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Inspired by the neuroscience research results that the human brain can produce
dynamic responses to different emotions, a new electroencephalogram (EEG)-based
human emotion classification model was proposed, named R2G-ST-BiLSTM, which
uses a hierarchical neural network model to learn more discriminative spatiotemporal
EEG features from local to global brain regions. First, the bidirectional long- and short-
term memory (BiLSTM) network is used to obtain the internal spatial relationship of
EEG signals on different channels within and between regions of the brain. Considering
the different effects of various cerebral regions on emotions, the regional attention
mechanism is introduced in the R2G-ST-BiLSTM model to determine the weight of
different brain regions, which could enhance or weaken the contribution of each brain
area to emotion recognition. Then a hierarchical BiLSTM network is again used to learn
the spatiotemporal EEG features from regional to global brain areas, which are then
input into an emotion classifier. Especially, we introduce a domain discriminator to work
together with the classifier to reduce the domain offset between the training and testing
data. Finally, we make experiments on the EEG data of the DEAP and SEED datasets to
test and compare the performance of the models. It is proven that our method achieves
higher accuracy than those of the state-of-the-art methods. Our method provides a
good way to develop affective brain–computer interface applications.

Keywords: EEG, emotion recognition, spatiotemporal features, attention, antagonism neural network, BiLSTM

INTRODUCTION

Emotion plays an important role in human life (Picard and Picard, 1997). Positive emotions may
help improve the efficiency of our daily work, while negative emotions may affect our decision
making, attention, and even health (Picard and Picard, 1997). Although it is easier for us to
recognize emotions of other people from their facial expression or voice, it is still difficult for
machines to do that (Li et al., 2019). In the past few years, emotion recognition by computer has
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attracted more and more researchers, and it has become a hot
research topic in the field of affective computing and pattern
recognition (Purnamasari et al., 2017). The emotion recognition
methods can be based on speech signals, facial expression
images, and physiological signals (Chen et al., 2019a). In recent
years, EEG-based emotion recognition algorithms have been
increasingly focused on by researchers.

While researching emotion recognition with EEG, we usually
face two difficulties. One is how to obtain a discriminative
feature representation method from original EEG signals, and the
other is how to build an effective model to better improve the
performance of emotion classification. Technically, EEG features
can be extracted from the time domain, frequency domain,
and time–frequency domain (Jenke et al., 2014). For example,
Zhang and Lee (2010) regarded the amplitude difference of
symmetric electrodes in the time domain as the EEG feature of
emotion recognition. Lin et al. (2010) studied the relationship
between emotional state and brain activity, and extracted power
spectral density, differential asymmetric power, and reasonable
asymmetric power separately as features of EEG signals. Duan
et al. (2013) extracted features by calculating the correlation
coefficient between the features of each frequency band and their
emotional labels. In the aspect of models, Garcia-Martinez et al.
(2019) summarized the research results of applying nonlinear
methods to EEG signal analysis in recent years. Li et al. (2018b)
proposed a graph-regularized sparse linear regression model
to make emotion classification and achieved better recognition
performance. Zheng and Lu (2015) studied the key frequency
bands and key brain regions of EEG signals, and proposed to
use group sparse canonical correlation analysis algorithm (Zheng,
2017) for multichannel EEG-based emotion recognition.

With the development of artificial intelligence, deep learning
has become very popular, and emotion classification based on
deep learning has also continuously improved the performance
of emotion recognition and, thus, has gradually become the
dominant method. Alhagry et al. (2017) proposed an end-to-
end LSTM-RNN network to learn the time dependence of EEG
signals. Li et al. (2018a) considered the area shift of EEG data
and used deep neural network to learn the difference between left
and right hemispheres to narrow the distribution shift. Song et al.
(2018) established a graph relationship based on multichannel
EEG data, adjacency matrix to build the internal relationship
between different EEG channels, and then used dynamical
graph convolution network to extract features for emotion
classification. Salama et al. (2018) used a three-dimensional
convolutional neural network (3D-CNN) to recognize emotions
from multichannel EEG data. The author of this paper has also
proposed a deep CNN model (Chen et al., 2019c) to learn high-
level discriminative feature representations from the combined
features of the EEG signal in the time-frequency domain. In Chen
et al. (2019b), a hierarchical bidirectional LSTM model based on
attention mechanism was proposed to reduce the influence of
long-term instability of EEG sequences on emotion recognition.

Although many EEG emotion recognition methods have
emerged recently, there are still some problems that needs to be
further studied. One of the problems is how to obtain effective
high-level features from the original EEG signals automatically.

Most researchers often extract some time or frequency statistical
EEG features manually combined with classic machine learning
algorithms to make emotion classification. However, feature
engineering needs to consume a lot of computation resources
and time. It is expected to automatically learn more prominent
spatiotemporal features with less feature engineering. The second
question is which brain area contributes more to human emotion
recognition, and how to use the distribution information of
different brain areas to improve recognition performance. The
latest researches (Etkin et al., 2011; Lindquist and Barrett, 2012)
have shown that human emotions are closely related to multiple
areas of the cerebral cortex, such as the orbitofrontal cortex,
ventromedial prefrontal cortex, amygdala, and so on. Therefore,
the contribution of EEG signals associated with each brain area
is different. If the spatial information of different brain regions
can be used, it is expected to provide help in understanding
human emotions (Heller and Nitscke, 1997; Davidson, 2000;
Lindquist et al., 2012). The third question is how to enhance
the emotion recognition performance by using time series
information in each brain area, as EEG signals are dynamic time
series carrying important emotion dynamics, which is effective to
identify human emotions.

Literature (Lin et al., 2010; Zhang and Lee, 2010; Duan
et al., 2013; Zheng and Lu, 2015; Zheng, 2017; Li et al., 2018b;
Garcia-Martinez et al., 2019) has proven that EEG signals in
different brain regions have different contributions to emotion
recognition. Literature (Alhagry et al., 2017; Li et al., 2018a;
Salama et al., 2018; Song et al., 2018; Chen et al., 2019b) found
that either deep CNN model or the bidirectional long- and
short-term memory (BiLSTM) model combined with attention
mechanism could hierarchically extract deep temporal and spatial
context of EEG signals. Inspired by these two aspects and
neuroscience research basis (Heller and Nitscke, 1997; Davidson,
2000; Etkin et al., 2011; Lindquist and Barrett, 2012; Lindquist
et al., 2012), this paper proposes a new emotion computing model
called R2G-ST-BiLSTM, which is used to solve the above three
main problems. Its core idea is to extract the EEG spatial temporal
dynamics associated with human emotions from local and global
brain areas. Specifically, the R2G-ST-BiLSTM model contains
two two-layer neural networks, in space and time domain,
respectively, and features are learned hierarchically from region
to global (R2G) to grasp more discriminative spatiotemporal
EEG features related to human emotions. The proposed R2G-ST-
BiLSTM model consists of three parts:

(1) Feature learning module. It uses the bidirectional long-
and short-term memory (BiLSTM) network to learn the
hierarchical spatiotemporal EEG characteristics within and
between each brain region. In order to better judge the
effect of different brain regions on emotion recognition,
this paper introduces the regional attention mechanism to
learn a set of weights, which represent the contributions of
different brain regions.

(2) Emotion classifier. The purpose of this module is to predict
emotion category based on EEG spatiotemporal features
obtained by feature learning module. At the same time,
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it also guides the whole neural network to learn more
discriminative EEG features for emotion classification.

