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In the study of perceptual decision making, it has been widely assumed that random
fluctuations of motion stimuli are irrelevant for a participant’s choice. Recently, evidence
was presented that these random fluctuations have a measurable effect on the
relationship between neuronal and behavioral variability, the so-called choice probability.
Here, we test, in a behavioral experiment, whether stochastic motion stimuli influence
the choices of human participants. Our results show that for specific stochastic motion
stimuli, participants indeed make biased choices, where the bias is consistent over
participants. Using a computational model, we show that this consistent choice bias
is caused by subtle motion information contained in the motion noise. We discuss
the implications of this finding for future studies of perceptual decision making.
Specifically, we suggest that future experiments should be complemented with a
stimulus-informed modeling approach to control for the effects of apparent decision
evidence in random stimuli.

Keywords: perceptual decision making, random-dot motion task, Bayesian inference, drift-diffusion model,
model comparison

INTRODUCTION

A key question in perceptual decision making is how the brain rapidly makes decisions to categorize
sensory input. Many different tasks have been used to investigate perceptual decision making
but one that stands out due to its wide-spread use in human and animal experiments is the so-
called random-dot motion (RDM) task (Newsome and Pare, 1988; Britten et al., 1996). The RDM
task is a motion direction discrimination task, usually applied in two-alternative forced choice
settings, where participants must decide about the net motion direction of a cloud of seemingly
randomly moving dots presented on the screen. The RDM task was instrumental in unraveling
many aspects of the underlying neural and behavioral mechanisms of perceptual decision making,
both in humans and animals (see Gold and Shadlen, 2007 for review).

RDM stimuli are usually generated by embedding coherently moving dots in a backdrop of
randomly appearing dots. The fraction of coherently moving dots, measured as the percentage of
all dots presented on the screen, the so-called coherence level, controls the difficulty of the task. It
is an experimental standard to also use a coherence level of 0%, where the stimulus is generated
by using only randomly presented dots. The 0% coherence condition is typically used for specific
experimental reasons, e.g., to control for the effect of trial-to-trial stimulus variation on neural
measurements (Britten et al., 1992, 1996; Bair and Koch, 1996; Cohen and Newsome, 2009) and
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has been used in theoretical studies to model neural or behavioral
responses when there is no net motion evidence (Wang, 2002;
Wong et al., 2007; Wimmer et al., 2015). In these studies, one
typically implicit assumption about 0% coherence stimuli, by
way of their construction, was that the expected net motion
over stimulus presentation time, i.e., the accumulated motion
cues, is zero across the presentation time of the stimulus
(Britten et al., 1993, 1996). When using this implicit assumption,
the concrete random instantiation of a RDM stimulus in a
single trial is considered uninformative about the choice made
by the participant, because the stimulus on average does not
contribute decision-relevant information and thus should not
influence decisions.

This implicit assumption has been supported by a specific
finding about the so-called choice probability. Choice probability
is a measure of how strongly the firing of a single neuron
can predict an animal’s decision. The finding was that
the distribution of choice probabilities across neurons was
comparable in response to 0% coherence RDM stimuli, both
when a specific instantiation of a 0% coherence stimulus
was presented repeatedly and when different 0% coherence
stimuli were presented (Celebrini and Newsome, 1994; Britten
et al., 1996; Cohen and Newsome, 2009). The interpretation of
this observation was that the fluctuations in choices induced
by the stimuli were at least not greater than those induced
by internal neuronal variability. However, recent theoretical
considerations and a re-analysis of data indicate that random
stimulus fluctuations indeed have a measurable effect on choice
probability (Wimmer et al., 2015).

Motivated by these recent findings, we tested directly
whether seemingly random stimulus fluctuations as presented
in 0% coherence motion in a typical RDM task does
influence behavioral choices of human participants, and used a
computational model to test the influence of the stimuli on choice
behavior. Such a finding would show that (i) 0% coherence RDM
stimuli can only serve as an approximation to a control condition,
relative to conditions of coherently moving stimuli, and (ii) it may
be useful to use computational models of within-trial decision
evidence dynamics to better understand the mechanism of how
stimulus details and expectations of the human decision maker
interact, at the single trial level.

In our study, identical replicates of incoherent RDM stimuli
were presented to human participants, where participants did not
realize that these stimuli were repeated. Under the assumption
that the stimuli provide no decision-relevant information,
participants should exhibit no preference for either of the two
choices across repetitions of the same 0% coherence stimulus.
In contrast, we found that there are specific instantiations of 0%
coherence level RDM stimuli for which, both on an individual
and group level, there was a consistent choice pattern, i.e., a
preference for one of the two choices. Using computational
modeling, we found that these behavioral responses can be
best explained by a model which is informed about the
exact spatiotemporal details of the 0% coherence level stimuli.
Previously, several studies have successfully used a motion energy
algorithm to model the participants’ responses using information
extracted from the RDM stimuli (Jazayeri and Movshon, 2006;

Zylberberg et al., 2012; Insabato et al., 2014; Urai et al., 2017).
Here, we used a rather simple dot-counting algorithm that
extracts the time-dependent spatiotemporal stimulus features
from the movement of group of individual dots in the
RDM stimuli. Our results indicate that the high-performing
participants used random stimulus features to make consistent
decisions across repetitions of the same stimulus. In addition, for
specific stimuli the amount of stimulus information used by the
model correlated with the response consistency of participants.
Our results suggest that if these stimuli are to be used in an
experiment, one should control for the presence of decision
relevant information in these stimuli. A viable alternative to
controlling stimulus features is to use computational modeling
to quantify and predict which information is used by participants
to make decisions. Such an approach holds promise for future
experiments, where computational models are used to fit
behavior at the single trial level to better quantify the interactions
with neuronal activity (Kiani et al., 2008; Brunton et al., 2013;
Urai et al., 2017).

RESULTS

Motion Discrimination Task
After successfully completing a training phase (see section
“Materials and Methods” for details), 44 human participants
took part in a reaction-time motion discrimination (RDM)
task. The main phase of the experiment consisted of 800 trials,
which were identical for each participant, but were presented
to each participant in a randomized order. There were four
difficulty (coherence) levels: 240 trials with 0% coherence level,
which were randomly interleaved among 560 trials of lower task
difficulties, i.e., non-zero coherence levels (10%, 25%, and 35%
coherence) with 240 trials for 10% coherence and 160 trials for
25% and 35% coherence each. For the 0% coherence level trials,
we used identical replicates of fixed spatiotemporal patterns of
noise (stimulus types) in the stimulus. Specifically, we used 20
identical replicates of 12 different stimulus types which were
randomly interleaved between trials of higher coherence levels.
These 12 stimulus types were chosen during a pilot experiment
in which 32 randomly sampled stimulus types were presented
to 26 participants within 0% coherence trials in different pilot
runs. Of these 12 chosen stimulus types, six stimulus types were
selected as they induced consistent responses in at least 50% of
participants in the respective pilot run. Therefore, we estimate
that one can find stimuli that induce consistent responses with
a frequency of approximately 20% (6 out of 32), see section
“Materials and Methods” for details of the selection of stimulus
types. The other six stimulus types were selected as controls
because they did not create considerable response consistency
across participants in our pilot experiment. In Figure 1A we
show the time-course of a single trial. A trial started with a
fixation cross being shown for duration between 300 and 500 ms.
Afterward, random dots appeared at the center of the screen with
the fixation cross remaining through the trial. The stimulus was
presented until the participant reported the decision by pressing
one of two buttons (right or left) on the keyboard, but maximally
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for 2 s. If the participant failed to respond during this period, the
trial timed-out and the next trial started with 2 s delay between
trials. Participants were instructed to make accurate and fast
responses, and received a monetary reward based on high overall
accuracy and low average reaction times (see section “Materials
and Methods” for a detailed description of stimulus construction
and the experimental design).

