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Image quality assessment (IQA) for authentic distortions in the wild is challenging. Though

current IQA metrics have achieved decent performance for synthetic distortions, they

still cannot be satisfactorily applied to realistic distortions because of the generalization

problem. Improving generalization ability is an urgent task to make IQA algorithms

serviceable in real-world applications, while relevant research is still rare. Fundamentally,

image quality is determined by both distortion degree and intelligibility. However, current

IQA metrics mostly focus on the distortion aspect and do not fully investigate the

intelligibility, which is crucial for achieving robust quality estimation. Motivated by this, this

paper presents a new framework for building highly generalizable image quality model by

integrating the intelligibility. We first analyze the relation between intelligibility and image

quality. Then we propose a bilateral network to integrate the above two aspects of image

quality. During the fusion process, feature selection strategy is further devised to avoid

negative transfer. The framework not only catches the conventional distortion features

but also integrates intelligibility features properly, based on which a highly generalizable

no-reference image quality model is achieved. Extensive experiments are conducted

based on five intelligibility tasks, and the results demonstrate that the proposed approach

outperforms the state-of-the-art metrics, and the intelligibility task consistently improves

metric performance and generalization ability.

Keywords: image quality assessment, NR-IQA, intelligibility, distortion, generalization, semantic

1. INTRODUCTION

Image quality assessment (IQA) plays a vital role in image acquisition, compression, enhancement,
retrieval, etc. The existing IQA metrics are mainly designed for synthetic distortions and cannot
be applied to wild images satisfactorily due to the limited generalization ability. Fundamentally,
image quality embodies two aspects: distortion and intelligibility (Abdou and Dusaussoy, 1986).
Most IQA algorithms only focus on the distortion measurement and the intelligibility aspect is
rarely investigated. In this paper, we mainly investigate the role of intelligibility in building a highly
generalizable IQA model.

Intelligibility refers to the ability of an image to provide information to a person or a machine
(Abdou and Dusaussoy, 1986), that is, the degree to which the image could be understood.
Distortions affect image intelligibility, and accordingly, intelligibility is indicative of image quality
when humans make judgments. Traditional handcrafted feature-based IQA metrics mainly focus
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on distortions and cannot commendably describe image
intelligibility. Deep learning-based methods learn the IQA task
in a data-driven manner, and consequently do not directly pay
attention to image intelligibility, either.

Since the most essential function of image is to convey
information, when distortions seriously undermine the
expression of information, the intelligibility will also become
low, which in turn indicates poor image quality. Real-world
images are typically contaminated by complicated distortions,
which lead to different degrees of intelligibility. Figure 1 explains
how intelligibility indicates image quality. Figures 1A,B both
suffer from severe motion blur, and both contain human as the
main content. The human face in Figure 1A is too blurred to
be recognized, whereas a woman’s face in Figure 1B can still be
easily identified. Thus, Figure 1B has higher intelligibility and
accordingly higher quality score. The distortion in Figure 1C
is not heavier than Figure 1D, but Figure 1D is easier to be
recognized; hence, Figure 1D has higher intelligibility and
accordingly higher quality score. Finally, Figures 1E,F was
mainly underexposed with locally overexposed. The main
content in Figure 1E is illegible, whereas Figure 1F can still be
distinguished as a singing stage with performers. Therefore, the
quality of Figure 1F is better than that of Figure 1E. It can be
concluded from Figure 1 that images with similar distortions
may have significantly different quality due to different degrees
of intelligibility. Therefore, a robust quality assessment metric
should also take intelligibility into account, especially for
severe distortions.

Motivated by the above facts, this paper presents a new
framework to achieve highly generalizable image quality
assessment by integrating intelligibility and distortion measure.
The intelligibility of an image can be represented from different
perspectives, such as “whether the content of the image is

FIGURE 1 | Relation between intelligibility and image quality. (A–F) Compared to images in the first row, images in the second row have higher intelligibility and

accordingly higher mean opinion score (MOS). Images are from the KonIQ-10k (Hosu et al., 2020) dataset. The range of MOS is [1, 5], and higher MOS means better

quality.

recognizable,” “which category does the main object in the
image belong to,” and “what scene does the image show.”
The results of these questions are all important information
conveyed by the image, and through the mining of these
questions, we can obtain descriptions of image intelligibility.
These questions can be described by popular computer vision
tasks, such as image classification, scene recognition, object
detection, and instance segmentation. Therefore, we calculate

intelligibility features based on these semantic tasks. Then, we

propose a bilateral network to combine the distortion features

and intelligibility features. Further, we design different feature

selection strategies for different semantic understanding tasks.

This produces highly generalizable intelligibility features. The

distortion network is applied to extract distortion features that
are complementary to those intelligibility features. With the
bilateral network, highly generalizable intelligibility features with
rich semantic information can be fused with distortion features,
producing the final IQA model.