(3) Domain discriminator. This module aims to decrease the
domain offset between the training EEG data and the testing
EEG data through introducing a discriminator, so that
the hierarchical feature learning module can produce EEG
features with more emotional discrimination and stronger
domain adaptability.

Through collaborative work of the above three modules,
the R2G-ST-BiLSTM model can learn EEG features with better
discrimination ability and domain robustness simultaneously,
thus, further improving human emotion recognition
performance. Overall, there are three main contributions in
our work:

• Inspired by neuroscience, we propose a new hierarchical
spatiotemporal EEG feature learning model, which obtains
spatiotemporal emotional information from EEG data
within and between each cerebral region.
• Proposes an attention weighted model to estimate the

contribution of each cerebral region to the different
affections of humans. The influence of the most dependent
cerebral region is enhanced by the learned weight, and the
impact of the less dependent region was reduced as well.
• Proposes a domain discriminator to work on antagonism

with the classifier to improve the adaptability of the R2G-
ST-BiLSTM model.

METHOD BASED ON THE
R2G-ST-BiLSTM MODEL

Traditional one-way LSTM network (Hochreiter and
Schmidhuber, 1997) has a special structure that is different
from the simple recurrent neural network (RNN) (Graves
et al., 2013) and is more capable of dealing with the frequent
dependence of the sample sequence. Its special “gate” structures
enable LSTM to retain significant data information and forget
unnecessary redundant information (Yan et al., 2017). However,
one disadvantage of this network is that it only uses the
context-related information that happened before. The BiLSTM
network can process data by using separate hidden layers in two
directions (Bottou, 2010). Because the BiLSTM network can
obtain long-term contextual information in both forward and
backward orientation, it is better than the traditional one-way
LSTM network for modeling time series. Because EEG data
related to each channel in each brain region are in time series
with the same dimension, therefore, BiLSTM can be used to
extract the deep spatiotemporal context features of EEG data
from the local brain regions to the global brain.

In this section, we will introduce the framework of the R2G-
ST-BiLSTM model in detail and explain the specific application
of EEG signals for emotion recognition methods and procedures.
Figure 1 shows the framework of the R2G-ST-BiLSTM model.
It consists of three main modules, which are feature extractors,
classifiers, and discriminators.

Spatial Feature Extraction
First, we divide the EEG sequence into several equal-length
segments. Then a set of manual features is extracted from the
EEG segments corresponding to each electrode. For example,
the differential entropy feature (DE feature) is extracted
from δ(1∼4 hz), θ(5∼8 hz), α(9∼14 hz), β(15∼3 0hz), and
γ(31∼50 hz) (Zheng and Lu, 2015). In addition, to capture
dynamic time information from input EEG sequence, every five
adjacent EEG segments make up one EEG sample, and each EEG
sample is represented by a tensor of its manual feature.

Let S = [s1, s2, , sT−1, sT]εRd × n × T represent an EEG
sample, where si represents the feature data extracted from the
divided i-th segment of EEG, shown in the bottom blue rectangle
of Figure 1, d is the number of EEG features per channel, n is the
number of channels, and T is the number of segments per EEG
sample. Figure 1 shows that when extracting spatial features, each
sample includes a regional feature extraction layer and a global
feature extraction layer to gradually learn high-level semantic
features from local to global.

Figure 2 shows the specific feature learning process of the
EEG data si. At first, the channels of si are grouped into different
areas according to the spatial position of the brain electrodes.
The number of electrodes in each brain area varies due to the
different functions of each brain area, thereby generating a set
of regional manual feature vectors in each brain region. Then
these manual feature vectors are input into the equal number
of BiLSTM networks to learn the local abstract features of each
region. After learning the regional deep features, the region
attention mechanism is introduced to learn a set of weights that
represent the significance of each region. Finally, at the top of
Figure 1, the extracted weighted feature of each region is input
into another set of BiLSTM networks to further extract the global
emotional semantic features.

(1) Regional feature extraction layer. Let xij represent
the manual feature vector of the j-th EEG channel, so
si = [xi1, xi2, . . . , xin]εRd × n. Then according to the related
electrodes, n channels of si are divided into different groups: each
group of channels belongs to a cerebral area, and each area is
expressed as: brain area 1: R1

i = [x
1
i1, x1

i2, . . . , x1
in1
], brain area 2:

R2
i = [x

2
i1, x2

i2, . . . , x2
in2
], brain area n: RN

i = [x
N
i1, xN

i2, . . . , xN
inN
],

where N is the quantity of cerebral areas, nj is the quantity
of the j-th cerebral area of the channels, and n1 ++nN = n.
Furthermore, we adjust the column order of si, which is
represented as a new matrix ŝi = [R1

i , . . . ,RN
i ]. The submatrix

Rj
i(j = 1, . . . ,N) represents cerebral area j, and per column of

Rj
i corresponds to an EEG channel of this area. The spatial

relationship of the brain area can be modeled by a BiLSTM
working on the Rj

i matrix to extract the advanced features of each
region, which process is expressed as:

F(R1
i ) = [h̃

1
i1, h̃1

i2, . . . , h̃1
in1
]εR2dr × n1 , (1)

F(RN
i ) = [h̃

N
i1, h̃N

i2, . . . , h̃N
inN
]εR2dr × nN , (2)

whereF(·) represents the BiLSTM operation, h̃j
ikεR

2dr represents
hidden vectors output by the kth forward and backward hidden
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FIGURE 1 | The model of the R2G-ST-BiLSTM network. Feature learning is processing from regional brain to global brain, respectively, in the spatial and temporal
flows. Spatial flow learns the relationship between brain regions in different layers, while temporal flow learns the emotion-related EEG dynamic from the time series
of each brain region.

units of the BiLSTM, and dr represents the dimensions of the
output state vectors of each hidden unit in the BiLSTM. At last,
the state vector outputs by the last hidden unit of each BiLSTM
are connected as the local deep features of all regions, which are
expressed as follows:

H̃r
i = [h̃

1
in1
, h̃1

in2
, . . . , h̃N

inN
]εR2dr × N . (3)

For simplicity, each BiLSTM model in this part is
initialized and fit jointly, and the hyperparameters are shared
with each other.

(2) Attention-based brain region weighting layer.
Neuroscience-related research shows that different brain

areas respond to different types of emotions. Therefore, EEG
signals from diverse brain areas have different contributions to
emotion classification. To emphasize the role of the different
brain area electrodes in EEG emotion recognition, we introduce
a weighting layer based on attention mechanism. Expressed by
W = {wij}, it can characterize the significance of channels in
different areas. After that, the local deep features of all areas are
expressed by Ĥr

i as follows:

Ĥr
i = H̃r

i W, (4)

W = (U tanh(VH̃r
i + breT))

T
, (5)
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wij =
exp (wij)∑N

k = 1 exp (wik)
, (6)

where U and V are learnable transpositional matrices, br

represents the deviation, and e represents an N-dimensional
vector whose elements are 1, that is, e = [1, 1, . . . , 1]T . The
matrix W is normalized across the columns, so that its values
are limited to non-negative by formula (6). The larger the wij
value obtained, the more important the j-th brain area is for
emotion recognition.

(3) Global feature extraction layer. To further capture the
potential global structural information on the basis of the learned
local deep feature Ĥr

i , we use another BiLSTM network with N

hidden units to extract global spatial features.