Behavioral Results
In Figures 1B,C we report the behavioral results of the
experiment across all difficulty levels. As expected, the accuracy
for non-zero coherence levels decreased for higher difficulty
(Figure 1B) while RT increased (Figure 1C). The mean
proportion correct (non-zero coherence level) over participants
varied between 0.97 (standard deviation, SD = 0.04) at the 35%
coherence level and 0.81 (SD = 0.10) at the 10% coherence level.
The proportion of rightward responses at the 0% coherence level
was 0.48 (SD = 0.12) (Figure 1B). The average median RTs varied
between 616 ms (SD = 126 ms) at 35% coherence and 1,153 ms
(SD = 281 ms) at 0% coherence (Figure 1C). The proportion of
time-out trials was on average 0.04 (SD = 0.05) at 0% coherence,
0.01 (SD = 0.02) at 10% coherence and was below 0.01 at 25
and 35% coherence.

Response Consistency for 0%
Coherence Stimuli
Here, we show that, in response to some specific 0% coherence
stimuli, participants made behavioral choices that were consistent
on the individual and group level. To do this, we first define
response consistency (RC) as a measure to quantify the tendency
of a participant to respond for each alternative (right or left)
more than usual given a particular stimulus type. The RC
values are computed as the fraction of right responses of each
participant given each stimulus type minus the overall bias of
the participant across all trials for the right response; a RC = 0
indicates no response consistency, i.e., no tendency for left
or right responses given that stimulus type, whereas RC∈(0,1]
indicates the tendency for choosing the right alternative (when
RC = 1, the participants always gave a right response), and
RC∈[−1,0) indicates the tendency for choosing the left response
(when RC =−1, the participant always chose the left response, see
section “Materials and Methods” for details of RC computation).
In Figure 2 we show the map of RC values for each of the 44
participants and each of the 12 stimulus types. The higher the
absolute RC value the higher the tendency of a participant to
choose right (RC > 0) or left (RC < 0) alternatives for a specific
stimulus. Across all stimulus types and participants, we could
not find evidence for the hypothesis that RC values on average
differed from 0 (two-tailed t-test, p = 0.78).

To formulate the significant response consistency of a
participant given a stimulus type, we used the two-tailed
binomial test. Our null hypothesis was that the participants’
expected probability of choosing right alternative given each
stimulus type is equal to their overall response bias i.e.,
the probability of choosing the right alternative given any
stimulus type. If the two-tailed binomial test with such expected

probability resulted in a p-value smaller than 0.05, we rejected
the null hypothesis and concluded that the participant has a
significant consistent response toward one alternative (see section
“Materials and Methods” for details). Figure 2 shows that after
multiple comparison correction for the 12 stimulus types and
44 participants, more than 20% of overall responses of 44
participants to 12 stimulus types are consistent (highlighted by
yellow circles).

Furthermore, we found that for five out of the 12 stimulus
types most participants tended to give (the same) consistent
response, i.e., a consistent rightward response for stimulus types
3 and 9, and consistent leftward responses for stimulus types
1, 4, and 6. To quantify this difference in group-level response
consistency between stimulus types more formally, we conducted
k-means clustering of the absolute average RC values for each
stimulus type. The k-means clustering algorithm identified two
clusters of stimulus types (see Figure 3): Cluster 2 stimulus types
(stimulus types 1, 3, 4, 6, and 9 identical with the consistent
stimulus types identified in the analysis on the individual level) to
which the participants, on the group-level, made more consistent
responses than on average. Cluster 1 stimulus types consisted
of the remaining stimulus types that participants responded less
consistently to on average.

Computational Modeling of Consistent
Responses
Our behavioral analysis has shown that participants respond
more consistently to some stimulus types than to others
(Figure 2). One possible source of response consistency is
the presence of specific information in the 0% coherence
stimuli that participants might perceive within each trial.
To investigate the underlying mechanisms of the consistent
responses for the 0% coherence stimulus types, we used a
computational model that accounts for the response behavior
of the participants using time-dependent stimulus information
(measure of random stimulus fluctuations that represent the
motion toward one alternative). Further, we used Bayesian
model selection to compare the model that incorporates the
exact stimulus information against the one using average
stimulus information.

We tested, using model comparison, whether there is a
systematic relationship between the presence of such motion
cues and the experimentally measured response consistency, as
indicated by Figure 2. We used the behavioral data (both choices
and reaction times). The first model was a discrete time version of
the well-established drift diffusion model (DDM) (Ratcliff, 1978;
Ratcliff and McKoon, 2008). The second model was an adapted
DDM version where the model was informed about the trial-
wise coherent motion cues in the sensory stimuli. To measure
coherent motion cues, we counted dots that indicated a coherent
movement in one of the two motion directions within a small
time window. In the following, we call this second model the
Exact Input Model (EXaM) (see section “Materials and Methods”
for detailed description of the dot count measure methods and
the models). If we find that this second model explains the
observed behavioral data better, according to Bayesian model
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FIGURE 1 | Experimental design and behavioral results on group level. (A) a fixation cross was shown for a variable duration between 300 and 500 ms. After this
fixation period, a cloud of ∼40 dots appeared within an aperture of 12 degrees on the center of the screen. In each trial, a proportion of all dots shown, as indicated
by the coherence level, were moving toward the direction (right or left) indicated by the trial-wise target alternative. The remaining dots were displaced randomly
within the aperture. Dot positions were updated every 16 ms. The trial ended when the participant makes a decision (button press) or a maximum of 2,000 ms has
elapsed from the onset of the first frame of dots. The task was to decide into which of two directions the dots were moving (left or right). (B) Proportion correct (or
proportion of rightward responses for 0% coherence stimuli) and (C) median RT averaged over all 44 participants for the four coherence levels (0%, 10%, 25%, and
35%). Error bars indicate the standard deviation across all participants, excluding the timed-out trials.

selection, this is further evidence that the exact dot stimuli are
actually used by participants when making their decisions.

We estimated the parameters of the DDM and the EXaM using
a Bayesian inference technique called Expectation propagation-
Approximate Bayesian Computation (EP-ABC) (Barthelmé and
Chopin, 2013). We used 10 free parameters for both models,
similar to the standard DDM but adapted to the present
experiment: The (1) mean scale parameter sc1 for the subset
of trials in which Cluster 1 stimulus types were presented
and (2) the mean scale parameter sc2 for the trials of Cluster
2 stimulus types (cf. Figure 3). The mean scale parameters
represent the average proportion of the evidence adapted from
the trial-wise stimulus information. We fitted two mean scale
parameters to test whether there are any motion signals in

the Cluster 2 stimulus types, relative to Cluster 1, that cause
consistent responses across participants, (3) the scale parameter
standard deviation σsc, (4) the bound parameter B, which is
the threshold of accumulated evidence to commit to a decision,
(5) The mean z0 and (6) standard deviation sZ of participant-
specific bias for an alternative, (7) the mean Tnd and (8) the
standard deviation st of the non-decision time i.e., the portion
of the RT which is different from the decision process (i.e.,
perceptual encoding, motor preparation), (9) lapse probability
πl: the proportion of trials leading to a random response, and
(10) timed-out lapse probability πto: the proportion of timed-out
trials within lapse trials. We inferred the parameters of the DDM
and the EXaM from the behavioral data (choice and response
time for each single trial) separately for each participant and
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FIGURE 2 | 0% coherence trials: Response consistency (RC) map across 44 participants and 12 stimulus types. Positive RC values (red) report the tendency of a
participant to choose the rightward direction, whereas the negative RC values (blue) report the tendency for the left direction. Yellow circles indicate significantly
(p < 0.05, corrected for number (12) of stimulus types) consistent right (dark-red) and left (dark-blue) responses of a specific participant, across up to 20 repetitions
of a specific stimulus type. One can clearly see that for stimulus types 1, 3, 4, 6, and 9 (indicated by an asterisk), most participants have mostly the same consistent
responses, e.g., we see mostly red colors for stimulus type 9, i.e., the participants tend to respond right more than they do overall.

for each of the four coherence levels (see section “Materials and
Methods” for details).

