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The implementation of inference (i.e., computing posterior probabilities) in Bayesian
networks using a conventional computing paradigm turns out to be inefficient in
terms of energy, time, and space, due to the substantial resources required by
floating-point operations. A departure from conventional computing systems to make
use of the high parallelism of Bayesian inference has attracted recent attention,
particularly in the hardware implementation of Bayesian networks. These efforts
lead to several implementations ranging from digital circuits, mixed-signal circuits, to
analog circuits by leveraging new emerging nonvolatile devices. Several stochastic
computing architectures using Bayesian stochastic variables have been proposed, from
FPGA-like architectures to brain-inspired architectures such as crossbar arrays. This
comprehensive review paper discusses different hardware implementations of Bayesian
networks considering different devices, circuits, and architectures, as well as a more
futuristic overview to solve existing hardware implementation problems.

Keywords: brain inspired computing, Bayesian inference, spiking neural networks (SNN), nonvolatile, stochastic
computing

INTRODUCTION

Bayesian inference (i.e., the computation of a posterior probability given a prior probability and
new evidence; Jaynes, 2003) is one of the most crucial problems in artificial intelligence (AI), in
areas as varied as statistical machine learning (Tipping, 2003; Theodoridis, 2015), causal discovery
(Heckerman et al., 1999), automatic speech recognition (Zweig and Russell, 1998), spam filtering
(Gómez Hidalgo et al., 2006), and clinical decision support systems (Sesen et al., 2013). It is
a powerful method for fusing independent (possibly conflicting) data for decision-making in
robotic, biological, and multi-sensorimotor systems (Bessière et al., 2008). Bayesian networks
(Pearl, 1988) allow for a concise representation of stochastic variables and their independence and
the computation of any posterior probability of interest in the domain spanned by the variables.
The structure and strength of the relationships can be elicited from domain experts (Druzdzel and
van der Gaag, 1995) or, more commonly, learned from data using algorithms such as expectation-
maximization or maximum likelihood estimation (Heckerman et al., 1995; Ji et al., 2015). However,
both the inference problem (Cooper, 1990) and the learning problem (Chickering, 1996) are
NP-hard problems in general.
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As a result, an efficient implementation of Bayesian networks
is highly desirable. Although the implementation of inference
on a large Bayesian network on conventional general-purpose
computers provides high precision, it is inefficient in terms
of time and energy consumption. Several complex floating-
point calculations are required to estimate the probability
of occurrence of a variable since the network is composed
of various interacting causal variables (Shim et al., 2017).
Moreover, the high parallelism feature of Bayesian inference
is not used efficiently in conventional computing systems (F.
Kungl et al., 2019). Conventional systems need exact values
throughout the computation, preventing the use of the stochastic
computing paradigm that consumes less power (Khasanvis
et al., 2015a). To realize stochastic computing-based Bayesian
inference especially using emerging nanodevices, it is highly
needed to develop a robust hardware structure to overcome the
characteristic imperfection of these new technologies. On the
other hand, the practical realization and usage of large Bayesian
networks has been problematic due to the abovementioned
intractability of inference (Faria et al., 2021). Therefore, any
hardware implementation of Bayesian inference needs to pay
attention to a hierarchy of device, circuit, architecture, and
algorithmic improvements.

Various approaches and architectures for Bayesian network
hardware implementations have been developed; in the literature,
approaches such as probabilistic computing platforms based on
Field Programmable Gate Arrays (FPGAs), fully digital systems
with stochastic digital circuits, analog-based probabilistic circuits,
mixed-signal approaches, stochastic computing platforms with
scaled nanomagnets, and Intel’s Loihi chip have been proposed.