F
(

Ĥr
i

)
= [h̃g

i1, h̃g
i2, . . . , h̃g

iN]εR
2dg × N, (7)

where, h̃g
ik represents the hidden vector output by the k-th

forward and backward hidden unit of the BiLSTM network, and
dg is the dimension of the output state vector of each hidden unit.
Next, input the vector sequence h̃g

i1,. . .,h̃g
iN into a fully connected

layer to learn a new compressed feature vector with the following
formulas:

ĥg
jK = σ

 N∑
j = 1

Pg
jkh̃g

ij + bg

 , k = 1, 2, . . . ,K, (8)
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FIGURE 3 | The 32 electrodes are divided into 12 clusters, among which the
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Ĥg
i = [ĥ

g
i1, ĥg

i2, . . . , ĥg
iK], (9)

where Pg
= [Pg

jK]N =× K
denotes a projection matrix, bg denotes

deviation, K denotes the length of the compressed sequence, and
σ(·) is a nonlinear function. Thus, the global deep feature Ĥg

i
related to the manual feature matrix si of the i-th EEG segment
is finally obtained.

Temporal Feature Extraction
Let h̃j

i(j = 1, . . . ,N) represent the state vector output by the j-th
brain region of the i-th EEG manual feature matrix si through the
last hidden unit of the BiLSTM network, then the time series of
each brain region feature can be expressed as:

H̃r1 , [h̃1
1, h̃1

2, . . . , h̃1
T], (10)

H̃rN , [h̃N
1 , h̃N

2 , . . . , h̃N
T ] (11)

In this way, the columns of the feature matrix
H̃rj(j = 1, . . . ,N) constitute the time series of the feature
vectors related to the j-th brain region. Therefore, a BiLSTM
network can be applied again to learn the temporal context
between these eigenvector sequence:

Zrt
=

[
F
(
H̃r1) , . . . ,F (

H̃rN)]
=

[(
zrt

11, . . . , zrt
1T
)
, . . . ,

(
zrt

N1, . . . , zrt
NT
)]

= [
(
zrt

1 , . . . , zrt
N
)
], (12)

where Zrt
j = [z

rt
j1, . . . , zrt

jT]εR
2drt = T represents the regional

temporal feature matrix related to the j-th brain region, and drt
is the dimension of each hidden unit state vector in the regional

temporal BiLSTM network. Take the output zrt
jT of the last hidden

unit of the BiLSTM network in each brain area as the learned
temporal feature of this brain area, and then get the final temporal
feature zrt of all brain areas, which is expressed as:

zrt
=

[(
zrt

1T
)T
,
(
zrt

2T
)T
, . . . ,

(
zrt

NT
)T
]
. (13)

In addition, to explore the time context on the basis of matrix
Ĥg

i , we convert the columns of Ĥg
i to a new sequence, which is

represented by ĥg
i :

ĥg
i = [

(
ĥg

i1

)T
,
(

ĥg
i2

)T
, . . . , (ĥg

iK)
T
]

T
. (14)

Set up Zg
= [ĥg

1, . . . , ĥg
T]. Then a BiLSTM network with T

hidden units is used to learn the global temporal feature Zgt :

Zgt
= F(Zg) = [zgt

1 , . . . , zgt
T ]εR

2dgt × T, (15)

where dgt denotes the size of the hidden state vector of the global
temporal BiLSTM network, and the output zgt

T of the last hidden
unit is taken as the learned global temporal feature. Finally, by
concatenating zrt with zgt

T , the optimal feature vector zrg of the
EEG sample S (composed of T EEG fragments) is obtained,
which contains complex temporal context information, and its
expression is:

zrg
= [

(
zrt

1T
)T
,
(
zrt

2T
)T
, . . . ,

(
zrt

NT
)T
, (zgt

T )
T
]

T
. (16)

Classifier and Discriminator
For the final eigenvector zrg input to this layer, a simple linear
transformation method can be used to recognize the human
emotional type of the input EEG data S as the following formula:

Y = Qzrg
+ bc = [y1, y2, . . . , yc], (17)

where Q and bc, respectively, denotes the projection matrix and
deviation. C is number of emotional categories. The element of
the transformation result Y is input into a softmax function to
predict the emotion category:

P (c | S) = max

{
exp

(
yk
)∑C

i = 1 exp
(
yi
) |k = 1, . . . ,C

}
, (18)

where P (c | X) represents the probability the input EEG data S is
predicted to be the emotion of type c.

Supposing the training set of the model is composed of M EEG
data, which is expressed by matrix SS

i (i = 1, . . . ,M). The loss
function of the emotion classifier can be expressed as:

Lc
(
SS

1 . . . , SS
M; θf , θc

)
=

M∑
i = 1

C∑
c = 1

−ϕ(li, c) × log P(c|SS
i )

(19)
where li represents the real label of the SS

i sample, and θf and θc
represent the learning parameters. ϕ(li, c) is expressed as:

ϕ
(
li, c

)
=

{
1, if li = c,
0, otherwise.

(20)
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TABLE 1 | Electroencephalogram electrodes and data size associated with each brain area.

Brain region DEAP dataset SEED dataset

Electrode name Data size (d × nj ) Electrode name Data size (d × nj )

Pre-frontal FP1, FP2, AF3, AF4 4 × 4 AF3, FP1, FPZ, FP2, AF4 4 × 5

Frontal F3, FZ, F4 4 × 3 F3, F1, FZ, F2, F4 4 × 5

Bilateral frontal F7, F8 4 × 2 F7, F5, F6, F8 4 × 4

Left temporal FC5, T7, CP5 4 × 3 FT7, FC5, T7, C5, TP7, CP5 4 × 6

Right temporal FC6, T8, CP6 4 × 3 FT8, FC6, T8, C6, TP8, CP6 4 × 6

Frontal central FC1, FC2 4 × 2 FC3, FC1, FCZ, FC2, FC4 4 × 5

Central C3, CZ, C4 4 × 3 C3, C1, CZ, C2, C4 4 × 5

Central parietal CP1, CP2 4 × 2 CP3, CP1, CPZ, CP2, CP4 4 × 5

Bilateral parietal P7, P8 4 × 2 P7, P5, P6, P8 4 × 4

Parietal P3, PZ, P4 4 × 3 P3, P1, PZ, P2, P4 4 × 5

Parietal occipital PO3, PO4 4 × 2 PO5, PO3, POZ, PO4, PO6 4 × 5

Occipital O1, OZ, O2 4 × 3 CB1, O1, OZ, O2, CB2 4 × 5

From formulas (19) and (20), it can be concluded that
by minimizing the loss function Lc

(
SS

1, SS
2, . . . , SS

M; θf , θc
)
, the

emotion category of each training sample can be correctly
predicted to the maximum extent.

Let Stest represent a test sample, and the emotion label of Stest
is determined by the formula:

ltest = argmax
c
{P(c|Stest)|c = 1, . . . ,C}, (21)

where ltest represents the predicted label of the test sample Stest .
When performing prediction, the EEG samples for the

training and testing data may be from various subjects and
even different experiments. Based on this, the recognition
model learned by using the training data may not have a
high recognition accuracy for the test data. To optimize
the generalization ability of the model, a discriminator
is introduced to work collaboratively with the classifier
to learn features with strong emotion discrimination and
domain invariance.