Model Comparison (Exact Input Model vs. Drift
Diffusion Model)
Here, we focus on a model comparison question: does equipping
a DDM-like model with the motion cues makes it a better model
to explain the behavioral data? In other words, is the EXaM a
better model to explain the participants’ responses at the 0%
coherence level than the DDM? To address this question, we
formally compared the two models using a two-way Bayesian
model comparison (Penny et al., 2010).

We computed the protected exceedance probabilities and
model frequencies (i.e., posterior model probabilities) (Stephan
et al., 2009; Rigoux et al., 2014) based on the model evidences
estimated by EP-ABC (see Figure 4). We found evidence that the
EXaM explains the responses of the participants better than the
DDM. The protected exceedance probability (Figure 4A), i.e., the
belief that the EXaM is across all participants a better model of
the data than the DDM, was around 76%. The model frequency
(Figure 4B), i.e., the probability that the EXaM generated the data
for any randomly selected participant, was around 69%.

As a control analysis, we also conducted the same model
comparison for the behavioral data of higher coherence levels
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FIGURE 3 | Categorization of stimulus types based on absolute average response consistency (RC) values. Using the absolute of the RCs averaged across
participants, we used K-means clustering to categorize the twelve 0% coherence stimulus types according to consistency averaged over participants. Cluster 1
(Orange) contains seven stimulus types for which participants made responses that are less consistent than the average (red dashed line). Cluster 2 contains the five
stimulus types to which participants responded more consistently than on average.

FIGURE 4 | Results of random-effects Bayesian model comparison between DDM and EXaM for 0% coherence across 44 participants, (A) Protected exceedance
probability (probability that a model is the best model for all participants). The red dashed line indicates very strong evidence for a model (0.95). (B) Model frequency,
i.e., the probability that a randomly selected participant’s behavior is best explained by the specific model. The red dashed line represents chance level and error
bars indicate the standard deviation of the estimated model frequencies.

(10%, 25%, 35% coherence) (Supplementary Figure 1). As
expected, at higher coherence levels, the EXaM was not a better
model than the DDM in explaining the behavioral data.

Differences in Parameter Values (Exact Input Model
vs. Drift Diffusion Model)
To understand which model parameters cause the EXaM to
outperform the DDM in explaining the behavioral data, we
computed the means of the posterior parameter distributions (see
Table 1 for 0% coherence level, Supplementary Table 1 for higher
coherence levels) for the two models. We hypothesized different
mean scale parameter estimates for Cluster 2 stimulus types (sc2)
for the EXaM as compared to the DDM, but not for Cluster 1

stimulus types (sc1). When comparing posterior means, we found
two main differences: the EXaM, in comparison to the DDM, had
(i) a higher mean scale parameter sc2 for Cluster 2 stimulus types,
and (ii) a higher (more neutral) mean bias parameter, z0. Also,
the EXaM had significantly higher posterior mean estimates of
the variability of the scale parameter σsc compared to the DDM.
However, the effect size is rather small.

Source of Response Consistency
We have shown that the participants made consistent responses
for Cluster 2 stimulus types and that the EXaM which was
informed about the precise spatiotemporal stimulus features
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TABLE 1 | Mean of the average posterior parameter distributions for the DDM and
EXaM for 0% coherence across 44 participants.

Parameters DDM EXaM

0% 0%

sc1 0.02 (0.005) 0.01 (0.003)

sc2 0.01 (0.003) 0.037** (0.005)

σsc 0.05 (0.001) 0.053** (0.001)

B 0.05 (0.002) 0.05 (0.002)

z0 −0.13 (0.030) −0.025** (0.028)

sZ 0.02 (0.000) 0.02 (0.000)

Tnd 0.81 (0.049) 0.79 (0.046)

st 0.63 (0.054) 0.59 (0.046)

πl 0.07 (0.016) 0.06 (0.013)

πto 0.34 (0.023) 0.34 (0.024)

Shown are the means over participants and the corresponding standard error in
parentheses. The mean bias (z0) and variability of bias (sZ) are both in terms of
proportions of the bound (B) (ranging from −1 to 1). A mean bias of 1 indicates a
complete bias toward the right choice and −1 a complete bias toward the left one.
Asterisks indicate a significant difference between DDM and EXaM parameters for
each condition (**p < 0.01, based on a paired t-test over 44 participants). See
description of the EXaM in section “Materials and Methods” for the meaning of
parameters.

explained the behavioral data better than a DDM-equivalent
model. These findings indicate that the participants’ consistent
responses to 0% coherence stimulus types are driven by motion
cues in the sensory stimuli. If this is the case, we would expect
that this effect can be even more strongly observed if the
participants are motivated and attentive to the task, i.e., to the
fine spatiotemporal details of the stimuli.

To test this, we contrasted (i) the scale parameter estimates
as determined by the EXaM for high and low-performing
participants. To classify participants’ performance, we used their
overall task performance in the non-zero coherence levels,
i.e., proportion correct in 10%, 25%, and 35% coherence
levels. We defined two groups of participants with (1) the
25% low-performing participants, and (2) the 25% high-
performing participants (both groups have 11 participants), see
Supplementary Figure 2. As this was the selection criterion, the
high-performing participants had a higher proportion correct in
all non-zero coherence levels (Supplementary Figure 2A, t-test,
p < 0.001). Interestingly, the high-performing participants also
had significantly faster median RTs at higher coherence levels
(25% and 35% coherence levels) (Supplementary Figure 2B,
t-test, p < 0.01). This indicates that these participants
were indeed more motivated to do the task, as opposed
to just increase accuracy by sampling for a longer decision
time. Note that, at the 0% coherence level, we cannot
compare the proportion correct between high- and low-
performing participants because the correct alternative is
undefined. Strikingly, when using a regressing analysis for
the non-zero coherence level, we found a correlation between
proportion correct and the average absolute value of response
consistency in 0% coherence trials (Supplementary Figure 3,
linear regression Eq. 2, R = 0.35, p < 0.05). This means
that the more accurate, on average, the participants are
in their decision in non-zero coherence trials, the more

consistent they are, on average, in response to 0% coherence
level stimulus types.