The contributions of this work are summarized as follows:

• We propose a new framework for designing highly
generalizable image quality models by integrating
intelligibility and distortion, two fundamental aspects of
image quality. In the proposed framework, intelligibility
features can be extracted based on popular semantic
tasks, such as image recognition, scene classification,
and object detection.
• Wepropose a bilateral network with an intelligibility enhanced

module to fuse intelligibility features with distortion features

for building a robust IQA model. A feature selection strategy

is proposed to extract intelligibility features instead of doing
direct training. This strategy can avoid the risk of damaging
generalizable features.
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• We have verified the effectiveness of the proposed method
through extensive experiments and compared with the
state-of-the-arts. The experimental results demonstrate
that the proposed model can achieve significantly better
generalization performance.

2. RELATED WORK

Early no-reference IQA (NR-IQA) metrics typically train a
regressor to obtain quality scores based on handcrafted features.
For example, BLIINDS-II (Saad et al., 2012), BRISQUE (Mittal
et al., 2012), and BIQI (Moorthy and Bovik, 2010) designed
features meticulously through natural scene statistics (NSS).
NFERM (Gu et al., 2014) incorporated features inspired by the
free energy theory, human visual system, and NSS. CORNIA
(Ye et al., 2012) and HOSA (Xu et al., 2016) trained large-
scale visual codebooks from natural image to make predictions.
The above handcrafted feature-based IQA models are usually
limited in handling the diversified scenes and distortion types in
real-world images.

With the boom of deep learning, convolutional neural
networks have been widely applied in IQA. Early attempts
utilized relatively shallow networks (Kang et al., 2014; Kang
et al., 2015; Kottayil et al., 2016) to extract features for assessing
synthetic distortions. Then, deeper networks were utilized to
handle more complex distortions (Bosse et al., 2017; Kim
and Lee, 2017; Ma et al., 2017; Yan et al., 2019; Zhai et al.,
2020; Zhang J. et al., 2020). It is widely acknowledged that
large datasets are needed for training deep neural networks.
However, so far the largest IQA dataset only has 11,125 images,
which are still limited. Thus, recent deep IQA metrics (Bianco
et al., 2018; Varga et al., 2018; Zhang W. et al., 2020) utilize
networks pre-trained on large-scale computer vision tasks and
then fine-tune on them. For example, Bianco et al. (2018) made
fine-tuning on the model pre-trained on subset of ImageNet
(Imagenet large scale visual recognition challenge, 1.3M images)
(Russakovsky et al., 2015) and Places-205 (Wang et al., 2015)
(2.5M images). Varga et al. (2018) made fine-tuning on deep
pre-trained network (ResNet101 He et al., 2016) to learn the
distribution of mean opinion score (MOS). Zhang W. et al.
(2020) utilized two different networks to evaluate synthetic and
authentic distortions, respectively, and the authentic network
was fine-tuned on pre-trained network (VGG16, Simonyan
and Zisserman, 2015). Make fine-tuning on pre-trained model
of recognition task is a suboptimal method because IQA
task is different from recognition tasks. Recognition tasks
should be robust to distortions while IQA should distinguish
distortions. Though fine-tuning with IQA images can improve
IQA performance, the generalizable features trained with large-
scale dataset were damaged during further training. And due
to the small sample property of IQA, generalization ability of
new features is still unsatisfying and cannot be adopted to
real-world applications.

Until recently, the generalization problem of IQA models
began to receive attention. Zhu et al. (2020) adopted meta-
learning to learn the prior knowledge of distortions in synthetic

distortions and then fine-tune on authentic distortions to
achieve better generalization ability. Hosu et al. (2020) built a
large dataset (KonIQ-10k: 10,073 images) for model training
and obtained better generalization performance. Su et al.
(2020) incorporated semantic features and multi-scale content
features to handle challenges of distortion diversity and content
variation. The abovemethods have achieved better generalization
performance than earlier metrics, but their generalization ability
is still far from ideal and further explorations are needed. In
this paper, we work toward this direction by proposing a new
framework to address the generalization problem, where the
intelligibility property of images is investigated.

3. PROPOSED METHOD

3.1. Relation Between Intelligibility and
Quality
As aforementioned, image intelligibility can be described by
semantic understanding tasks. The most popular one is the
classification task on Imagenet Large Scale Visual Recognition
Challenge, which has 1.3 M images belonging to 1,000 classes
(Russakovsky et al., 2015). Therefore, we take the deep
convolutional neural network (DCNN) trained on this task as an
example. The output of the classification network is a probability
distribution oi, i = 1, 2, ..., 1, 000, and 1, 000 is the total number
of classes. The prediction confidence c can be obtained by

c = max(oi), i = 1, 2, ..., 1000. (1)

The confidence c in Equation (1) also represents the top1-
probability. If the intelligibility of an image is high, the model
may easily recognize the category and the top1-probability may
be notably high. When the intelligibility is low, the model will be
unconfident of its predictions and the top1-probability also tends
to be low.