Specifically, suppose that DS
= {SS

1, . . . , SS
M1
} denotes the

dataset of the source domain, and DT
= {ST

1 , . . . , ST
M2
} denotes

the dataset of the target domain, where M1 and M2 are their
sample number. To alleviate the domain difference, the loss
function of the discriminator is defined as:

Ld

(
SS

i , ST
j ; θf , θd

)
= −

M1∑
i = 1

logP
(
0
∣∣ SS

i
)
−

M2∑
j = 1

logP
(

1
∣∣∣ ST

j

)
. (22)

Here, P
(
0
∣∣ SS

i
)

is the probability that EEG sample SS
i is classified

into the source domain, P(1|ST
j ) is the probability that EEG

sample ST
j is classified into the target domain, and θd is the

parameter. The discriminator enables this model to learn the
domain-invariant features gradually.

Optimization of the Bidirectional Long-
and Short-Term Memory Neural Network
From Region to Global Brain Model
The previous description indicates that through minimizing
formula (19) and maximizing formula (22), domain difference

can be reduced and better domain invariant characteristics can
be learned. Therefore, we redefine the total loss function of
R2G-ST-BiLSTM model as:

L
(

SS, ST
|θf , θc, θd

)
= Lc

(
SS
; θf , θc

)
−Ld

(
SS, ST

; θf , θd

)
. (23)

To optimize our model, we need to find the best parameters
that minimize the new loss function L

(
SS, ST

|θf , θc, θd
)
. By

minimizing Lc
(
SS
; θf , θc

)
and maximizing Ld

(
SS, ST

; θf , θd
)

synchronously and iteratively, the optimal parameters of
L
(
SS, ST

|θf , θc, θd
)

can be obtained. Specifically, the stochastic
gradient descent (SGD) algorithm (Yu et al., 2015) is used to find
the optimal model parameters:

(̂
θf , θ̂c

)
| = arg min

θf ,θc
Lc(SS,

(
θf , θc

)
, θ̂d), (24)

θ̂d = arg max
θd

Ld(SS, ST (̂θf , θ̂c), θd), (25)

The feature extractor can learn to obtain emotional
discriminative features by minimizing the loss function Lc.
Meanwhile, it extracts domain invariant features by maximizing
the loss function Ld. When obtaining the optimal parameters
of the R2G-ST-BiLSTM model, we also introduced a gradient
reverse layer (GRL) (Ganin et al., 2016), which performs gradient
sign reversal when performing backward propagation operation
and enables the discriminator to transform the maximization
problem into a minimization problem, so that SGD can be used
for parameter optimization. The parameter updating can be
expressed as:

θd ← θd − α
∂Ld

∂θd
, θf ← θf + α

∂Ld

∂θf
, (26)

where α is the learning rate.
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TABLE 2 | Implementation details of 10 benchmark models.

Benchmark models Input data size Implementation details

DEAP dataset SEED dataset

Support vector machine (SVM)
(Suykens and Vandewalle, 1999)

[32 × 5, sample_size] [Features, sample_size] Kernel = ‘rbf’, gamma = 8, c = 0.05

Bagging tree (BT) (Chuang et al.,
2012)

[32 × 5, sample_size] [64 × 5, sample_size] Method: bag, nLearn:100, weak learner: tree, type:
classification

Random forest (RF) (Breiman,
2001)

[32 × 5, sample_size] [64 × 5, sample_size] n_estimators = 50, max_depth = 10, max_features = 8,
min_samples_split = 20, min_samples_leaf = 10,
oob_score = true, random_sate = 10

Deep confidence network (DBN)
(Zheng and Lu, 2015)

[Batch_size, feature_size]:
[60, 32 × 5]

[Batch_size, feature_size]:
[60, 64 × 5]

hidden_layers = 3, hidden_size = 64, batch_size = 60,
learning_rate = 0.04, dropout = 0.5, epochs = 200

Long- and short-term memory
(LSTM) (Alhagry et al., 2017)

[Batch_size, seq_len, channels]:
[120, 5, 32]

[Batch_size, seq_len,
channels]: [120, 5, 64]

hidden_layers = 2, hidden_size = 64, seq_len = 5,
batch_size = 120, learning_rate = 0.03, dropout = 0.5,
num_directions = 2, epochs = 100 ×

Two-dimensional convolutional
neural network (2D-CNN) (Chen
et al., 2019c)

[Batch_size, seq_len × band_size,
channels]:
[60, 5 × 4, 32]

[Batch_size,
seq_len × band_size,
channels]:
[60, 5 × 4, 64]

conv_layers = 2, max_pool_layers = 2, full_conn_layers = 2
(hidden_size = 128), conv_kernels = [32, 64],
kernel_zize = [5 × 5, 3 × 3], pool_size = (2,2),
batch_size = 60, learning_rate = 0.05, dropout = 0.7,
epochs = 300, padding = 0, stride = 1

Three-dimensional convolutional
neural network (3D-CNN)
(Salama et al., 2018)

[Batch_size, band_size, seq_len,
channels]:
[80, 4, 5, 32]

[Batch_size, band_size,
seq_len, channels]:
[80, 4, 5, 64]

conv_layers = 2, max_pool_layers = 1, full_conn_layers = 1
(hidden_size = 128), conv_kernels = [8, 16],
kernel_zize = [3 × 3 × 7, 2 × 2 × 5], pool_size = (2,2),
batch_size = 80, learning_rate = 0.01, dropout = 0.6,
epochs = 200, padding = 0, stride = 1

Hierarchical bidirectional GRU
network based on attention
mechanism (H-ATT-BGRU) (Chen
et al., 2019b)

[Batch_size, band_size, seq_len,
channels]:
[60, 4, 5, 32]

[Batch_size, band_size,
seq_len, channels]:
[60, 4, 5, 64]

hidden_layers = 2, hidden_size = 64, seq_len = 5,
batch_size = 60, learning_rate = 0.06, dropout = 0.4,
num_directions = 2, epochs = 400

Domain adaptive neural network
(DANN) (Ganin et al., 2016)

[Batch_size, feature_size]:
[30, 32 × 5]

[Batch_size, feature_size]:
[30, 64 × 5]

hidden_layers = 2, hidden_size = 128, batch_size = 30,
L2-weight-regularization = 0.003, learning_rate = 0.02,
dropout = 0.5, epochs = 500, momentum = 0.05, MMD
regularization constant γ = 10e3

convolutional recurrent neural
network (Casc-CNN-LSTM)
(Chen et al., 2020)

[Batch_size, seq_len × band_size,
channels]:
[80, 5 × 4, 32]

[Batch_size,
seq_len × band_size,
channels]:
[80, 5 × 4, 64]

CNN: conv_layers = 3, max_pool_layers = 3,
full_conn_layers = 2 (hidden_size = 256),
conv_kernels = [32, 64, 128], kernel_zize = [3 × 3, 3 × 3,
3 × 3], pool_size = (2,2), batch_size = 80,
learning_rate = 0.05, dropout = 0.5, epochs = 500,
padding = 0, stride = 1
LSTM: hidden_layers = 2, hidden_size = 128,
seq_len = 256, batch_size = 80, learning_rate = 0.05,
dropout = 0.5, num_directions = 2, epochs = 500