In this overview paper, we describe these different approaches
as well as the pros and cons of each of them. To this end, in
Section “Bayesian Networks and the Inference Problem,” some
basic preliminaries on Bayesian networks will be explained.
Section “Probabilistic Hardware-Based Implementation of
Bayesian Networks” describes several probabilistic neuronal
circuits for Bayesian network variables using different
nonvolatile devices. We explain neural sampling machines
(NSMs) for approximate Bayesian inference. In Section “New
Computing Architecture With Nonvolatile Memory Elements
for Bayesian Network Implementation,” different systems for
the implementation of Bayesian networks will be discussed
that make use of new nonvolatile magnets and CMOS circuit
elements. Section “Bayesian Inference Hardware Implementation
With Digital Logic Gates” explains digital implementations of
Bayesian inference algorithms as well as the definition of a
standard cell-based implementation. At the end of this section,
probabilistic nodes based on CMOS technology will be discussed.
Section “Crossbar Arrays for Bayesian Networks Implementation”
represents two brain-inspired hardware implementations of
naïve Bayesian classifiers in the crossbar array architecture, in
which memristors are employed as nonvolatile elements for
algorithm implementation. Also, Bayesian reasoning machines
with magneto-tunneling junction-based Bayesian networks are
described. In Section “Bayesian Neural Networks,” employing
Bayesian features in neural networks is represented. First
Bayesian neural networks are explained. Then, Gaussian

synapses for probabilistic neural networks (PNNs) will be
introduced. Afterward, PNN with memristive crossbar circuits
is described. Approximate computing to provide hardware-
friendly PNNs and an application of probabilistic artificial neural
networks (ANNs) for analyzing transistor process variation are
explained. In Section “Hardware Implementation of Probabilistic
Spiking Neural Networks,” employing Bayesian features in
Spiking Neural Network (SNN) is represented. The feasibility
of nonvolatile devices as synapses in SNNs architectures will be
discussed for Bayesian-based inference algorithms. A scalable
sampling-based probabilistic inference platform with spiking
networks is explained. Then, a probabilistic spiking neural
computing platform with MTJs is explained. Afterward, high
learning capability of a probabilistic spiking neural network
implementation and hardware implementation of SNNs utilizing
probabilistic spike propagation mechanism are described. At
the end of this section, memristor-based stochastic neurons for
probabilistic SNN computing and Loihi based Bayesian inference
implementation are represented. In Section “Discussion,” we
provide an overall discussion of the different approaches. Finally,
Section “Conclusion” concludes the paper.

BAYESIAN NETWORKS AND THE
INFERENCE PROBLEM

A discrete joint probability distribution defined over a set of
random (or stochastic) variables assigns a probability to each
joint value assignment to the set of variables; this representation,
as well as any inference over it, is exponential in the number
of variables. For most practical applications, however, there are
many independences in the joint probability distribution that
allows for a more concise representation. There are several
possible ways to represent such independences in probabilistic
graphical models, representing a probabilistic model with a
graph structure (Korb and Nicholson, 2010). The commonly
described graphical models are Hidden Markov Models (HMMs),
Markov Random Fields (MRFs), and Bayesian networks. MRFs
use undirected graphs to represent conditional independences
and capture stochastic relations in potentials. Bayesian networks
use directed a-cyclic graphs, capturing stochastic relations
in conditional probability tables (CPTs). Both structures can
represent different subsets of conditional independence relations.
HMMs are dynamic Bayesian networks that efficiently model
endogenous changes over time, under the assumption of the
Markov property.

A simple Bayesian network with four variables (Pearl, 1988)
has been shown as a running example in Figure 1 in which
Bayesian networks are represented by a directed acyclic graph
composed of nodes and edges and a set of CPTs. The nodes in the
graph model random variables, whereas the edges model direct
dependencies among the variables.

The four binary variables (denoted True or False, or equally
“1” or “0”) “C,” “R,” “S,” and “W” represent whether it is cloudy,
it is rainy, the sprinkler is on, and the grass is wet, respectively.
The conditional probabilities (given in the CPTs) describe the
conditional dependencies between parent and child nodes. Based

Frontiers in Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 728086

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-728086 November 27, 2021 Time: 10:35 # 3

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 1 | (A) A Bayesian network with four variables where independence between variables has been reported via conditional probability tables (CPTs). All
posterior probabilities of interest in this network can be computed using the laws of probability theory, notably Bayes’ rule (1) that allows inferring the causes of
effects observed in the network. (B) Structure learning flow in Bayesian networks through which Learning algorithm provides graphs from data, and are scored by
the scoring mechanism. Finally, an optimum structure is selected after iteratively improvements of the score over the graph structure (Kulkarni et al., 2017b).
(C) Several learning case in Bayesian networks (Murphy, 1998).