We also compared models between the high- and low-
performing participants, i.e., is the EXaM also the better model,
compared to the DDM, in explaining the responses of these
two groups of participants? We compared the DDM and EXaM
using 2-way Bayesian model comparison for both groups of
participants (high- and low-performing) (Figure 5). We found
strong evidence that the EXaM better explains the responses of
high-performing participants but not so for the low-performing
participants. In high-performing participants, the protected
exceedance probability was over 93% for EXaM and the model
frequency was 88% (Figure 5A). In contrast, for low-performing
participants, the protected exceedance probability was 59% for
the EXaM and the model frequency was 64% (Figure 5B). These
results suggest that the EXaM is the better model (Figure 4)
mainly because of the high-performing participants.

Differences in Exact Input Model Parameter Values
(High- and Low-Performing Participants)
Is there any difference between the estimated parameters of
the EXaM for the participants who are high-performing in the
RDM task compared to participants who are not? There was no
significant difference between the two groups of participants for
the mean scale values for both Cluster 1 and Cluster 2 stimulus
types, but we found that the high-performing participants had
a higher mean scale value compared to the low-performing
participants for Cluster 2 stimulus types (sc2) (see Table 2). This
difference was, however, not statistically significant (p = 0.068)
which may be explained by the rather low number of participants
(N = 11 for both high- and low-performing participants). These
results suggest that the model uses the mean scale parameter to
explain the behavioral data for the high-performing participants
for Cluster 2 stimulus types.

The Relationship Between Response Consistency
and Scale Parameter
We further evaluated, using regression analysis, whether there
was a linear relationship between the estimated mean scale values
and the average response consistency, over all 44 participants. We
conducted our regression analysis for sc2 and average absolute
RC across trials containing Cluster 2 stimulus types. Indeed, our
results show that the estimated sc2 values for 44 participants
increased with the average absolute RC across Cluster 2 stimulus
types (Figure 6, linear regression Eq. 2, R = 0.34, p < 0.05). This
means that the more consistent the participants in their responses
to Cluster 2 stimulus types, the higher the sc2 parameter the
EXaM used to explain the behavioral data. We have found a
considerable difference between the slope of the regression line
representing the relationship between estimated sc2 values and
average absolute RC across Cluster 2 stimulus types for high-
performing (0.146) comparing to the similar slope for the low-
performing participants (0.048). Although the regression analysis
did not show a significant relationship between the above-
mentioned variables for neither high-performing participants
(R = 0.48, p = 0.2) nor low-performing participants (R = 0.31,
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FIGURE 5 | Results of random-effects Bayesian model comparison for zero % coherence level across two groups of participants; (A) the observed model
comparison results in Figure 4 are actually driven by the high-performing participants. The left plot shows the protected exceedance probability (probability that a
model is the best model for all participants). The red dashed line indicates very strong evidence for a model (0.95). The right plot shows the model frequency for
model comparison between DDM and EXaM. The model frequency is the probability that the behavior of a randomly selected participant is best explained by a
specific model, among the compared models. The red dashed line represents chance level and error bars indicate the standard deviation of the estimated model
frequencies. (B) The same plots as in A for the low-performing participants.

p = 0.4), but this can be explained by small sample size used for
this analysis (N = 11).

DISCUSSION

We presented evidence of a consistent choice pattern in humans
in response to identical replicates of 0% coherence random-
dot motion stimulus (RDM). Specifically, we have quantified
the preference of human choices across repetition of the same
0% coherence stimulus using a simple statistical measure. To
formally model these consistent choices, we have extended
the standard drift-diffusion model to incorporate the exact
time-dependent stimulus features, the exact input model. Our
model comparison shows that the exact input model can
better explain the consistent responses of the participants to
specific instantiations of 0% coherence level RDM stimuli
compared to a standard drift-diffusion model. This means that

participants use stimulus information of the 0% coherence
stimuli to make consistent choices. We found the difference
between the two models much more pronounced for high-
performing participants, which indicates that these participants
use more of the information shown in the sensory stimuli,
as compared to low-performing participants. In addition, the
amount of stimulus information that the model uses to
explain the consistent responses of high-performing participants
was positively correlated with the behavioral consistency of
the participants.

One important implication of our experimental findings
is related to the use of 0% coherence RDM stimuli in the
analysis of the role of sensory stimuli in neural and behavioral
measurements such as choice probability (Britten et al., 1992,
1996; Bair and Koch, 1996; Cohen and Newsome, 2009). In
these experimental studies, the 0% coherence RDM stimuli were
typically used to control for trial-to-trial stimulus variation in
the observed effects of choice probability. For example, it has
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TABLE 2 | Mean of average posterior parameter distributions of EXaM for the
high- and low-performing of participants.

Parameters EXaM (High-
performing

participants)

EXaM (Low-
performing

participants)

0% 0%

sc1 0.026 (0.009) 0.012 (0.003)

sc2 0.064 (0.018) 0.024 (0.003)

σsc 0.055 (0.002) 0.053 (0.002)

B 0.054 (0.004) 0.060 (0.004)

z0 −0.067 (0.058) 0.052 (0.058)

sZ 0.021 (0.000) 0.022 (0.001)

Tnd 0.904 (0.101) 0.681 (0.070)

st 0.658 (0.081) 0.582 (0.095)

πl 0.089 (0.031) 0.063 (0.022)

πto 0.307 (0.060) 0.357 (0.048)

Format as in Table 1, see also description of the EXaM in section “Materials and
Methods” for the meaning of parameters.

been implicitly assumed before that since the expected net motion
of 0% coherence stimuli over the presentation time is zero,
this type of stimuli is “identical for any particular direction,”
therefore the observed correlation between neural and behavioral
measurements (choice probability) is unlikely to be due to trial-
to-trial variability of the stimulus (Britten et al., 1992). This
assumption was only challenged recently by Wimmer et al.
(2015) which have demonstrated the effect of random stimulus
fluctuations on the measurements of choice probability. We
have conducted a dedicated investigation of the role of time-
dependent stimulus information in human responses to 0%
coherence RDM stimuli. By systemically studying the effect of

stimulus types on behavioral choices, we provide another piece of
evidence supporting the hypothesis that some specific 0% RDM
stimuli types do have an effect on the participants’ decisions
on the group-level and contain decision-relevant information.
Therefore, random motion and similar stimuli should be
controlled for such decision-relevant information when they are
used in an experimental study e.g., in the measurement of choice
probability. This type of single-trial analysis of the behavior
(Kiani et al., 2008; Brunton et al., 2013; Urai et al., 2017) can
also be promising to quantify the relationship of the behavior to
neural measurements.

To better understand the possible reasons of observing
response consistency in the trials with Cluster 2 stimulus types
(Figure 3), we have considered several sources and potential
confounding factors: (i) randomness in participants’ responses
due to the difficulty of the RDM task in 0% coherence trials,
(ii) serial dependence of participant responses in trials with
0% coherence stimuli, (iii) general bias of the participants for
an alternative, (iv) error in statistical inference for determining
consistency, (v) presence of particular motion patterns in Cluster
2 stimulus types that makes the average participant to respond
consistently across repetition of the same stimulus type. First,
we made sure, through a training phase, that only participants
that had less than 7% of the training phase trials as timed-out
trials and were more accurate than 85% in 25% and 90% in
35% coherence level, attended the main phase of the experiment.
Also, in the experimental design we made sure that there are a
limited number (max 5) of consecutive hard trials (0% and 10%).
These constraints ensured that the responses of the participants
to the 0% coherence stimuli are not “random.” Also, all stimulus
types used in our experiment (Cluster 1 and Cluster 2 stimulus
types) were chosen after careful evaluation of 32 randomly