Configuration and Training of
Bidirectional Long- and Short-Term
Memory Neural Network From Region to
Global Brain Model
The proposed model is implemented in TensorFlow framework
on a NVIDIA Titan × Pascal GPU-equipped work station
and trained from scratch in a fully supervised manner. When
training the whole model, we define a search space to find
the optimal model parameters. The search space includes
the hidden_layers (one to three layers), hidden_size (32, 64,
128, and 256), batch_size (30, 60, 80, and 120), learning_rate
(0.1, 0.01, 0.001, and 0.0001), dropout (0.5, 0.6, and 0.7),
and epochs (100, 200, 300, and 500). The search space was
defined to balance the trade-off between a deeper architecture
and limited training samples. For simplicity, each BiLSTM

model is initialized and fit jointly, their hyperparameters
are shared with each other, the hidden_size of the single-
layer perception network used to learn the attention weight
of each brain region is 128, the hidden_size of the full
connection layer for learning the compressed global brain
feature is 64, all hidden layers use ReLU activation function
for faster approximation, all BiLSTM models are trained using
SGD with AdaGrad optimizer, and the maximum training
iteration was set to be 10,000. For searching each hyper
parameter, we only adjust one hyperparameter in a defined
search space and fix others each time. When observing that
there is no growth trend of the accuracy on training and
validation sets, we can judge to stop the training process
in advance, as shown in Figures 4, 6. Finally, we select
the best model that produces the highest accuracy on the
validation dataset.
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Through this fine-tuning process, the selected best
hidden_layers is 2, the hidden_size of dr , dg , drt , and dgt is
consistently 64, learning rate is 0.001, batch-size is 120, and
epochs is 200. All parameters and offsets are initialized with
randomly assigned nonzero regularization float. For cross-
subject experiment on DEAP dataset, the total number of
parameters in the whole model is about 50,156, which is larger
than the total number of training samples. To prevent the
overfitting of the model, a dropout layer is added after the
first full connection layer of each BiLSTM, and the selected
optimal dropout is 0.7.

EXPERIMENTS AND RESULTS

Dataset and Preprocessing
To evaluate the proposed method, we make extensive
experiments on the DEAP (Koelstra et al., 2012) dataset,
which come from the Queen Mary University of London
and is publicly and freely available for research on emotion
recognition. This dataset records EEG, EMG, ECG, and other
types of physiological signals induced by 32 subjects watching
40 music videos with different emotional tendencies. The
emotion labels are evaluated with 1–9 consecutive values in
four emotional dimensions of arousal, valence, preference,
and dominance. In our research, we just take the EEG
signals of each subject in 32 channels and 60 s from the
DEAP dataset for study. The electrodes are positioned
according to the 10–20 system. The sampling frequency
is reduced to 128 Hz. For other artifacts, a 4- to 45-Hz
bandpass filter is used for data filtering, and then blind
source separation is used to remove the electro-oculogram
(EOG) interference.

According to the spatial distribution of EEG electrodes, 32
electrodes are divided into 12 regions, that is, the number of
brain regions N is 12, and each region contains at least two
electrodes. We divided the 32 electrodes into 12 clusters or
brain regions, where the electrodes of the same color belong
to the same region, as shown in Figure 3. The electrodes
contained in each brain region and the size of the corresponding
manual feature set are listed in Table 1. In the DEAP
database, there are 32 subjects, and each subject takes a 40-
trial EEG data acquisition experiment. Each experiment collects
60 × 128 = 7,680 EEG records and emotional labels induced by
watching videos for 60 s.

To balance the samples of three kinds of emotion labels
in DEAP, the values 4 and 7 are used as the threshold to
distinguish the positive, neutral, and negative emotion labels.
As a result, for the total 32 subjects of the DEAP dataset,
the number of positive, neutral, and negative trials are 373,
540, and 367, respectively. The proportion of samples in
positive, neutral, and negative class is about 29%, 42%, and
29%, respectively. In this way, 40 trials were collected for each
subject including 2,400-s EEG records, which is segmented
according to 1 s, including 2,400 EEG segments. Each segment
corresponds to three types of emotional labels: positive, neutral,
and negative, of which there are about 800 segments of each

FIGURE 4 | Learning process of R2G-ST-BiLSTM model in within-subject
experiment on DEAP dataset.

type of emotional label. In this way, each subject has a total
of 40 trials × 60 s = 2,400 s of EEG records, which were
segmented by 1 s and contained a total of 2,400 EEG segments.
Each segment corresponds to three types of emotions: positive,
neutral, or negative tags. Then all segments are divided into
480 EEG samples according to T = 5. That means each
sample contains five EEG segments, and DE features of four
bands are extracted from 32 electrodes of each segment, so
that each EEG sample is expressed by a manual feature
tensor of 4 × 32 × 5, and the size of each EEG dataset is
480 × 4 × 32 × 5. The size of the 32-subject EEG dataset is
15,360× 4× 32× 5.

To further prove the performance of our proposed model
and make the conclusion more convincing, we also conducted
serial comparison experiments on the SEED dataset (Zheng
and Lu, 2017). The dataset collected EEG records related
to emotional stimulation from 64 channels of 15 subjects
(7 men and 8 women). The emotional labels fed back by
the subjects were divided into positive, neutral, and negative.
The dataset has been preprocessed, and DE features for
each subject were extracted. On the SEED dataset, we also
used trial-wise randomization method to construct cross
validation sets for within-subject experiments and used the
same leave-one-subject-out (LOSO) method as that used on
the DEAP dataset to construct cross validation sets for cross-
subject experiments. As for brain area division, to facilitate
comparison, we removed the PO7 and PO8 electrodes and
divided the remaining 62 electrodes into 12 brain areas. Table 1
shows the detailed brain area division method on the DEAP
and SEED datasets.

Benchmark Methods
For comparison, we use the following benchmark methods to
perform within-subject and cross-subject emotion classification
experiments on the same dataset.
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TABLE 3 | The results of within-subject experiment on the DEAP dataset.

Method SVM (Suykens
and Vandewalle,

1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

Average classification accuracy
(ACC)(%)/standard deviation
(STD)

80.72/7.67 84.65/8.93 78.87/11.32 82.83/9.54 84.51/10.06 85.63/8.72

p-Value 0.0005 0.0004 0.0006 0.0008 0.0023 0.0019

Method 3D-CNN (Salama
et al., 2018)

H-ATT-BGRU
(Chen et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC (%)/STD 87.21/10.57 87.89/8.94 88.54/9.26 93.95/7.88 94.69/9.81

p-Value 0.0052 0.0066 0.0074 0.0089

TABLE 4 | The results of within-subject experiment on the SEED dataset.

Method SVM (Suykens and
Vandewalle, 1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

ACC (%)/STD 80.14/9.27 83.72/8.68 77.95/9.32 82.58/11.26 83.92/9.44 84.64/7.98

p-Value 0.0006 0.0002 0.0004 0.0007 0.0009 0.0008

Method 3D-CNN (Salama et al.,
2018)

H-ATT-GRU (Chen
et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC/STD 87.31/11.14 86.38/9.56 88.96/10.45 92.72/9.33 93.57/8.52

p-Value 0.0021 0.0035 0.0052 0.0098

The three traditional learning methods are the following:
support vector machine (SVM) (Suykens and Vandewalle, 1999),
bagging tree (BT) (Chuang et al., 2012), and random forest (RF)
(Breiman, 2001).

The Seven deep learning methods are the following: deep
confidence network (DBN) (Zheng and Lu, 2015), deep
LSTM recurrent neural network (Alhagry et al., 2017), 2D-
CNN (Chen et al., 2019c), 3D-CNN (Salama et al., 2018),
hierarchical bidirectional GRU network based on attention
mechanism (H-ATT-BGRU) (Chen et al., 2019b), domain
adaptive neural network (DANN) (Ganin et al., 2016), and
cascaded convolutional recurrent neural network (Casc-CNN-
LSTM) (Chen et al.).