To have an intuitive understanding of the above characteristic,
we compare the average classification confidence score obtained
from images of different quality. First, we divide images from an
IQA dataset into several groups according to their MOS values
in ascending order. (Specifically, MOS are divided into 6 equal
intervals of [mi,mi+1] where i = 1 − 6, m1 = min(MOS),
m7 = max(MOS).) Then, we utilize an image classificationmodel
trained on ImageNet to obtain the confidence score of images
in each group. Finally, we calculate the average confidence score
of each quality group, and illustrate them in Figure 2A. We
can observe that images with poor quality tend to have lower
prediction confidence than those with high quality. That is, image
quality does have a significant impact on intelligibility.

In this paper, we are more interested in how intelligibility
indicates image quality. Therefore, we do another experiment
by dividing images according to the prediction confidence and
compare the average MOS value of different confidence intervals.
The results are presented in Figure 2B. Furthermore, to show
the relation more intuitively, we also show sample images in
Figures 2C–H that corresponds to the six ascending bins of
Figure 2B.We can observe from Figures 2B–H that intelligibility
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FIGURE 2 | Relation between recognition confidence and image quality. (A) Image quality affects recognition confidence; (B) recognition confidence indicates image

quality; (C–H) representative images with different prediction confidence and mean opinion score (MOS). Panels (C–H) correspond to six ascending bins of B whose

MOS increases with confidence. All results are obtained from the KonIQ-10k dataset based on EfficientNet-B0 network (Tan and Le, 2019).

described by image recognition task can distinctly indicate
image quality.

3.2. Our Framework
In this paper, we propose an intelligibility enriched IQA (IE-
IQA) framework, as illustrated in Figure 3. In our framework,
we propose a bilateral network to integrate intelligibility features
and conventional distortion features. Since intelligibility can
be represented using different image understanding tasks, it is
reasonable to utilize features from these tasks as intelligibility
features. However, IQA is different from image understanding
tasks, and directly utilizing features of image understanding tasks
may lead to negative transfer, which has been proved by many
transfer learning researches (Pan and Yang, 2010; Cao et al., 2018;
Zhang J. et al., 2018). Since intelligibility is vital to our framework,
utilizing features that are most relevant to intelligibility is a better
way. Thus, we first propose a feature selection module to pick
out more relevant features, and then fuse them with distortion
features through an intelligibility enhanced module.

The distortion backbone with parameter θ∗ in Figure 3 is
denoted as Gθ∗ , which is adopted for extracting distortion

features gj from image I. The intelligibility backbone Fθ with
parameter θ is adopted for extracting intelligibility features fj. We
select the most important features fj

′ from fj and then fuse them
with distortion features gj (denoted as fj

′ ⇔ gj) to obtain quality
score q through a regressor Rθ ′ . The whole process is explained
as follows:















fj = Fθ (I),

f
′

j ← fj,

gj = Gθ∗ (I),
q = Rθ ′ (fj

′ ⇔ gj).

(2)

In this paper, four extensively studied semantic understanding
tasks are utilized to obtain intelligibility features, including image
recognition on subset of ImageNet (Russakovsky et al., 2015),
scene classification on Places-365 (Zhou et al., 2017), object
detection and instance segmentation on MS-COCO (Lin et al.,
2014). In addition, we also utilize a relevant unrecognizability
prediction task, which predicts the unrecognizable degree of
an image. This task is trained on the VizWiz-QualityIssues
dataset (Chiu et al., 2020), containing images with labels of the
unrecognizable degree. Even if intelligibility features of heavily
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FIGURE 3 | Proposed framework of IE-IQA. Our framework contains intelligibility and distortion backbone, and colorful blocks in the distortion backbone are trainable

while gray blocks in the intelligibility backbone are not trainable. An intelligibility enhanced module is adopted to fuse distortion features with intelligibility features

obtained from the proposed feature selection module.

distorted images cannot obtain desired results in original tasks,
they can still be distinguished from features of high-quality
images, which is beneficial to the IQA task.

In our framework, the distortion backbone works in a data-
driven manner to search for the best distortion features, and
the intelligibility backbone is guaranteed to obtain features with
high generalization ability and rich semantic information. To
achieve these goals, we propose to freeze parameters θ of the
intelligibility backbone during the training process while keeping
parameters θ∗ in the distortion backbone trainable. On the
one hand, the distortion network loads the pre-trained model
trained on ImageNet. Though the pre-trained model has decent
generalization ability, we still need to train the feature extractor
with image quality data so that the network can adapt to IQA task
and obtain better performance. Therefore, we make parameters
of the distortion backbone trainable. On the other hand, training
the intelligibility backbone may be problematic. High level
features of image understanding tasks are rich in semantic
information which is generalizable. If we train the intelligibility
network using the IQA data, the generalization ability of
intelligibility features (which are already generalizable) may be
destroyed. Therefore, we freeze the intelligibility backbone to
handle this problem.