FIGURE 6 | The relationship between zero % coherence response consistency and average posterior estimates of the EXaM’s scale parameter. The average
posterior scale estimate for Cluster 2 stimulus types (sc2) is plotted as a function of average absolute RC across Cluster 2 stimulus types. The regression line shows
a positive correlation between two variables (linear regression Eq. 2, R = 0.34, p < 0.05). The data from two participants was excluded as their sc2

values were outliers.
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sampled stimulus types within the pilot phase for the ability to
induce consistent responses across a wide group of participants
(see section “Materials and Methods” for more details). Second,
the random distribution of the stimulus types within the trials
during the course of the experiments makes it unlikely that
serial dependence of participant responses of the trials with 0%
coherence (consequently Cluster 2 stimulus types) stimulus be a
source of the observed effect in response consistency (Figure 2).
The reason is that all 0% coherence trials were randomly
interleaved between trials of higher coherence levels in a way that
there were no 4 consecutive trials in which the same stimulus type
is presented. Third, in the statistical test used for determining
response consistency, we corrected the response consistency for
a general bias of participant for one alternative to ensure that
the general bias does not affect significance response consistency
values. Fourth, we used multiple comparison correction to ensure
the reliability of the significance of our response consistency
measurements. By ruling out all of the previous possibilities, we
conclude that the remaining explanation for consistent responses
of the participants is that the participants use the motions
patterns inside Cluster 2 stimulus types to make consistent
responses. We have found strong evidence that the responses
of high-performing participants are explained better by the
exact input models that use the stimulus features (dot counts)
(Figures 5, 6). As the stimulus features we used in our analysis
represent the net rightward motion of all dots within the stimulus
aperture through time, therefore, we conclude that there are
some motion patterns in these specific 0% coherence stimulus
types that the participants use to respond consistently to 0%
coherence stimuli.

We found that the EXaM, compared to the DDM, uses a
significantly more neutral mean bias parameter, z0, for Cluster
2 stimulus types (see Table 1). This finding offers another
piece of evidence that the EXaM provides for a better model
and explanation of the participants’ consistent responses to 0%
coherence stimuli: As Figure 2 shows, three out of five of
Cluster 2 stimulus types contain signals that induce consistent
responses among the participants indicating leftward motion in
the 0% coherence stimuli. The DDM, in the absence of stimulus
informations, on average uses a negative mean bias parameter
to explain the majority of leftward consistent responses to
Cluster 2 stimulus types across the participants. In contrast, the
EXaM is informed about motion patterns in the stimuli and
therefore does not use the mean bias parameter to explain the
participants’ responses.

In the present study, we aimed at showing that one should
expect that 0% coherence stimuli contain some cues that has a
consistent effect on the choices of human participants. In our
study, we did not assess how probable it is to stochastically sample
a stimulus that does contain small cues that the participants are
sensitive to. However, we assume that this is not too uncommon
because we had no difficulty in identifying six of these stimuli in
a random sample of 32 stimuli.

One open and profound question is how exactly motion
cues during 0%-coherence trials are used dynamically to make a
decision. In the proposed model, all motion cues measured by the
dot counting algorithm are weighted identically by some scaling

factor to explain both choices and reaction times. Although
this model appears intuitive at first glance, it can only be a
first approximation of some more complex decision making
machinery. In the exact input model, we assume that the brain
uses a different scale parameter between the two stimulus types.
It is an open question how the brain can adjust its scale parameter
for an ongoing trial, if it is unknown at the beginning of the
trial of what type the current stimulus is. We speculate that
the brain can quickly adapt its expectation given an initial
period of an ongoing trial, see also (Wimmer et al., 2015) for
a similar perspective. This initial period may give the brain the
time to adjust its expectation about the amount of movement it
will encounter during the remainder of the trial. This dynamic
interaction between sensory data and a potentially higher level
parameterization set would be most naturally expressed in a
predictive coding framework (Friston and Kiebel, 2009). This
view also resonates well with findings of Wimmer et al. (2015),
who proposed to portrait decision making as a dynamic interplay
between bottom-up and top-down interactions.

The application of time-dependent stimulus features, e.g.,
motion energy, has been used before within the context of
bounded accumulation models similar to DDM (Jazayeri and
Movshon, 2006; Kiani et al., 2008; Zylberberg et al., 2012;
Insabato et al., 2014). In the present study, we have used a rather
simple dot-counting algorithm to quantify the spatiotemporal
stimulus features based on RDM stimuli that captures the effect
of individual dot movements with high precision. However, the
exact characteristics of the motion patterns that lead to response
consistency in 0% coherence stimuli are unknown to us, because
the dot counts are a global spatial measure that are simply
the sum of net rightward motions over the whole stimulus
aperture. It may be possible in future studies to specify the motion
patterns in the above-mentioned 0% coherence stimulus types by
using more advanced measurements of dot counts by tracking
the eye movements of the participants and computing the
stimulus features only in attention focus areas within the stimulus
aperture. Using model comparison, one may find an attention
focus area that can maximize the ability of the exact input model
in explaining the behavioral responses of the participants. The
use of eye-tracking can also help to (i) measure the attentiveness
of the participants during the course of the experiment and
use it as an extra feature for the exact input model, and (ii)
identifying the characteristics of the motion patterns that can
induce response consistency facilitates the process of finding
more similar stimulus types for future experimental studies.

The dot counts capture the direction-wise movement of
the dots within the stimulus aperture at every time point
without spatiotemporal filtering, in contrast to the motion energy
algorithm (Adelson and Bergen, 1985; Shadlen and Carney,
1986). This leads to simplicity of capturing individual dot
movements which we consider essential for interpreting the
model-based analysis of responses consistency with incoherent
RDM stimuli. The simplicity of the dot counting algorithm makes
it an intuitive option for computing the stimulus feature from
random-dot motion stimuli. On the other hand, one limitation of
the dot counting algorithm might be that it does not differentiate
between directed movements with different angles. For example,
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in every time step, it will detect the movement of the dot within
a pre-defined square area to the right of the position of the
dot in the previous time step, as a rightward movement (see
section “Materials and Methods” for details of computation of
dot counts) but does not add graded evidence depending on the
computed angle of the movement.

The modeling approach used in this study extended the line
of work on including the spatiotemporal details of stimulus into
the model-based analyses of the behavior (Kiani et al., 2008;
Brunton et al., 2013; Insabato et al., 2014; Park et al., 2016; Fard
et al., 2017). The exact input model in the present study has
enabled the exact input modeling approach introduced in the
previous studies (Park et al., 2016; Fard et al., 2017) to account
for consistent responses of the participants to 0% coherence
stimuli. The exact input model in the current study uses a similar
evidence accumulation process comparing to the DDM (using the
scale parameter and dot counts) and this enables the exact input
modeling approach to be able to account for the behavioral data
from random dot motion discrimination task comparing to the
previous exact input modeling approaches (Park et al., 2016; Fard
et al., 2017). Furthermore, the application of scale parameter in
combination with dot counts in the EXaM enables it to account
for a time-dependent evidence accumulation rate that can be
multiplied with the stimulus features and this creates a better
explanatory power for our behavioral data comparing to DDM’s
drift rate that is constant within a trial (Ratcliff, 1978; Ratcliff and
McKoon, 2008).