In order to horizontally compare the advantages of the
proposed model, the input features of the benchmark models
are also DE features extracted from four bands of EEG data
in the DEAP and SEED datasets, which are consistent with
those of our proposed model. The feature extraction method
is the same as that stated in the experiment part of section
“Within-Subject Experiment of Electroencephalogram Emotion
Recognition.” Classifier and discriminator. However, the specific
format of the input EEG features needs to be reshaped according
to the interface of each model. Some key implementation
details of these 10 benchmark models are listed in Table 2.
The selection of model hyperparameters is also the result of
fine-tuning experiments in the same search space mentioned
in section “Discussion About Several Variants of the Proposed
Model.” Configuration and training of the bidirectional long- and
short-term memory neural network from region to global brain
model of part II.

FIGURE 5 | Confusion matrix of R2G-ST-BiLSTM model for within-subject
experiment on DEAP dataset.

Within-Subject Experiment of
Electroencephalogram Emotion
Recognition
We apply within-subject EEG emotion recognition method like
that in literature (Li et al., 2018a) to evaluate our proposed model.
To make the experiment result convincing, we use trial-wise
randomization to construct the validation dataset. Specifically,
we first picked out the subjects with a relatively balanced number
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TABLE 5 | The results of four frequency bands in within-subject experiment.

Methods The results of ACC (%) (STD)

DEAP SEED

θ α β γ θ α β γ

SVM (Suykens and Vandewalle, 1999) 60.90
(8.76)

62.16
(10.49)

72.75
(7.87)

74.28
(11.13)

57.64
(9.93)

63.19
(7.55)

76.85
(10.19)

72.26
(12.31)

BT (Chuang et al., 2012) 65.44
(7.82)

67.31
(9.65)

77.52
(10.04)

76.06
(8.28)

61.65
(11.42)

62.74
(8.16)

75.58
(9.37)

78.83
(6.96)

RF (Breiman, 2001) 62.38
(12.52)

64.54
(7.39)

72.06
(9.77)

71.87
(10.45)

62.79
(7.58)

62.85
(12.32)

69.10
(11.14)

71.72
(10.56)

DBN (Zheng and Lu, 2015) 61.19
(8.97)

62.74
(11.25)

73.73
(6.80)

75.05
(7.74)

58.32
(9.44)

62.56
(10.28)

70.47
(13.51)

74.29
(8.84)

LSTM (Alhagry et al., 2017) 64.98
(9.15)

77.66
(10.57)

79.13
(7.22)

80.29
(8.83)

60.57
(11.89)

70.14
(12.67)

76.35
(10.23)

78.81
(9.50)

2D-CNN (Chen et al., 2019c) 65.73
(8.89)

68.45
(6.35)

79.96
(9.84)

81.42
(10.77)

67.22
(6.73)

69.36
(8.65)

77.24
(11.38)

80.58
(12.72)

3D-CNN (Salama et al., 2018) 65.26
(7.34)

70.17
(9.89)

82.51
(11.43)

83.68
(12.05)

64.54
(7.42)

71.09
(12.16)

78.67
(9.93)

82.11
(10.64)

H-ATT-BiGRU (Chen et al., 2019b) 66.27
(8.11)

68.58
(6.92)

81.96
(11.15)

84.25
(9.32)

65.03
(9.19)

67.15
(11.54)

81.58
(10.26)

85.34
(8.81)

DANN (Ganin et al., 2016) 68.39
(12.56)

70.87
(10.75)

85.73
(11.62)

86.92
(9.19)

67.56
(11.04)

72.42
(7.75)

79.96
(8.42)

85.47
(9.73)

Casc-CNN-LSTM (Chen et al., 2020) 70.07
(7.44)

73.25
(8.81)

88.54
(9.69)

89.18
(11.23)

69.21
(8.12)

75.88
(9.93)

85.25
(10.36)

89.53
(7.39)

R2G-ST-BiLSTM 71.46
(10.73)

75.82
(9.55)

90.57
(7.36)

91.38
(8.92)

71.35
(8.28)

87.14
(6.67)

86.72
(9.81)

90.86
(11.92)

Bold values represent the better results obtained by the proposed method, highlighting the comparison.

TABLE 6 | The results of cross-subject experiment on the DEAP dataset.

Method SVM (Suykens and
Vandewalle, 1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

ACC/STD 56.32/10.25 58.49/8.76 51.74/11.13 59.01/7.88 64.66/11.40 65.25/9.37

Method 3D-CNN (Salama et al.,
2018)

H-ATT-BGRU
(Chen et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC/STD 68.13/14.07 77.82/10.12 75.24/8.59 82.36/7.15 84.51/9.26

TABLE 7 | The results of cross-subject experiment on the SEED dataset.

Method CM (Suykens and
Vandewalle, 1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

ACC/STD 56.73/16.29 51.23/14.82 69.00/10.89 61.28/14.62 63.54/15.47 71.31/14.09

Method 3D-CNN (Salama et al.,
2018)

H-ATT-BGRU
(Chen et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC/STD 69.13/13.07 76.31/15.89 79.95/9.02 83.28/9.60 85.49/7.96

of three types of trials. These 13 selected subjects include sub05,
sub10, sub12, sub13, sub15, sub21, sub22, sub24, sub25, sub26,
sub28, sub29, sub32. For each of these selected subjects, we
randomly selected all segments of about 10% of the trials from
each type as the test set, then randomly selected all segments of
about another 10% of the trials from the rest of each type as the
validation set, and at last take all segments of the remaining 80%
of the trials as the training set. In this division process, we will
make sure all segments belonging to one trial is allocated either as
the training set, test set, or validation set to avoid “data leakage.”

Then the proposed R2G-ST-BiLSTM model is used for feature
learning and emotion classification. The learning process on the
DEAP dataset is shown in Figure 4.

We use the average classification accuracy (ACC) and
standard deviation (STD) of all subjects to evaluate the model
performance. For comparison, we also use the abovementioned
benchmark methods to make experiments on the equal dataset.
We use paired t-test against the benchmark methods to show
the difference between them. T-test is a test method for
the difference between two mean values of small samples
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(sample size less than 30). It uses t-distribution theory to
infer the probability of difference, to judge whether the
difference is significant. The significance of the classification
performance of the proposed method against each benchmark
method is calculated with paired t-test. For all the paired
t-tests, we used Bonferroni criteria (Genovese et al., 2002)
and the implementation method (Weisstein, 2004) to make
p-value correction for multiple hypothesis testing to limit
false discovery rate (FDR). The results of within-subject
experiment on the DEAP and SEED datasets are shown,
respectively, in Tables 3, 4. The p-Value indicates the corrected
results of paired t-test. A value of p < 0.05 means the
difference is significant.

It can be seen from Tables 3, 4 that the average accuracy
of the R2G-ST-BiLSTM method achieves 94.69% on DEAP and
93.57% on SEED, which is best among the above methods. From
a statistical point of view, the performance of the proposed model
is significantly better than the benchmark models. This result
is largely because our R2G-ST-BiLSTM model explores both
temporal and spatial context information of the different brain
regions of EEG signals.

According to the experimental result of our proposed model
on DEAP, we draw a confusion matrix for the three categories
of emotions in Figure 5. It is found that compared with
neutral emotions, positive and negative affections are less
likely to be confused.