In the proposed intelligibility enhanced module, we tried
several feature fusion strategies: (1) utilize one/two/three
fully connected (FC) layers to regress the quality score
and fuse intelligibility features to different FC layer with
add/multiply/concatenate operation; (2) utilize other layers to
align intelligibility features with distortion features and then use
other FC layers to regress the quality score; (3) utilize auxiliary
layers and loss fuction to train intelligibility features along with
strategy-(1) or strategy-(2); (4) replace low-dimensional features
with sparse selected features (features that are not selected are

set to zero) and then utilize strategy-(1) or strategy-(2). In
implementation, we have found that these strategies achieve
similar results. Due to the feature selection module, it is easy
to combine lower dimensional intelligibility features and simple
strategy can obtain satisfying results. The loss function we
utilized is the mean square error (MSE).

3.3. Feature Selection
During the feature fusion process, we propose strategies to select
intelligibility features. For a specific semantic understanding
task, only a part of neural units and corresponding features
in a DCNN are significantly activated during the inference
process, while others are not vital to the final prediction and
intelligibility (Hu et al., 2016; Zhang Q. et al., 2018; Zhou
et al., 2019). Since introducing too many features are not
conducive (even harmful in many transfer learning experiments)
to IQA performance and generalization, we design feature
selection strategies for different tasks based on contribution
and sensitivity. Contribution-based strategy chooses features
with greater contributions to predictions while sensitivity-
based strategy chooses features that predictions are more
sensitive to.

3.3.1. Contribution-Based Strategy
We propose to select features that have prominent contributions
to final predictions. Theoretically, this strategy is not limited to
any specified network as long as the network can be separated
into a backbone and one FC layer. In fact, this kind of network
architecture is very common in the image classification and scene
recognition. Specifically, the output of backbone can be denoted
by fj, j = 1, 2...,Nd, whereNd is the dimension of features and the
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output-logits of the FC layer can be described by

zi =

Nd
∑

j=1

wij × fj + bi, (3)

where wij, bi, zi are weights, bias and logits of the FC layer,
i = 1, 2, ...,C, and C is the number of total classes. The feature
selection strategy is shown in Algorithm 1. In Algorithm 1,
we locate the top1-probability first. Then, we calculate the
contribution of each dimension of feature fj by

contrbj = abs(wimax ,j × fj). (4)

Algorithm 1 | Feature selection strategy based on contributions.

Inputs: Output features of the backbone fj, j = 1, 2, ....,Nd;
weights of the FC layer wij;
the number of total classes C; selected percentage k.

Output: The selected features f
′

j .

1 // Obtain top1-probability index imax:
2 imax = argmax(zi);
3 // Calculate contributions of different features

contrbj:
4 contrbj = abs(wimax ,j × fj);
5 // Calculate the number of selected features Ns:
6 Ns = int(Nd × k%);
7 // Sort contrbj in descending order and obtain

index indj:
8 indj = argsort(contrbj);
9 // Select features of top-Ns contributions:

10 f
′

j = fj[sort(indj[1 :Ns])];

Return: f
′

j .

In Equation (4), the contributions of features are determined
by both weights and activation values. Finally, features that
contribute significantly to the top1-probability are selected.

3.3.2. Sensitivity-Based Strategy
Some networks have several non-linear FC layers and it
is not easy to measure their contributions. Consider the
unrecognizability prediction task for example. First, we train a
model with the backbone of EfficientNet-B0 (Tan and Le, 2019)
and three FC layers with RELU to regress the unrecognizability
score. Then, we adopt a sensitivity-based method to select
features and the sensitivity can be obtained by gradients.
Specifically, the input feature is fj, j = 1, 2, ...Nd and the FC
layers with active function are represented by function F. The
unrecognizability score s can be obtained by

s = F(fj). (5)

The sensitivity of features can be described by

gradj = abs(∂s/∂fj). (6)

Equation (6) represents the importance of features through
partial derivatives, which is widely used in sensitivity analysis
and model interpreting (Garson, 1991; Dimopoulos et al.,
1995). After obtaining the importance of features, the selected
number is calculated. Then, the index of sorted features can be
obtained through

indj = argsort(gradj), (7)

where “argsort” means that sort the sequence and return
corresponding index (it is the same with “argsort” in
Algorithm 1). Finally, a selection operation is executed.

In contrast to directly merging all intelligibility features with
distortion features, fusing features with lower dimension after
feature selection exhibits better performance and generalization
ability during the test process. Different from attention
mechanism, the proposed feature selection strategy can reduce
the dimension of the intelligibility feature and does not need any
additional module or further training.