on the network structure, the inference operation estimates
the probability of the hidden variables, based on the observed
variables (Pearl, 1988). For example, suppose one observes that
the grass is wet, then the inference operation seeks to compute
the probability distribution over the possible causes. There are
possibly two hidden causes for the grass being wet: if it is raining
or the sprinkler is on. Bayes’ rule defined in Equation (1), is used
to calculate the posterior probability of each cause when wet grass
has been observed; it allows us to compute this distribution from
the parameters available in the CPTs:

P(S|W) =
P(W|S)P(S)

P(W)
(1)

For data analysis, the graphical model provides several benefits.
Different methods are utilized for data analysis, which are rule
bases, decision trees, and ANNs. Different techniques for data
analysis are density estimation, classification, regression, and
clustering. Then, what do Bayesian methods provide? One, it
readily handles the missing of some data entries since the model
encodes dependencies among all variables. Two, a Bayesian
network paves the way to understanding about a problem domain
and predicting the consequences of intervention via learning
the causal relationships. Three, the model provides a causal and
probabilistic semantics, though which an ideal representation
for combining prior knowledge and data is possible. Four, with
Bayesian statistics as well as Bayesian networks, the overfitting of
data can be solved (Heckerman, 2020).

Learning a Bayesian network has two major aspects, i.e.,
discovering the optimal structure of the graph and learning the
parameters in the CPTs. Learning a Bayesian network from data
requires two steps of structure learning and parameter learning.
There are a few works focusing on hardware implementation
for structure learning. In order to find an optimal structure,
exploring all possible graph structures for a given dataset is

necessary. As shown in Figure 1B, for structure learning, based
on the data, an algorithm starts with a random graph, then
a scoring mechanism determines how well the structure can
explain the data, where this quality is typically a mix of simplicity
and likelihood. The graph structure is updated based on the
score, and as a graph provides a better score, it is accepted.
Several algorithms have been proposed in the literature for
structure learning, with the two major scoring mechanisms being
Bayesian scoring and information-theoretic scoring (Kulkarni
et al., 2017b). Most of the information-theoretic scoring methods
are analytical, and then complex mathematical computations are
required. These methods are currently performed by software and
the required time for structure learning is impacted significantly.
Equation (2) represents the Bayesian scoring that uses the Bayes’
rule to compute the quality of a given Bayesian network structure.
Using the Bayes rule, for a given data, and for a structure, the
Bayes score is defined by:

P(structure|Data) ∝ P(Data|structure) × P(Data) (2)

The score of a structure as shown by Equation (2) is proportional
to how closely it can describe observed data and on the prior
probability of the structure (which could be uniform or provided
by a domain expert). The Bayesian score is calculated via
stochastic sampling through which a model of the graph is
generated with the CPT values set, and sampling over each
node for several iterations is performed. For example, for a
probability value of 0.5 for a node, with 10 sampling iterations,
it is expected to show “True” in 5 iterations. To calculate the
Bayesian score of the graph (i.e., defining the correlation degree
between the sampled data and learning data), the inference data
taken from the stochastic sampling process are utilized. Once
the structure of the network has been learned from the data,
parameter learning (i.e., using data to learn the distributions of
a Bayesian network) can be performed efficiently by estimating
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the parameters of the local distributions implied by the structure
obtained in the previous step. There are two main approaches
to the estimation of those parameters in literature: one based on
maximum likelihood estimation and the other based on Bayesian
estimation (Heckerman, 2020). Parameter estimation still could
be challenging when the sample sizes are much smaller than the
number of variables in the model. This situation is called “small
n, large p,” which brings a high variability unless particular care
is taken in both structure and parameter learning. As mentioned
above, the graph topology (structure) and the parameters of each
CPT can be inferred from data. However, learning structure is
in general much harder than learning parameters. Also, learning
when some of the nodes are hidden, or in case data are missing, is
harder than when everything is observed. This gives rise to four
distinct cases with increasing difficulty shown in Figure 1C.

