence curve tends to
smoothen and converge somewhat faster, achieving the desired
accuracy in≈ 25 epochs. The investigation of the impact of block
size b is included as Supplementary Figure 1.

While the rank-sum weight transfer method works very
well for streaming batch PCA and achieves close to MBGD
performance, its full hardware implementation would be difficult
since the gradient approximation needs to be recomposed
externally prior to being transferred to the memristor matrix. By
contrast, gradient recomposition of rank-seq requires minimal
hardware overhead. The results for rank-seq are summarized in
Figure 7.

For ideal device, the accuracies are similar for both rank-
sum and rank-seq. By comparison, for the non-ideal devices,
accuracies around ≈ 70% are obtained for ranks 3 and 10 at
both batch sizes 128 and 4096. This is 15 to 20 percentage
points lower than the rank-sum and full rank MBGD results.
These results show that the streaming batch PCA using rank-seq
transfer method cannot approximate the MBGD results, even at
high ranks. This is likely because the principal components of
streaming batch PCA can have positive and negative elements,
creating an oscillatory effect due to the programming of the
non-ideal memristive weights (Scholz et al., 2008). This effect is
observed indirectly in the noisy convergence curves.

Streaming Batch PCA With Ideal vs.
Non-ideal Weights
Figure 8 summarizes the rank-sum NMF results for the different
ranks at the two different batch sizes and compares them
with full rank MBGD. For ideal device, the rank 1 has lower
performance, but rank 3 and rank 10 can approximate MBGD
well, particularly at batch size 128. For non-ideal devices, the
NMF can approximate the gradient information fairly well,
particularly at rank 10. Rank 1 has extremely poor performance,
similar to SGD. Rank 3 performs well and can converge, but its
accuracy is still ≈ 5% to 10% lower than the equivalent MBGD
result at the respective batch size. It is also worth noting that a
decline in the accuracies of these lower ranks can be observed
as the training progresses. Higher rank is needed to observe
satisfactory accuracy and training stability. The result of rank
10 was only 1% to 2% lower than that of the MBGD algorithm.
One reason for the high accuracy in the case of rank 10 is that
because the second layer has only 10 neurons, rank 10 is actually
equivalent to full rank training in the last layer, though not in
the first layer.

The results for the rank-seq transfer method applied to NMF
are shown in Figure 9. For the ideal device, the accuracies are
similar to rank-sum as expected. By comparison, for the non-
ideal devices, rank 3 achieves ≈ 70% accuracy at batch size
128 and ≈ 80% accuracy at batch size 4096. For rank 10, the
NMF algorithm performs within 2% to 3% degradation of the

MBGD results for the respective batch size. Overall, the rank-
seq results are similar with the rank-sum ones at the equivalent
rank. This is likely due to the fact that there is minimal overlap
between the ranks for this additive decomposition method
(Lee and Seung, 2000).

Comparison Between the Algorithms
The streaming batch PCA shows the most efficient compression
of the batch gradient information. It obtains better accuracies
than NMF for all ranks and batch sizes when the rank-sum
transfer method is used. Streaming batch PCA rank-sum for rank
10 has an accuracy equivalent to MBGD ≈ 91.5% for batch
size 4096. This result is around 5 percentage points lower than
the traditional 64-bit floating-point algorithmic implementation
for MNIST training at batch size 1 (SGD) which is the target
/ benchmark result for this work. This result, summarized in
Figure 10 and Table 2, shows that decomposition methods in
conjunction with large batch size MBGD training can overcome
memristive synaptic device non-idealities and achieve close to
software-equivalent accuracies.

However, streaming batch PCA has its challenges. The main
problem is that it operates on the eigenspace of the entire synaptic
weight matrix, statistically representing the direction of largest
variance, but there is no clear spatial explanation for negative
numbers. Therefore the transfer of the gradient information into
the memristor matrix by mapping the gradient data to number
of pulses for the update (open loop transfer) is challenging
as principal components can have positive and negative
signs leading to inefficient oscillatory programming. For this
reason, rank-by-rank weight transfer rank-seq underperforms
by comparison with rank-sum for streaming batch PCA. It is
important to point out that oscillatory behavior per se can be
supported by resistive crossbar arrays via successive increase and
decrease in conductance. The devices can be tuned with desired
precision, but it might take very long trains of pulses and it is not
desirable from a speed perspective when using devices with non-
linearity and variability. If positive and negative updates to the
weight are needed in rapid succession, the device programming
becomes very inefficient. Therefore the transfer of the gradient
information into the physical device matrices by mapping the
gradient data to number of pulses for the update is challenging. In
comparison, NMF calculates an approximate matrix factorization
with separate positive and negative gradient information which
causes the updates to avoid overlapping with one another.