4. EXPERIMENTS

4.1. Datasets
In our experiments, five image quality datasets with authentic
distortions are adopted, including KonIQ-10k (Hosu et al.,
2020), Smartphone Photography Attribute and Quality (SPAQ)
(Fang et al., 2020), LIVE in the Wild Image Quality Challenge
(LIVEW) (Ghadiyaram and Bovik, 2016), CID2013 (Virtanen
et al., 2015), and BID (Ciancio et al., 2011). Specifically, the
KonIQ-10k dataset has 10,073 labeled images selected from a
massive public database YFCC100M (Thomee et al., 2016), and
the labels are obtained from 1.2million ratings. The SPAQdataset
contains 11,125 labeled images obtained from 66 smartphones
with exchangeable image file format data tags and rich opinion
annotations. The annotations include MOS, attribute scores
(such as brightness, noisiness, and sharpness) as well as scene
category labels. LIVEW contains 1,162 labeled images and
CID2013 contains 480 images from eight scenes. Different from
the other four datasets, the BID dataset focuses on blur images
and contains 586 images.

4.2. Implementation and Evaluation
Protocol
In our experiments, the distortion network adopts the backbone
of EfficientNet-B0 and the intelligibility network for the image
recognition task is EfficientNet-B0 as well. EfficientNet-B0
consists of one convolutional layer followed by seven mobile
inverted bottleneck modules, and then another convolutional
layer followed by global average pooling. EfficientNet-B0 has
an input size of 224 × 224 and 5.3 M parameters, and the
dimension of its output feature is 1280. Network for scene
classification task is ResNet-18 (He et al., 2016), and object
detection is Faster-RCNN (Ren et al., 2017) with ResNet50-FPN
(Lin et al., 2017) backbone. The instance segmentation task is
DeeplabV3+ (Chen et al., 2018) with the backbone of ResNet101.
During the training process, SGD optimizer with initial learning-
rate 0.03 is utilized (we train FC layers first and then utilize
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TABLE 1 | Pearson’s linear correlation coefficient (PLCC)/Spearman’s rank order correlation coefficient (SRCC) results of cross-dataset test.

PLCC/SRCC KonIQ-10k SPAQ LIVEW CID BID

BIQI Moorthy and Bovik, 2010 0.637/0.595 0.622/0.661 0.492/0.471 0.612/0.599 0.478/0.493

NFERM Gu et al., 2014 0.725/0.689 0.697/0.711 0.551/0.540 0.708/0.680 0.529/0.530

BRISQUE Mittal et al., 2012 0.689/0.647 0.660/0.682 0.576/0.554 0.553/0.533 0.589/0.597

BLINDSII Saad et al., 2012 0.440/0.447 0.466/0.460 0.331/0.319 0.278/0.301 0.393/0.401

GWH-GLBP Li et al., 2016 0.549/0.514 0.614/0.628 0.464/0.435 0.071/0.002 0.477/0.483

FISBLIM Gu et al., 2013 0.375/0.347 0.566/0.569 0.376/0.289 -0.219/-0.234 0.392/0.344

CORNIA Ye et al., 2012 0.773/0.738 0.727/0.766 0.672/0.639 0.599/0.538 0.692/0.688

HOSA Xu et al., 2016 0.791/0.761 0.743/0.771 0.677/0.652 0.684/0.664 0.694/0.679

NSSADNN Yan et al., 2019 / / 0.813/0.745* 0.825/0.748* /

MEON Ma et al., 2017 / / 0.693/0.688* 0.703/0.701* /

BIECON Kim and Lee, 2017 / / 0.613/0.595* 0.620/0.606* /

DeepRN (ResNet101) Varga et al.,

2018

0.880/0.867 / 0.750/0.726 / /

DeepBIQ (InceptionV2) Bianco et al.,

2018

0.911/0.907 / 0.821/0.804 / /

HyperNet Su et al., 2020 0.917/0.906 0.843/0.846+ NA/0.785 0.808/0.782+ NA/0.819

MetaIQA Zhu et al., 2020 0.876/0.846 0.804/0.822 0.748/0.716 0.726/0.682 0.740/0.738

WaDIQaM-NR Bosse et al., 2017 0.657/0.631 0.675/0.702 0.521/0.523 0.584/0.495 0.499/0.538

DBCNN Zhang W. et al., 2020 0.892/0.868 0.827/0.836 0.802/0.775 0.788/0.758 0.769/0.769

Our Results

IE-IQA (w/ recognition task) 0.921/0.900 0.863/0.859 0.839/0.829 0.815/0.788 0.822/0.817

IE-IQA (w/ classification task) 0.920/0.900 0.862/0.858 0.835/0.828 0.818/0.795 0.819/0.813

IE-IQA (w/ detection task) 0.921/0.901 0.862/0.857 0.835/0.826 0.819/0.800 0.816/0.810

IE-IQA (w/ segmentation task) 0.917/0.900 0.862/0.857 0.825/0.826 0.827/0.801 0.812/0.809

IE-IQA (w/ unrecognization task) 0.920/ 0.902 0.863/0.858 0.835/0.829 0.819/0.794 0.816/0.813

The model is trained on 80% images of KonIQ-10k and directly tested on rest 20% KonIQ-10k images and other datasets. Results with “*” are obtained after fine-tuning on the dataset

and reported in original papers. Results with NA of HyperNet (only three datasets) are reported in original papers (Su et al., 2020) and results with “+” are obtained from the released

model. Best results are in bold.