MATERIALS AND METHODS

Participants
60 healthy humans were recruited to participate in the
study. All participants were right-handed, had normal or
corrected eyesight and without any symptoms of color-blindness
or deficiency in stereopsis. The participants gave informed
written consent. The experimental procedure was approved
and carried out in accordance with the guidelines by the
ethics committee of the Dresden University of Technology.
Out of 60 participants, 45 passed the training phase according
to the criteria related to their performance in the task
(see below). One participant was excluded from further
analysis because in the main phase the performance of
the participant dropped below the threshold indicated by
completion criteria of the training phase (see Experimental
Procedures below) i.e., the participant’s proportion correct was
below 85% in trials with 25% and below 90% in the trials
with 35% coherence level stimulus. Therefore, 44 participants
(mean age 24.9 years, 25 females) were included in our
analysis. All of the timed-out trials were excluded from the
behavioral analysis.

Experimental Stimuli
Visual stimuli were presented using MATLAB Psychtoolbox1 on
a 1920 ∗ 1080 LED monitor (refresh rate: 60 Hz). Participants

1http://psychtoolboxorg/

were seated in a chair ∼60 cm from the monitor. The random
dot motion stimuli appeared in a 12◦-diameter aperture at the
center of the screen. The aperture size was chosen in accordance
with previous studies (Urai et al., 2017) to create a trade-off
between eye movements and maintain the participants’ fixation
within a limited area. The dots were white 6 × 6 pixels square
on a black background resulting in an average dot density
of 16.7 dots/degree2/s. The random-dot motion stimulus was
created from three independent sets of interleaved dots each
being presented repeatedly every three frames (50 ms). Between
every two presentations of each set of dots, a fraction of dots
were moving coherently according to the direction of the motion
assigned to the trial (right or left), while the rest of the dots
were displaced randomly. The fraction of coherently moving
dots was determined by the stimulus strength (coherence level)
associated with each trial. The motion stimulus is described in
detail previously (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002; Kiani et al., 2013; Urai et al., 2017).

Experimental Procedure
During the training phase, we ensured that only participants
with high amount of attention and task performance are able
to attend the main phase of the experiment. This was done
by assessing the performance of the participants during the
training phase and only allowing the ones who meet the
minimum performance criteria to proceed to the main phase.
Participants underwent thorough training before performing the
main experiment. Initially, the participant was trained for a
minimum of 200 trials (∼ 15 min). The performance of the
participant (RT, choice accuracy, and number of timed-out trials)
was evaluated for trials 101–200. The participant could proceed
to the main phase of the experiment upon meeting all of the
following performance criteria: whether the proportion of correct
decisions was (1) above 85% (approx. max 3 errors) in the
trials with 25% and (2) above 90% (approx. max 2 errors) in
the trials with 35% coherence level stimulus, and (3) whether
the proportion of timed-out responses was below 7%. If the
participant did not meet the aforementioned criteria in the
first attempt of the training, the experimenter allowed a second
attempt of the training for maximally another 100 trials (∼7
min). The participant could still proceed to the main phase
of the experiment if they passed the second attempt to the
training phase according to the criteria mentioned above (1–3).
Otherwise, the participant was prevented from proceeding to the
main phase of the experiment.

The main phase consisted of 800 trials and took around
50 min, excluding the time dedicated for 3 breaks (given at
every 200 trials). Participants were compensated at minimum
rate of 10 Euros. In order to promote motivation and maintain
attention, participants were rewarded for high accuracy and
adequate reaction time. Depending on the performance of each
participant, a bonus was given in the range from 0 to 5 euros.
After the experiment, participants filled out a short questionnaire
about the experiment, to check how well they have maintained
their attention throughout the study.

In all phases of the experiment, four different coherence
levels were used for the RDM stimulus: 0% (incoherent, the
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hardest), 10%, 25%, and 35% (the easiest) coherence. A fixed
number of trials was dedicated for each coherence level: 240 trials
each for 0% and 10% coherence (60 trials during the training
phase), and 160 trials each for 25% and 35% coherence (40 trials
during the training phase). In 0% coherence trials, we used 20
identical replicates of each of 12 fixed spatiotemporal patterns of
noise (frozen noise) in the RDM stimuli (see below). We also
call these 0% coherence frozen noise stimuli instantiations the
“stimulus types.” These trials were randomly interleaved between
the trials containing RDM stimuli of higher coherence levels. The
design of the experiment was identical across all participants.
For each participant, the trials were pseudo-randomly ordered
according to two rules: (i) The trials containing the 0% and 10%
coherence stimulus (harder trials) were randomly interleaved
between trials containing 25% and 35% coherence stimulus
(easier trials) (similar to Britten et al., 1996) such that there were
no 6 consecutive hard trials. This was to prevent the participants
from losing motivation during the experiment. (ii) There were no
4 consecutive trials containing the same 0% coherence stimulus
type. This was to prevent the participants from finding out that
identical replicates of stimuli were presented to them.

A trial started with a fixation cross appearing in the center of
the screen for 300–500 ms (truncated exponential) over which
the participants were asked to maintain fixation. Then the RDM
stimulus appeared on the screen in an aperture with 12 deg
diameter around the center of the screen (location of fixation
cross). Participants were free to fixate at any position within
the stimulus aperture. The stimulus was presented until the
participant reported the decision by pressing one of two buttons
using the index finger of the right hand (on the key “M”) or the
left hand (on the key “Z”) over the keyboard. The participants
could respond maximally for 2 s. If the participant failed to
respond during this period, the trial timed-out and the next trial
started with 2 s delay between trial (see Figure 1). In the training
phase a feedback of the participants’ performance is provided to
them after the trial was concluded (correct, incorrect, and timed-
out). In the main phase the feedback (timed-out) was only given
in case the participant failed to respond within the allotted time.

Sampling Stimulus Types
The values of time-dependent dot positions in our RDM stimulus
were initialized and updated using a pseudo-random number
generator (except for coherently moving dots in each frame). For
each stimulus type, the pseudo-random number generator was
seeded by a specific value to generate a fixed time-dependent
pattern of dot positions across all frames of a trial. Therefore,
the random seed value solely determined a stimulus type in 0%
coherence level.

During our pilot study, we tested 32 different stimulus types
in 3 three pilot runs with 26 pilot participants separate from the
participants in the main study to select suitable stimulus types
for our experiment. We chose 12 different stimulus types for
our 0% coherence stimuli: (i) six stimulus types were chosen for
their ability to induce consistent responses in most participants.
Specifically, for each of these stimulus types at least 50% of
participants on a particular pilot run exhibited a proportion of
left choices that significantly differed from chance (see below

for statistical procedures) indicating that these participants
responded consistently left or right to this stimulus type. (ii) three
stimulus types were chosen as the stimulus types to which the
participants responded to strong evidence in the stimulus toward
one alternative within a 150–400 ms, (iii) three other stimulus
types did not meet any of the criteria stated in (i) or (ii) and
were chosen as baseline presumably reflecting random response
behavior of the participants.

Identifying Consistent Responses
The performance of participants in perceptual decision making
tasks is usually quantified by proportion correct (accuracy) which
stands for the proportion of trials that the direction indicated by
participant’s response (decision) matches the actual direction of
coherent dot movements (correct alternative). In 0% coherence
conditions, however, the correct alternative is undefined. On the
other hand, Participants may have a general tendency (general
response bias) for choosing one alternative more often than the
other one during the course of the experiment. Note that by a
consistent response, we imply that among a set of decisions a
participant makes based on identical replicates of a stimulus type,
one alternative is chosen consistently.