By avoiding overlapping ranks, NMF has superior
performance at high ranks by comparison with streaming
batch PCA. For example, at rank 3, NMF rank-seq outperforms
streaming batch PCA rank-seq by ≈ 5%. At rank 10, the gap is
17%. The best rank-seq accuracy is obtained by NMF rank 10
(88.87%) and it is less than 2% lower than the best rank-sum
accuracy obtained via streaming batch PCA at rank 10 (90.65%).
This means in practice that the NMF factorization produces the
set of optimally efficient rank 1 update operations to training
memristor neural networks.

The main drawback of applying the proposed methodology
is related to accuracy. MBGD, particularly at large batch sizes,
has lower accuracy than lower batch sizes (Goyal et al., 2017;
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Golmant et al., 2018). Furthermore, low rank decompositions of
the MBGD gradient information can negatively affect accuracy
when large networks and complex datasets are used for training.
The results of this work show that it is possible to obtain
low rank decomposition accuracies as close as 2% to 3% from
the MBGD accuracies when large batch sizes are used. This
slight penalty in accuracy comes at the potential advantage

of large storage capacity for the network parameters. This
tradeoff needs to be investigated further by taking accuracy
targets, hardware overhead, network layer sizes, and other
hyperparameters into consideration.

However, their full potential can only be explored on
dedicated hardware co-processors. For example, the Streaming
Batch PCA algorithm requires computationally intensive QR
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FIGURE 10 | Comparison of streaming batch PCA and NMF results for rank-sum and rank-seq for a multi-layer perceptron with non-ideal memristive weights at
different ranks and batch sizes. The results show that the streaming batch PCA using rank-sum slightly outperforms NMF rank-sum and can approximate very well
the MBGD results at high ranks. By comparison, NMF rank-seq significantly outperforms streaming batch PCA rank-seq for higher ranks (e.g., 3 and 10) and can
approximate well the MBGD results. For all these experiments, the rounding method is stochastic, batch size = 4096 and block size = 32.

factorization (Huang et al., 2020a). The NMF algorithm
requires explicit calculation of the full batch matrix to
get the separate non-negative components. Optimized NMF
algorithms mappable to hardware co-processors need to
be developed, e.g., streaming variants (see Section 2 and
Supplementary Figure 2). These limitations can be overcome
in dedicated hardware accelerators, e.g., based on systolic arrays.
A discussion of the hardware considerations is included in the
Supplementary Material. Issues related to energy efficiency and
speed need hardware models for the decomposition modules
to be integrated with the existing circuit and device models
as part of a comprehensive design verification framework
(Hoskins et al., 2021).

Applicability and Scale-Up Potential
In general, the proposed algorithms should be broadly applicable
to any family of weights arrays in a matrix where the weights

are trained by gradient descent. These simulation results
highlight the potential of low-rank gradient decompositions
in neural networks using memristor weights and are the first
steps toward training co-processors to support the scale-up
of machine learning models in such hardware. Several recent
works demonstrate the applicability of memristor crossbars to
recurrent and convolutional neural networks (Li et al., 2019;
Wang et al., 2019; Lin et al., 2020). The same decomposition and
implementation principles could be applied to fully connected
recurrent layers. For a convolutional network, the fully connected
layers performing the classification in a deep network can benefit
from these decomposition methods. It is therefore possible to
consider the application of the proposed methods to deeper, more
complex networks.

For spiking neural networks, this property can prove
important since gradient based methods have recently taken on
renewed popularity in the training of such networks, especially
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TABLE 2 | Summary of the best results for different ranks, batch sizes and truncation methods for streaming batch PCA vs. NMF.