FIGURE 4 | Loss and Pearson’s linear correlation coefficient (PLCC) during training and test. (A) Loss of training and test. Two enlarged subfigures shows results of

epochs 2–50 and epochs 200–250. (B) PLCC of training and test. The model is trained with recognition task on KonIQ-10k.

warm-up strategy when training the distortion backbone). For
all of our experiments, we first resize images into 244 × 244,
then we randomly crop them to 224 × 224 with a randomly
horizontal flip to augment training images. During the test

process, we directly resize test images into 224 × 224 and then
predict once, which is more efficient in real applications. We
tried different selection ratios of 1, 5, 20, and 50%. The final
selection ratio of the recognition task, class task, detection task,
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TABLE 2 | Pearson’s linear correlation coefficient (PLCC)/Spearman’s rank order correlation coefficient (SRCC) results of cross-dataset test.

PLCC/SRCC SPAQ KonIQ-10k LIVEW CID BID

NFERM Gu et al., 2014 0.832/0.823 0.455/0.447 0.591/0.542 0.437/0.342 0.578/0.570

BRSIQUE Mittal et al., 2012 0.833/0.822 0.446/0.433 0.593/0.553 0.499/0.504 0.589/0.578

CORNIA Ye et al., 2012 0.867/0.859 0.532/0.516 0.663/0.621 0.552/0.465 0.676/0.673

HOSA Xu et al., 2016 0.873/0.866 0.559/0.534 0.682/0.650 0.593/0.536 0.681/0.670

Baseline Fang et al., 2020 0.909/0.908 0.532/0.523+ 0.564/0.517+ 0.518/0.569+ 0.574/0.566+

MT-S Fang et al., 2020 0.921/0.917 0.486/0.485+ 0.539/0.493+ 0.342/0.389+ 0.530/0.529+

HyperNet Su et al., 2020 0.917/0.915 0.679/0.645 0.695/0.680 0.624/0.585 0.648/0.647

MetaIQA Zhu et al., 2020 0.871/0.870 0.722/0.686 0.765/0.731 0.737/0.695 0.743/0.735

Our Results

IE-IQA (w/ recognition task) 0.918/0.913 0.768/0.710 0.779/0.764 0.743/0.713 0.744/0.742

IE-IQA (w/ classification task) 0.917/0.915 0.761/0.720 0.764/0.758 0.737/0.702 0.737/0.737

IE-IQA (w/ detection task) 0.920/0.916 0.777/0.728 0.782/0.772 0.742/0.702 0.748/0.749

IE-IQA (w/ segmentation task) 0.918/0.914 0.775/0.724 0.781/0.768 0.752/0.737 0.744/0.746

IE-IQA (w/ unrecognization task) 0.920/0.916 0.770/0.721 0.774/0.764 0.752/0.725 0.747/0.746

The model is trained on 80% images of Smartphone Photography Attribute and Quality (SPAQ) and directly tested on rest 20% SPAQ images and other datasets. Results with “+” are

obtained from the released model. HyperNet are retrained with image size of 244 × 244. Best results are in bold.

TABLE 3 | Pearson’s linear correlation coefficient (PLCC)/Spearman’s rank order correlation coefficient (SRCC) results on intra-dataset tests.

Dataset KonIQ-10k SPAQ LIVEW CID2013 RBID

NFERM Gu et al., 2014 0.725/0.689 0.832/0.823 0.562 /0.517 0.825/0.823 0.585/0.559

BRISQUE Mittal et al., 2012 0.689/0.647 0.833/0.822 0.574/0.557 0.810/0.814 0.617/0.594

CORNIA Ye et al., 2012 0.773/0.738 0.867/0.859 0.692/0.655 0.822/0.803 0.712/0.695

HOSA Xu et al., 2016 0.791/0.761 0.873/0.866 0.703/0.667 0.835/0.833 0.716/0.684

NSSADNN Yan et al., 2019 / / 0.813∗/0.745∗ 0.825∗/0.748∗ /

MEON Ma et al., 2017 / / 0.693∗/0.688∗ 0.703∗ / 0.701∗ /

BIECON Kim and Lee, 2017 / / 0.613∗/0.595∗ 0.620∗/0.606∗ /

Baseline Fang et al., 2020 0.908/0.889 0.909∗/0.908∗ 0.825/0.794 0.876/0.881 0.802/0.794