Bayesian network learning involves the development of both
the structure and the parameters of Bayesian networks from
observational and interventional datasets; Bayesian inference on
the other hand is often a follow-up to Bayesian network learning
and deals with inferring the state of a set of variables given the
state of others as evidence. The computation of the posterior
probabilities shown above (Figure 1A) is a fundamental problem
in the evaluation of queries. This allows for diagnosis (computing
P(cause| symptoms)), prediction (computing P(symptoms|
cause)), classification (computing P(class| data)), and decision-
making when a cost function is involved. In summary, Bayesian
networks allow for a very rich and structured representation
of dependencies and independencies within a joint probability
distribution. This comes at the price of the intractability of
both inference (i.e., the computation of posterior probabilities
conditioned on some observations in the network) and learning
(i.e., the establishment of the structure of the model and/or the
conditional probabilities based on data and a learning algorithm).
One can deal with this intractability either by reducing the
complexity of the model or by accepting approximate results.
Examples of the former are reducing the tree width of the
network model (Kwisthout et al., 2010), reducing the structure
of the model to a polytree describing a hidden state model
and observable sensors (Hidden Markov model) (Baum and
Petrie, 1966), or assuming mutual independence between
features (Naïve Bayesian classifiers) (Maron and Kuhns, 1960).
Examples of the latter are approximation algorithms such as
Metropolis-Hastings (Hastings, 1970) and Likelihood weighting
(Shachter and Peot, 1990).

PROBABILISTIC HARDWARE-BASED
IMPLEMENTATION OF BAYESIAN
NETWORKS

This section represents several probabilistic neuron circuits for
Bayesian network variables by using different nonvolatile devices
connected to CMOS circuit elements. To this end, the first
two abstraction layer-based implementations and then a direct
implementation of probabilistic circuits will be discussed. Then,
a NSM for approximate Bayesian inference is explained.

Probabilistic Spin Logic-Based
Implementation of Bayesian Networks
The first approach we will discuss is the mapping of CPTs to
probabilistic circuits constructed by probabilistic bits (p-bits)
(Faria et al., 2018; Debashis et al., 2020). In this approach, each
variable in a Bayesian network is modeled by a stochastic circuit,
representing a specific conditional probability. This probability is
represented by the input that comes from its parent nodes, via the
weights of the links between nodes. For the p-bit implementation,
the Bayesian network is translated into probabilistic spin logic
(PSL). PSL is a behavioral model, represented by biasing (h) and
interconnection (J) coefficients (shown in Figure 2A). Then, PSL
is translated into electronic devices.

The reported p-bit implementation in Faria et al. (2018)
as shown in Figure 2B uses a stochastic spintronic device,
i.e., magnetic tunnel junction (MTJ), connected to the drain
of a transistor.

Table 1 reports the required equations for the PSL translation
into a circuit whose output m1 is related to its input I2 (the
synapse generates the input I2 from a weighted state of m2,
Figure 2A), Equation (3). Based on Equation (4A), a random
number generator (RNG) (rand) and a tunable element (tanh)
construct m2. The RNG is the MTJ and the tunable component
is the NMOS transistor; rMTJ is a correlated RNG and the NMOS
transistor resistance rT is approximated as a tanh function found
by fitting based on I–V characteristics. The PSL model is then
translated into electronic components (shown in Figure 2B)
where each node (represented by m) is connected to other nodes
and biased through voltages Vbias and conductances G; V0 is a
fitting parameter. Biasing (h) and interconnection (J) coefficients
of PSL model have been reported in Table 1 by Equations (5A)–
(7A), due to its corresponding P-bit circuit in Figure 2B.

Note that individual p-bits require sequencers in software
implementations to be programmed in a directed order. The p-bit
in Faria et al. (2018) and Faria et al. (2021) is an autonomous,
asynchronous circuit that can operate correctly without any
clocks or sequencers, in which the individual p-bits need to be
carefully designed and the interconnect delays, from one node
to another node, must be much shorter than the nanomagnet
fluctuations of the stochastic device. This condition is met as
magnetic fluctuations occur at approximately the 1-ns time scale.
However, in asynchronous operations, updating the network
as well as dealing with variations in the thermal barriers or
interconnect delays necessitates further study.

Debashis et al. (2020) present another alternate p-bit
implemented with inherently stochastic spintronic devices based
on a nanomagnet with perpendicular magnetic anisotropy. This
device utilizes the spin orbit torque from a heavy metal (HM)
under-layer to be initialized to its hard axes. Equations (4B)–(7B)
in Table 1 show the relation between the stochastic variables m1
and m2 based on the corresponding p-bit circuit in Figure 2C.
Here, σ defines the sigmoidal activation function for the device
in m2. Equation (4B) explains the conditional dependencies. The
probability of m2 being 1 given m1 being 1 is calculated through
Equation (4B) while setting m1 = 1. The parameters B0 and
h2 represented in Equations (5B)–(7B) can be tuned to change
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FIGURE 2 | Circuit implementation of a p-bit block. (A) PSL-based representation of two-node Bayesian network. (B) The p-bit design based on MTJ p-circuit with
connection weight and bias to be connected to another node (Faria et al., 2018). (C) The p-bit design, based on nanomagnet p-circuit with connection weight and
bias to be connected to another node (Debashis et al., 2020). (D) The required auxiliary node, X, for representing the four-node Bayesian network.