Streaming Batch PCA NMF

Data type Rank-sum accuracy (%) Rank-seq accuracy (%) Rank-sum accuracy (%) Rank-seq accuracy (%)

SGD 51.04

MBGD 128 86.49

MBGD 4096 91.94

Batchsize 128Block 32 Rank1 58.60 58.08 24.15 31.02

Rank3 80.04 61.97 71.87 70.06

Rank10 87.30 64.76 83.26 82.03

Batchsize 4096Block 32 Rank1 46.37 43.71 37.38 29.09

Rank3 82.33 64.71 82.15 71.27

Rank10 90.65 71.78 89.93 88.87

Batchsize 4096Block 128 Rank1 37.49 51.84 25.26 26.02

Rank3 81.28 63.80 81.44 76.1

Rank10 90.78 69.52 90.12 89.39

Batchsize 4096Block 512 Rank1 40.30 52.37 18.63 27.37

Rank3 85.31 63.19 76.83 76.10

Rank10 91.03 71.41 90.33 88.17

Rank1 45.29 48.37 27.48 25.69

Batchsize 4096Block 1024 Rank3 84.40 65.81 75.77 77.79

Rank10 91.48 72.10 90.28 89.08

Realistic device model used for all these results.

through the use of surrogate gradient methods (Neftci et al.,
2019). An increasingly common practice, despite the lack of
biological plausibility, is to use mini-batch GPU acceleration
of spiking networks to train them more rapidly (Neftci et al.,
2017; Payvand et al., 2020). While researchers cite that future
hardware will be able to more efficiently train using batch
sizes of 1 (Stewart et al., 2020), this has also frequently been
proposed as the ideal batch size for using memristor-based
artificial neural networks due to the memory overhead associated
with gradient data. However, as shown in this work, low batch
size training leads to catastrophically poor performance and
larger batch sizes are needed to improve training of non-ideal
hysteretic devices.

Our approach to compress gradient based information as
presented here could be an important step toward developing
biologically plausible batch averaging during long term
learning. The methods can be adapted to require only local
neuronal information, thus leading to methods resilient to local
nanodevice non-idealities. Compression algorithms similar to
the ones studied here, e.g., Oja’s learning rule (Oja, 1982), were
initially introduced as biologically plausible means to learn
incoming data. Therefore, they could be used in a realistic way
to efficiently learn surrogate gradients during the training of
spiking neural networks.

CONCLUSION

This paper investigated mini-batch training and gradient
decomposition algorithmic methods to overcome the hardware
non-idealities of memristor-based neural networks. By testing

two different decomposition methods (streaming batch PCA and
NMF) and two different weight transfer methods (rank-sum and
rank-seq) for different memristor device models and ranks, we
showed that the combination of the above methods is a feasible
method for training the fully connected networks implemented
with non-ideal devices via rank 1 updates. Our results indicate
that stochastic rounding can overcome the loss of precision
due to the quantization error from the vanishing gradient issue,
which is of particular importance when it comes to the synaptic
devices of low-bit precision, such as memristors. While the low-
rank decomposition methods both produced accuracies close to
those of full-rank MBGD, the choice of the update method was
particularly significant for the gradient information transfer to
the memristor matrix hardware. Overall, NMF produced a less
efficient compression of the batch gradient than that of streaming
batch PCA. However, we speculate that it was better for the rank-
by-rank transfer to the memristor crossbar since all the gradient
components were additive, thus eliminating the effect of device
update hysteresis, though this needs further investigation. The
rank-seq NMF is more in line with the physical constraints of
memristor synaptic weights and may represent the optimal set
of rank-1 updates that can be used to train a memristor array in
an open loop fashion.

Future work will focus on expanding these results to
deeper networks, including other types of layers, such as
recurrent layers and applicability to spiking neural networks.
In addition, other hardware-aware decomposition methods will
be investigated. This methodology can be applied to neural
networks implemented with other types of non-volatile memory
devices such as phase change memory and flash technology.
Ultimately, the goal is to test these proposed algorithms in full
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hardware implementations in memristor-based accelerators that
demonstrate software equivalency despite device non-idealities.
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