We computed the response consistency (RC) for each stimulus
type and participant as the fraction of right responses among
all non-timed-out responses of the stimulus type (maximum 20)
minus the overall fraction of right responses across all trials of
all coherence levels of that participant (rightward response bias).
Theoretically, RC vary in the range of [−1, 1]: with respect to
the participant’s general response bias. RC = 0 indicates equal
tendencies for right and left alternatives for that stimulus type,
RC ∈ (0, 1] indicates a tendency of the participant to choose the
right alternative and RC ∈ [−1, 0) indicates a tendency of the
participant to choose the left alternative more often than usual.
The higher the magnitude of RC, the stronger the participant’s
tendency to respond consistently Right (RC>0) or left (RC<0).

To identify the consistent responses for each stimulus types
on the individual level, we used the binomial test for determining
which RC values were far enough from zero to state with certainty
that the underlying participant responses to a stimulus type
were consistent toward one alternative. In our experimental task,
we had two alternatives and thus two categories of decisions:
right or left. Our null hypothesis (H0) was that participants
were responding equally frequently to right and left after
accounting for their overall response bias. The alternative (H1)
was that the participants were responding more frequently to
either left or right. Since each RC value was based on the
frequency of a binary response variable, we modeled the null
hypothesis with a binomial distribution over the number of
right responses among the 20 repetitions of a stimulus type. To
account for the overall response bias of a participant (Figure 7A)
we set the probability of responding right of the binomial
distribution to the corresponding overall response bias of the
participant computed over all trials of the main experiment
(Figure 7B). To determine whether an observed number of right
responses indicated that the participant responded consistently
to a certain stimulus type, we computed a two-tailed p-value as
the probability according to the modeled binomial distribution
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FIGURE 7 | Determining the consistent responses given the response bias (right) of the participants; the rightward responses bias for each participant (A) is used to
create the null hypothesis distribution of frequency of rightward responses (blue histogram) for each participant (B–D, for three exemplary participants). The null
hypothesis distribution (the blue histogram) is binomial distribution centered on the rightward response bias of the participant (red dashed line). If the participant is in
general unbiased toward right or left alternatives, then the null hypothesis distribution is centered around 10 (as in B), i.e., half of the maximum number of responses
for each stimulus type (20). If the participant is in general biased toward right (C) or left (D) the mean value of the null hypothesis is shifted toward 20 or 0,
respectively. The null hypothesis distribution is used to determine the whether the observed frequency of rightward responses of the participant to a specific stimulus
type (two exemplary pink stars for two different stimulus types) is consistent. If an observed frequency is extreme enough w.r.t. to mean of the null hypothesis
distribution, then the response of the participant to that stimulus type is consistent. For example, the observed rightward frequency of 16 is consistent in (B,D), but
not in (C). Likewise, the observed rightward frequency of 4 is consistent in (B,C), but not in (D).

that the number of right responses could be more extreme relative
to the mean than the actually observed number (Figures 7C,D).
This procedure simultaneously tested for left and right consistent
responses, because we summed the probability mass across
number of right responses smaller and larger than their mean
and with a distance larger than that for the observed number
of right response.

In order to correct for the multiple comparisons, we used
the false discovery rate method (Benjamini and Hochberg, 1995)
over the total number of 528 hypothesis tests conducted for 44
participants and 12 stimulus types with alpha-level of 0.05.

K-Means Clustering
To conduct the clustering over average absolute response
consistency values for different stimulus types, we used the
k-means clustering method (MacQueen, 1967). The k-means

clustering algorithm computes the sum of point-to-cluster-
centroid distances within each cluster and minimizes the
sum of this quantity over all clusters. We used the Python
implementation of k-means clustering using the scikit-learn
toolbox2.

Computing Stimulus Information Using
Dot Counting Algorithm
To quantify the spatiotemporal properties of the RDM
stimuli (features), we propose a dot counting (DC) algorithm
(Figure 8A) that approximates what dot motions the human
brain may infer from the with random-dot motion stimuli. We
computed the stimulus features, dc(t), for every trial in our
experiment using the recorded, time-dependent dot positions

2http://scikit-learn.org
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FIGURE 8 | The dot counting algorithm and stimulus features. (A) Schematic of dot counting algorithm: the algorithm iterates through every dot within the stimulus
aperture at every time-step, t. If within a time period of 50 ms (up to three frames) after t there exists a dot within a square area to the right of the current dot (red
area), the dot movement is rightward (green arrow to a yellow dot within the red area) and the dot counts (DC) for the respective time-step, dc(t), is incremented.
Likewise, if within the similar time period there exists a dot within the area to the left of the current dot (blue area), the dot movement is leftward (indicated by green
arrow to the yellow dot within the blue area) and the dc(t) is decremented. The dot movements outside of the red and blue areas (indicated by orange arrows) dot
not contribute to the value of dc (t) for the dot currently being considered, (B) a representative example time-course of the computed DC for a single trial with 0%
coherence stimulus type 6. The labels R and L indicate the directions encoded by the DC features. (C) Average normalized DC values shown as a function of
coherence level and trial-wise direction of correct alternative. The normalized DC values are computed as the DC values divided by the standard deviation of
absolute dot count values across all trials containing stimuli of the same coherence level. The average value of normalized DC is then computed across all trials
related to the coherence level with the respective direction of correct alternative (right or left). Error bars indicate the standard error of the mean.

(∼40 dots). The DC algorithm iterates through every dot for
each time-step. Let us consider a dot with center coordinates of
(xt ,yt) at each time-step, t. If within a period of 50 ms after t, a
new dot appears within a square area to the right of the current
dot position (xt ,yt) with the distance between the center of two
dots below dx ∼= 8 pixels horizontally, and dy ∼= dx/2 vertically,
then the DC algorithm adds +1 to dc(t). Likewise, if the new dot
appears within a square area to the left of the current dot then
the DC algorithm adds −1 to dc(t) (see Figure 8A). The value
of dx used in our implementation of DC algorithm was tuned to
amount the of horizontal displacement for coherently moving

dots between every two consecutive presentations of every set of
dots that was used in the RDM stimulus generation algorithm.

Figure 8B demonstrates an example of DC stimulus feature
for a zero coherence trial. A positive dc(t) value indicates net
rightward motion whereas a negative value indicates net leftward
motion within the stimulus aperture in the time-step, t. The DC
algorithm captures the main features of the RDM stimuli: the
direction and strength of coherent motion. Figure 8C shows the
ratio of DC values to the total number of dots on the screen
per time-step averaged across time steps and trials within a
coherence level.
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Exact Input Model
To model the consistent responses with 0% coherence stimuli,
we used an adapted version of the famous drift diffusion model
(Ratcliff, 1978; Ratcliff and McKoon, 2008) that incorporates
spatiotemporal stimulus features extracted using the DC
algorithm. These dot counts entered the model via a scaling
parameter that controlled the influence of the measured
dot counts on the decision making process (scale equal to
0, no influence; large scale, large influence). The evidence
accumulation of this adapted model is as below:

DV t − DV t−4t = sc dc(t)4t +
√
4tsεt (1)

where DV t is the decision variable and dc(t) is the dot count value
at the given time t, 4t is the time-step length, sc stands for the
scale parameter used to scale the dot counts, s is the diffusion rate,
and εt~N(0, 1) is a standard normally distributed noise variable.
Since the model scales the stimulus features in its evidence
accumulation process, we called it the exact input model (EXaM).