WaDIQaM-NR Bosse et al., 2017 0.805∗/0.797∗ / 0.680∗/0.671∗ 0.729∗/0.708∗ 0.742∗/0.725∗

HyperNet Su et al., 2020 0.917∗/0.906∗ 0.914/0.909 0.882∗/0.859∗ / 0.878∗/0.869∗

DBCNN Zhang W. et al., 2020 0.892/0.868 0.915∗/0.911∗ 0.869∗/0.851∗ / 0.859∗/0.845∗

MetaIQA Zhu et al., 2020 0.887∗/0.850∗ 0.871/0.870 0.835∗/0.802∗ 0.784∗/0.766∗ 0.777/0.746

IE-IQA (w/ recognition task) 0.921/0.900 0.918/0.913 0.868/0.838 0.934/0.934 0.838/0.837

Results with ∗ are obtained from published papers. Other results are obtained from retrained model. Best results are marked in bold.

segmentation task, and unrecognization task are 5, 5, 20, 50,
and 50%, respectively.

Our evaluation criteria are two widely used correlation
coefficients: Pearson’s linear correlation coefficient (PLCC) and
Spearman’s rank order correlation coefficient (SRCC).

4.3. Performance Comparison
This paper aims to propose a highly generalizable NR-IQA
model, thus we train our model in one dataset and then test
on other datasets directly without doing any fine-tuning.
For comparison, we also re-train some popular handcrafted
feature-based methods, such as BRISQUE, CORNIA, HOSA,
and deep learning-based methods, including DBCNN
(Zhang W. et al., 2020), MetaIQA (Zhu et al., 2020), and
WaDIQaM-NR (Bosse et al., 2017) (codes are publically

available) with the same setting. All results trained on KonIQ-
10k are shown in Table 1. The middle group in Table 1 shows
deep learning-basedmethods, and the results of methods without
public codes are obtained from the original papers. The bottom
group shows our results.

From Table 1, we can observe that our framework with five
intelligibility tasks can consistently achieve the best cross-dataset
performance for most cases. It should be emphasized that our
models are only trained with KonIQ-10k (80% images) and
directly tested on other datasets without any fine-tuning. Though
NSSADNN, MEON, and BIECON made fine-tuning on the
target dataset, our generalization performance can still maintain
a significant advantage.

Efficient-B0 has 5.3M parameters, which is less than ResNet18
(11.7 M parameters, the backbone of MetaIQA), ResNet50 (26
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FIGURE 5 | Performance comparison for different tasks with/without feature selection strategy on KonIQ-10k. (A) Pearson’s linear correlation coefficient (PLCC)

results. (B) Spearman’s rank order correlation coefficient (SRCC) results. The recognition and classification task utilize contribution-based strategy, and the

unrecognizability task utilizes gradient-based strategy.

FIGURE 6 | Ablation study of intelligibility enriched IQA (IE-IQA). (A) Pearson’s linear correlation coefficient (PLCC) results of models trained with 80% KonIQ-10k. (B)

Spearman’s rank order correlation coefficient (SRCC) results of models trained with 80% KonIQ-10k. (C) PLCC results of models trained with 80% Smartphone

Photography Attribute and Quality (SPAQ). (D) SRCC results of models trained with 80% SPAQ.

M parameters, the backbone of HyperNet), and ResNet101 (44.5
M parameters, the backbone of DeepRN). Efficient-B0 is easy
to converge, and we show the loss and PLCC results during
training and test in Figure 4. We can observe from Figure 4
that the test loss decreases with the training loss and the test
performance increases with training performance. This means
that the network is trained without overfitting.

To make a further comparison, we also train our methods on
SPAQ and perform cross-dataset tests on the other four datasets.
The results are shown in Table 2.

The model “Baseline” in Fang et al. (2020) means the baseline
model (ResNet50) and “MT-S” means the model jointly trained
withMOS and scene labels (The SPAQ dataset has scene category
labels). We can observe that compared to MT-S, our method can
achieve similar performance on the training dataset. However, by
combining intelligibility features, the generalization performance
of the proposed method is apparently much better.

Comparing Table 2 with Table 1, we can observe that models
trained on KonIQ-10k have better cross-dataset performance.
One possible reason is the source of images. The SPAQ dataset
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TABLE 4 | Results of training the distortion network from scratch on 80%

KonIQ-10k.

PLCC KonIQ-10k(20%) SPAQ LIVEW CID BID

Only distortion 0.784 0.756 0.638 0.676 0.645

W/recognition 0.814 0.812 0.689 0.714 0.706

W/classification 0.814 0.763 0.653 0.695 0.659

W/detection 0.812 0.740 0.644 0.682 0.640

W/segmentation 0.826 0.758 0.676 0.688 0.684

W/unrecognization 0.811 0.749 0.651 0.691 0.666

Best results are in bold.

is obtained from smartphones only, while the image sources of
KonIQ-10k are more diversified. Another possible reason is that
the image size of the SPAQ dataset is very large (4000 × 3000 is
common) and our model has an input size of 224 × 224. Small
size input may lose much information and the interpolation
algorithm may bring new distortions.