We also used a method-like reference (Zheng, 2017) to
conduct some additional experiments to test the classification
performance of different frequency bands of EEG data.
Specifically, the DE features are extracted from four frequency
bands θ, α, β, and γ related to the original signal, and
then the EEG emotion recognition experiment is performed
based on these DE features of the four bands. We can see
the experimental results on DEAP and SEED datasets in
Table 5, which indicate that on both datasets, the recognition
performance in the higher frequency bands of β and γ is better
than those in the lower frequency bands of θ and α. This result
is consistent with the neurophysiology research in literature
(Mauss and Robinson, 2009).

Cross-Subject Experiment of
Electroencephalogram Emotion
Recognition
In this section, we use the cross-subject and the leave-one-
subject-out (LOSO) cross-validation strategy similar to that
in Zheng and Lu (2016); Li et al. (2018a) to evaluate the
proposed method, in which the training and testing data are
selected from different subjects. The EEG data of one subject
is selected as test data, and the EEG data of all the rest of
the subjects are used as training data. After each subject is
rounded, the average prediction accuracy and standard deviation
are calculated as the results. To better compare the performance
of the proposed method, we use the abovementioned methods
as benchmark. The comparison results of various methods on
DEAP and SEED are illustrated in Tables 6, 7, respectively.
On both datasets, our R2G-ST-BiLSTM model also performs

FIGURE 6 | Learning process of R2G-ST-BiLSTM model in cross-subject
experiment on DEAP dataset.

FIGURE 7 | Confusion matrix of R2G-ST-BiLSTM model for cross-subject
experiment on DEAP dataset.

better. The learning process on the DEAP dataset is shown in
Figure 6.

We also draw a confusion matrix in Figure 7 according to
the results of our model on the DEAP dataset, which shows that
positive emotion is easier to be recognized than the negative and
neutral emotions.

We also compared the influence of the different frequency
bands on cross-subject emotion recognition. The experimental
results on DEAP and SEED datasets are shown in Table 8, from
which it can be seen that, on both datasets, the classification
performance in the higher frequency bands of β and γ are better
than those in the lower frequency bands of θ and α, and the R2G-
ST-BiLSTM method achieves the best performance on the four
frequency bands.

To prove the influence of the different brain regions on
emotion recognition, we visualize the weight distribution of
brain regions based on the weighting matrix W defined in
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TABLE 8 | The results of four frequency bands in cross-subject experiment.

Methods The results (%) of ACC (STD)

DEAP SEED

θ α β γ θ α β γ

SVM (Suykens and Vandewalle, 1999) 41.91
(8.39)

44.73
(7.56)

48.66
(10.21)

51.32
(9.08)

40.62
(9.83)

42.05
(12.65)

47.97
(12.47)

50.06
(10.48)

BT (Chuang et al., 2012) 45.17
(9.38)

48.29
(14.77)

53.95
(8.54)

54.48
(7.43)

45.98
(9.70)

48.63
(10.28)

49.79
(12.41)

54.07
(6.87)

RF (Breiman, 2001) 41.50
(8.57)

41.86
(4.52)

47.31
(12.02)

47.72
(10.05)

40.07
(6.50)

42.09
(13.34)

48.29
(12.77)

48.98
(12.82)

DBN (Zheng and Lu, 2015) 44.36
(11.82)

46.15
(8.98)

55.94
(6.01)

56.81
(9.27)

45.76
(10.98)

48.43
(9.75)

56.66
(6.58)

56.62
(6.84)

LSTM (Alhagry et al., 2017) 47.92
(6.45)

48.69
(10.40)

59.02
(7.83)

59.16
(11.62)

48.63
(10.29)

51.59
(11.83)

62.13
(7.73)

59.37
(10.75)

2D-CNN (Chen et al., 2019c) 48.33
(7.61)

49.74
(13.26)

62.18
(9.90)

62.09
(11.31)

48.36
(10.31)

50.60
(8.30)

62.04
(6.74)

62.19
(7.62)

3D-CNN (Salama et al., 2018) 51.81
(9.79)

53.46
(9.84)

65.15
(11.32)

64.97
(8.46)

52.60
(11.84)

54.95
(10.45)

64.47
(13.69)

64.47
(14.69)

H-ATT-BiGRU (Chen et al., 2019b) 63.44
(12.50)

61.52
(7.07)

70.39
(12.14)

72.63
(5.28)

64.47
(14.96)

59,81
(12.43)

71.03
(10.48)

73.55
(8.80)

DANN (Ganin et al., 2016) 56.98
(5.33)

58.06
(11.80)

67.70
(8.65)

70.46
(12.17)

55.47
(9.80)

56.72
(10.79)

67.14
(7.17)

71.03
(10.14)

Casc-CNN-LSTM (Chen et al., 2020) 61.27
(8.02)

62.83
(6.56)

73.59
(10.54)

73.55
(8.69)

62.04
(6.64)

63.31
(11.96)

73.25
(9,12)

74.29
(7.98)

R2G-ST-BiLSTM 64.03
(14.41)

66.26
(5.99)

74.64
(9.38)

75.02
(10.10)

66.14
(8.10)

67.14
(7.05)

74.85
(8.02)

75.89
(8.15)

Bold values represent the better results obtained by the proposed method, highlighting the comparison.

formula (5) and learned in our cross-subject experiment on
DEAP, where the sum of each row of W matrix represents
the contribution of corresponding brain region. Figure 8 shows
the weighted map of the brain areas, where the darker the
color of the region, the more significant contribution of the
corresponding brain region. It can be seen from Figure 6 that
EEG signals in the frontal lobe are very important for human
emotion recognition, which is consistent with the results of the
cognitive observations of biological psychology in the literature
(Coan and Allen, 2004).

Discussion About Several Variants of the
Proposed Model
Various experiments on the DEAP dataset demonstrates that
the proposed R2G-ST-BILSM model is more effective than the
other methods, which is largely due to our R2G-ST-BiLSM model
utilizing both regional weighting layer and regional to global
time layer. In order to confirm that, we obtained the following
three simplified models by removing some layers from the R2G-
ST-BiLSTM network, and use them to make within-subject and
cross-subject experiments on the DEAP dataset. These three
simplified models are described as follows:

(1) R2G-ST-BiLSTM-V1—removes the dynamic regional
weighting layer and regional temporal feature learning
layers;

(2) R2G-ST-BiLSTM-V2—only uses global temporal feature as
the final input feature to classify;

(3) R2G-ST-BiLSTM-V3—does not change the original
structure of the R2G-ST-BiLSTM, except that the weight of
each brain region is set to 1, which means all brain regions
are of the same importance to emotion classification.

Table 9 demonstrates the comparison outcome of the above
four variant models. The comparison relationship is as follows:

R2G-ST-BiLSTM-V1 < R2G-ST-BiLSTM-V2 < R2G-ST-
BiLSTM-V3< R2G-ST-BiLSTM, (27)

The significance of the regional weighting layer and the
regional temporal feature learning layer has been proven by
the above comparisons, which shows that these two parts play
important roles in enhancing the capability of our R2G-ST-
BiLSTM model.

To further discuss whether the different components of
R2G-ST-BiLSTM are necessary to outperform other models, we
modified it according to the following methods to obtain its
several variants:

(1) R2G-ST-CNN-V1: replaces all BiLSTM modules used for
learning spatial and temporal features of local and global
brain regions with two-layer 2D-CNN modules.

(2) R2G-ST-CNN-V2: only the BiLSTM modules used for
learning temporal features of local and global brain regions
are replaced with two-layer 2D-CNN modules.