Similar to the DDM, the EXaM describes the decision process
in terms of a random walk with the difference that at each
time step t, the increment of the decision variable has mean
sc dc(t)4t whereas in the DDM it has time-independent mean
v4t. In other words, the EXaM incorporates the time-dependent
information encoded within the stimulus by replacing the trial-
wise drift rate parameter v used by the DDM with the scaled
dot count, sc dc(t). Analogous to the variability of drift in
the DDM, we further allowed the scale parameter sc to vary
from trial to trial and drew trial-specific values for it from a
Gaussian distribution: sc ∼ N(sc, σsc). Note that the evidence
accumulation process of the EXaM described by Eq. (1) is
equivalent to the one of standard DDM if dc(t) is constant
through time. Therefore, the EXaM can be adapted to a standard
DDM in case stimulus information provided as an input to the
model is constant.

The random walk and evidence accumulation process is
concluded when the decision variable DV t crosses one of the
bounds at ± B which specifies the choice while the exact time-
step of the crossing determines the reaction time. As in the DDM,

TABLE 3 | Free model parameters and their prior distributions.

Parameter Prior Prior parameters

Mean Std

sc Zero 0 0.1

σsc Log-normal −3 0.5

B Log-normal −3 1

z0 Normal 0 0.5

sZ Log-normal −3.9 0.5

Tnd Log-normal −2 1

st Log-normal −2.5 1

πl (cf. Figure 9A) −1.65 1

πto Uniform 0 1

The scale (sc) has a different prior distribution for DDM and EXaM, See description
of the EXaM for the meaning of parameters.

the starting point, DV0 = z0, models the bias of a participant
for one or the other alternative in each trial. It is drawn from a
uniform distribution z0 ∼ U(z0 − sz/2, z0 + sz/2) in each trial
where z0 is the mean bias and sz is the variability of bias.
Furthermore, the EXaM includes an additive non-decision time
modeling response delays due to basic sensory processing and
motor production. This non-decision time, Tnd, is drawn from
a uniform distribution Tnd ∼ U

(
Tnd − st/2,Tnd + st/2

)
where

Tnd is the non-decision time mean and st is its variability. Finally,
we have added two extra parameters to the conventional DDM
formulation that model entirely random lapses. These parameters
are called lapse probability πl and time out lapse probability πto
(Park et al., 2016; see section “Materials and Methods” for more
details) and give the probability with which a trial is modeled
as a random lapse (random choice and RT drawn from uniform
distributions) and the probability with which a lapse trial is timed
out, respectively.

Inference Over Models Given Behavioral
Data
Note that, in the evidence accumulation process of the EXaM
(Eq. 1), if the input term is constant across the trial (e.g.,
dc (t) = ± 1 for every time-step t), then the term sc dc(t) is
equal to the DDM’s drift rate which is constant within a trial.
So, for our model comparison, we fitted the same model to the
data and just manipulate the dot count input to implement the
two models; for the EXaM, we used the actually measured dot
counts, whereas for the DDM, we used constant dc = ± 1
within every trial with sign determined by the true motion
direction in that trial.

For inferring the model parameters and computing the
marginal likelihood used in our model comparison, we used
a Bayesian analysis method called EP-ABC (Barthelmé and
Chopin, 2013). EP-ABC is a combination of Monte-Carlo
inference (ABC) and variabitional Gaussian approximation
applied on the posterior distributions of the parameters (EP).
This method only relies on simulating from the model instead of
using analytic definition of the model likelihood (see Barthelmé
and Chopin, 2013 for more details).

We used a Python implementation of EP-ABC in our
analysis, as available at: We ran EP-ABC with five independent
repetitions for two models (DDM, and EXaM), for four
coherence levels (0%, 10%, 25%, and 35% coherence
levels), and each of the 44 participants. This leads to a
total of 1,760 runs of EP-ABC. Our models had 9 free
parameters (Table 3). The behavioral data (choice responses
and RTs) were used to estimate the model parameters
for each participant and coherence level. The method
returned posterior distributions over parameter values
and an estimate of the model evidence used for Bayesian
model comparison.

As EP-ABC is a Bayesian method, it requires defining
the prior distribution over model parameters. The applied
implementation of EP-ABC only uses multivariate Gaussian
distributions for its prior and posterior parameter distribution.
Thus, we had to use parameter transformations to allow for
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FIGURE 9 | Visualization of parameter distributions. (A) Prior densities for each parameter in Table 3, (B) Example (marginal) posterior parameter densities of the
EXM for participant 44, 0% coherence level.

non-Gaussian prior and posterior distributions. Similar to Park
et al. (2016), we used the exponential and uniform parameter
transformations. We used the exponential transformation to

map a real value to a positive value and thus, transforming the
Gaussian distribution into a log-normal distribution. Further,
we used the uniform transformation to map a real value
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through the cumulative Gaussian density function and then
scale and shift the values further. Thus, it transforms the
standard normal distribution into a uniform distribution with
a desired range. Also, when the transformation is applied
to a different Gaussian distribution, it can also be used to
introduce biases toward certain regions in the desired range.
Additionally, to account for positive mean scale values, we
have introduced a new transformation, the Zero transformation.
The Zero transformation is a censored Gaussian distribution
which maps a positive real value to itself and a negative real
value to 0. Thus, it can concentrate a large proportion of
probability mass at 0.

A priori, the parameters were uncorrelated so that we
set the covariance between the prior parameters to 0. We
defined the prior for each parameter by a univariate Gaussian
distribution that was potentially combined with a transformation.
Table 3 shows the particular setting for parameter priors
that we used and Figure 9A shows the resulting univariate
Gaussian distributions.

As a sampling-based method EP-ABC trades-off between
the computational costs of the method and the quality of the
approximate Bayesian inferences. The focus of our analysis was
to select parameters that improve the quality of inference. The
acceptance threshold was set to ε = 0.05. This means that when
a response is sampled it is accepted only if it had the same
choice response as the participant actually made in that trial and
with the RT difference between sampled and actual responses
not being more than 0.05 s. We set the minimum number of
accepted samples to 2,000, the maximum number of samples
per trial to 6,000,000, the alpha parameter to 0.5, and veps to
0.1. The EP-ABC procedure passed through the data twice. For
meaning of these parameters, see Barthelmé and Chopin (2013)
and the documentation of EP-ABC at http://github.com/sbitzer/
pyEPABC.

EP-ABC returns the posterior distribution, as a multivariate
Gaussian distribution, and the approximated model marginal
likelihood (also called model evidence). To evaluate the
parameter values in the original space used by the model,
we sampled from the posterior distribution and used the
respective transformation functions over the sampled values.
The posterior parameter means that are reported in Tables 1, 2
and Supplementary Table 1 are the means of the transformed
samples. Figure 9B demonstrates an example of the univariate
slices of the posterior probability density.

Bayesian Model Selection
We used the random-effect Bayesian model selection (RFX-
BMS) procedure (Stephan et al., 2009; Daunizeau et al.,
2014; Rigoux et al., 2014) to formally compare the models.
The RFX-BMS procedure computes the protected exceedance
probability and model frequency based on the marginal log-
likelihood that was generated by EP-ABC. The RFX-BMS
procedure is part of Variational Bayesian Analysis (VBM)
toolbox3.

3http://sites.google.com/site/jeandaunizeauswebsite/code/rfx-bms

Regression Analysis
We fitted a linear regression model to test whether
dependent variables (such as in the Figures 6A,B and
Supplementary Figure 3) could be explained by the
independent variables. We used the MATLAB fitlm function
of the statistics and machine learning toolbox to fit the
linear model to data.
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