Another phenomenon observed from Tables 1, 2 is that
the proposed method achieves slightly worse generalization
performance on the BID/CID databases than the other three
datasets. The BID dataset focuses on blur images and the CID
dataset consists of limited scenes of images (eight scenes).
This may lead to a more pronounced distribution discrepancy
between CID/BID and the training datasets.

Though our metric aims to achieve high generalization
ability, we still make further experiments on intra-dataset tests.
The results are listed in Table 3. We can summarize from
Table 3 that our metric can achieve state-of-the-arts intra-dataset
performance. Though HyperNet achieves better performance
for some cases, it needs to evaluate crop 25 patches during
evaluating, costing much more time than the proposed metric.
For example, when evaluating 1,000 images with the resolution
of 1024 × 768 (batchsize = 1, using one TITANXp GPU and
Intel Xeon E5-2630V4 CPU), HyperNet costs 2,040 s, while the
proposed metric only costs 84 s.

To explore how feature selection strategy affects prediction
results, we make a comparison of the results with/without
feature selection strategy, and show them in Figure 5. The results
show that removing noisy features and utilizing features having
significant influence on final predictions tend to achieve higher
performance and better generalization ability with only one
exception (recognition task) on the CID dataset. One possible
reason is that the CID dataset has only eight specific scenes and
many images in CID contain the same objects. In this situation,
selected features may not provide rich distinguished information
for evaluating quality of images with similar contents.

To demonstrate the effectiveness of intelligibility features, we
make ablation studies and show the results in Figure 6. The
baseline means the model with distortion backbone alone. From
Figure 6, we can observe that intelligibility features do improve
both performance and generalization ability. Therefore, it is
necessary to combine both intelligibility aspect and distortion
aspect in IQA metrics.

During the training process, the distortion network loads
the pre-trained model, and some semantic information and

TABLE 5 | Results of training the distortion network from scratch on 80%

Smartphone Photography Attribute and Quality (SPAQ).

PLCC SPAQ(20%) KonIQ-10k LIVEW CID BID

only distortion 0.878 0.568 0.605 0.665 0.598

w/recognition 0.883 0.591 0.628 0.702 0.628

w/classification 0.884 0.585 0.625 0.695 0.631

w/detection 0.882 0.598 0.626 0.698 0.623

w/segmentation 0.883 0.592 0.627 0.697 0.629

w/unrecognization 0.881 0.585 0.621 0.686 0.615

Best results are in bold.

FIGURE 7 | Visualization results of Grad-CAM. (A) Original images; (B)

heat-maps of the baseline model; (C) heat-maps of the intelligibility network;

(D) heat-maps of proposed model with image recognition task.

intelligibility features may have already existed in the pre-trained
model. To further investigate the effects of original intelligibility
features on the distortion network, we train the distortion
network from scratch. Then we fuse the intelligibility network
with the distortion network. The results are shown in Tables 4, 5.
From the tables, we can observe that the introduced intelligibility
network still benefits the performance of the whole framework
even the distortion network is not pre-trained.

To explore how intelligibility affects quality assessment results
intuitively, we utilize the method of Grad-CAM (Selvaraju
et al., 2017) to investigate which area of an image affects the
prediction most. Examples are shown in Figure 7, where red
areas have more conspicuous influence to the prediction than
blue areas. As shown in Figure 7, the intelligibility features
do play an important role in the quality assessment. The
baseline model with distortion network only (Figure 6B) cannot
effectively locate salient objects which people may pay attention
to. The intelligibility features (Figure 6C) alone mainly focus on
relatively local regions and cannot well utilize global information
of images. In contrast, the proposed model (Figure 6D) not only
meticulously locate salient objects (important for intelligibility),
but also pay more attention to wider areas, which catches global
information. It is widely acknowledged that both global and
local information are vital to IQA metrics (Fang et al., 2018);
hence, from this point of view, it is not hard to understand that
by combining the intelligibility features, our model can achieve
better performance.
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5. CONCLUSIONS

In this paper, we first analyzed the relation between intelligibility
and image quality. The results reveal that intelligibility is
indicative of image quality. Therefore, we proposed a new
framework, i.e., Intelligibility-Enriched-IQA, to combine
intelligibility with conventional distortion measure. Feature
selection strategy was proposed to select the most important
intelligibility features, which alleviates negative transfer and
avoids damaging highly generalizable features. Extensive
experimental results show the effectiveness of proposed method,
and our model achieves state-of-the-art performance in terms
of the generalization ability. These results demonstrate that
introducing intelligibility is a promising way in building highly
generalizable IQA metrics.
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