(3) R2G-ST-CNN-V3: only the BiLSTM modules used for
learning spatial features of local and global brain regions
are replaced with two-layer 2D-CNN modules.
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FIGURE 8 | Weighted map of brain areas.

(4) R2G-ST-BiLSTM-V4: only remove the domain
discriminator from the proposed model.

The structure and parameter configuration of the 2D-CNN
here are consistent with those in literature (Chen et al., 2019c).
These four variant models are used to make within-subject and
cross-subject emotion classification experiments on DEAP. The
comparison results are shown in Table 10.

It can be seen from Table 10 that the classification
performance of the proposed model is significantly better than
that of the four variant models. Specifically, the proposed model
outperforms the R2G-ST-CNN-V2, which indicates that the
BiLSTM components can extract more discriminative time-
context features from EEG sequences than 2D-CNN. The
performance of our proposed model is better than that of
R2G-ST-CNN-V3, which shows that BiLSTM components can
better cooperate with the attention mechanism of brain regions
and extract more spatial context-dependent features than 2D-
CNN. The proposed model significantly outperforms R2G-
ST-CNN-V1, which further proves that BiLSTM has obvious
advantages over 2D-CNN in learning deep temporal and spatial
features in our proposed hierarchical framework. The proposed
model significantly outperforms R2G-ST-CNN-V4, especially
in cross-subject experiment, which illustrates that the domain
discriminator is indeed helpful to extract more discriminative
EEG features with small differences between subjects and,
therefore, improve the adaptability of the model. In general, the
components of BiLSTM and the domain discriminator play very
important roles on the whole performance of the proposed model
and are necessary to outperform other models.

DISCUSSION

Although the proposed model has achieved high classification
accuracy, there are still some limitations to study and
overcome in the future.

At first, the model is complex and lacks interpretability.
The model proposed in this paper is a combined hierarchical
deep neural network composed of multiple bidirectional LSTM

TABLE 9 | Comparison results of four models on the DEAP dataset.

Methods Within-subject experiment Cross-subject experiment

ACC (%) ACC (%)

R2G-ST-BiLSTM-V1 90.43 80.32

R2G-ST-BiLSTM-V2 91.58 81.15

R2G-ST-BiLSTM-V3 93.72 83.96

R2G-ST-BiLSTM 94.69 84.51

Bold values represent the better results obtained by the proposed method,
highlighting the comparison.

TABLE 10 | Comparison results of five models on the DEAP dataset.

Methods Within-subject experiment Cross-subject experiment

ACC (%) ACC (%)

R2G-ST-CNN-V1 85.26 75.64

R2G-ST-CNN-V2 88.75 80.72

R2G-ST-CNN-V3 90.83 81.47

R2G-ST-BiLSTM 94.69 84.51

R2G-ST-BiLSTM-V4 92.14 78.39

Bold values represent the better results obtained by the proposed method,
highlighting the comparison.

models with attention mechanism. Although the principle and
learning process of the model is clear, the decision making
and intermediate process made by the model are difficult to
understand and interpreted. It is hard to explain the correlation
and the interaction among input data, learned features, and
output class. At present, researchers have put forward some
specific deep model interpretation methods including activation
maximization, gradient-based interpretation, class activation
mapping (CAM), and so on. The interpretation result of the
activation maximization is more accurate and can help people
understand the internal working logic of DNN, but the data
containing some noise generated in the optimization process
makes it difficult to interpret the input (Dong et al., 2017). The
gradient-based interpretation methods include deconvolution,
guided backpropagation, integrated gradients, and smooth
gradients, which aim to use backpropagation to calculate
the gradient of specific output relative to input to derive
feature importance. This gradient information can only be
used to locate important features, but not to quantify the
contribution of each feature to the classification results. The
CAM method (Jorg, 2019) can locate the objects from the
learned features by the excellent ability of the last convolution
layer in CNN, which could only provide coarse-grained
interpretation results for various CNN models. Additionally,
there are some model-agnostic (MA) explanations, such as
LIME and knowledge distillation, and causal interpretable
method. Although many methods have been proposed in
the interpretability research for deep models, there are still
many problems to be solved, such as the lack of unified
indicators for evaluating interpretation methods, the balance
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between model accuracy and interpretability, and the balance
between data privacy protection and model interpretability,
which will be one of our future research directions to improve
the performance of the model.

Second, the complex model and limited amount of data
make the model prone to overfitting. We use the EEG data
of the DEAP and SEED datasets, which include 32 and 15
subjects, respectively, to make our experiments. In cross-subject
experiments on the DEAP dataset, the number of the model
parameters reaches about 50,156, which exceeds the number of
training samples at 15,360. Compared with the complexity of
the model, the training dataset is small, which makes the model
prone to overfitting. At present, researchers usually use methods
such as expanding dataset, removing features, regularization, and
terminating training in advance to prevent model overfitting
(Sanjar et al., 2020). Data enhancement is a way to increase
training data, which can be realized by flipping, translation,
rotation, scaling, and generation methods. Removing features is
to reduce the complexity of the model by removing some layers
or some neurons from it. Through monitoring the performance
of each training iteration and when the loss on the verification set
tends to increase, we could stop the training process to prevent
the model from overfitting. The regularization method reduces
the complexity of the model by punishing the loss function with
L1 or L2 paradigm. In our work, we use L2 regularization and
dropout method to suppress the overfitting problem, but we
still face the challenge of insufficient data. In the future, we will
design experiments or ask some medical institutions or hospitals
to collect more EEG data for the study. We will also explore to
use the generated antagonism network (GAN) to generate a large
number of artificial EEG data to make up for this deficiency.

Third, the proposed model is so complex that it needs to
consume a lot of computation resources and time to train the
model, and it is hard to quickly verify and improve the model,
as well as make real-time prediction. In the future, we will try to
further simplify the structure of the model without changing its
performance, and make deep research on accelerating the speed
of model training and real-time application.

CONCLUSION

Based on the discovery of neuroscience that each region of
the human brain can produce different dynamic responses
to emotions, we suggest a new hierarchical EEG feature
learning method by using attention mechanism and bidirectional
LSTM neural network from region to global brain. A large
number of experiments and verification are carried out on the
DEAP and SEED datasets. The results show that the proposed
R2G-ST-BiLSTM model achieves the best performance in
subject-dependent and subject-independent EEG-based emotion
recognition. Through experiments on several variants of the
model, we compare and analyze the impact of different
components of the model on its overall performance, and
summarize the following advantages of the proposed model:

(1) The BiLSTM networks are used to hierarchically learn
the deep spatial correlation features within and cross
each brain region. The attention mechanism is combined
to weigh the contribution of each brain region to the
emotion classification, which could enhance the influence
of the brain region with more contribution and reduce the
influence of the brain region with less contribution.

(2) The BiLSTM networks are used to hierarchically learn the
deep temporal correlation features from the EEG time
sequence of each local brain region and global brain. The
learned deep temporal and spatial features are connected to
make the features more discriminative.

(3) By introducing the domain discriminator, the feature
difference between different subjects is reduced, and the
robustness and adaptability of the model are improved.

Although the proposed model shows some advantages, there
are still some problems to be solved. For example, the model
is more complicated, which costs much time and computing
resource for training. The whole proposed model still works as
a black box, and it is difficult to explain the physical meaning
represented by the learned abstract features. The complex model
and limited amount of data make the model prone to overfitting.
Therefore, in the future, we will further study how to improve
the interpretability of the proposed model, simplify the structure
of the model, and further improve the robustness and domain
adaptability of the model.
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