TABLE 1 | PSL to circuit translation requirements.

PSL elements P-bit design-1 (Faria et al., 2018) P-bit design-2 (Debashis et al., 2020)

PSL I2 = J21m1 + h2 (3)

Given CPT:
m1 = 0, p(m2 = 1) = a
m1 = 1, p(m2 = 1) = b

m2 (t+1t) = sgn (−rMTJ (t+1t)
+ rT (t+1t)) (4A)

m2 = σ (I2) = σ(J21m1 + h2) (4B)

J21 J21 =
G21
Gb

(5A) J21 = ± µ0
VDD

2 B0Rweight (5B)

h2 h2 =
Vbias,2

VDD
2

, (6A) h2 = ± µ0
Vbias

2 B0Rbias (6B)

I2 I2 =
Vin,2
V0

(7A) I2 = ±
(
µ0

VDD
2 B0Rweight

)
m1 +

(µ0
Vbias

2 B0Rbias) (7B)

the shape and offset of the sigmoidal activation function (while
presenting the CPTs via the connection weights).

To implement the four-node Bayesian network by p-bits,
Figure 2D, using PSL behavioral models in Faria et al. (2018)
and Debashis et al. (2020), requires an auxiliary p-bit defined by
node “X.” The CPT of node “W” has four conditional probability
distributions (based on nodes “R” and “S,” see Figure 1); based on
the principles of linear algebra, this CPT needs four independent
parameters. The interconnection weights JWR and JWS and the
bias parameter to the node “W” (hW) are three parameters
of four. The fourth parameter has been implemented with the
interconnection to node “X.” Nodes with N parents need a

total of (N+ 1) parameters and 2N equations to meet the PSL
model requirement. Based on the number of linearly independent
equations, it is needed to represent the appropriate number of
auxiliary variables (Faria et al., 2018). Utilizing the auxiliary
nodes in p-bit-based implementation of Bayesian networks adds
extra area/energy overhead and requires further studies.

Spintronic Devices for Direct Hardware
Implementation of Bayesian Networks
In Shim et al. (2017), a direct implementation of Bayesian
networks has been proposed with a stochastic device that is based
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FIGURE 3 | Detailed implementation view of a Bayesian network variable and the interconnection between the two nodes C and S in the four-node Bayesian
network of Figure 1.

on a three-terminal device structure, shown in Figure 3. The
proposed stochastic device can be developed by fabricating an
MTJ stacked on top of the ferromagnet-HM layers. The stochastic
switching of the device in the presence of thermal noise has
been employed to implement a Bayesian network. This MTJ
with two permanent states (represent two different resistance
levels) models stored values by the resistance levels (Shim
et al., 2017). The MTJ is composed of a tunneling barrier (TB)
sandwiched between two ferromagnetic layers, namely, the free
layer (FL) and the pinned layer (PL). The relative magnetization
direction of two ferromagnetic layers defines the MTJ state; MTJ
shows low (or high) resistance when the relative magnetization
direction is parallel (or anti-parallel) (Bagheriye et al., 2018).
Based on the write current through terminals T1 and T2,
which probabilistically switches the magnet (with a probability
controlled by the current magnitude), the read path through the
terminals T3 and T2 controls the final state of the magnet.

In order to represent a variable of the Bayesian network, a
Poisson pulse train generator translates the probability data into
the frequency of the output pulses. Thanks to the controllable
stochastic switching of the nanomagnet, along with current
sources and some circuit elements [reference resistor (Rref)
and separate write and read paths], the Poisson spikes can be
generated as shown in Figure 3. A reference resistor is used
to generate a Poisson spike train, where the number of spikes
encodes information about the probability. For instance, if 30
spikes are observed at the output of the “S” node in 100 write
cycles, this determines that the probability of “S is True” is
30%. Moreover, for more complex inference, extra arithmetic
building blocks using CMOS circuits between two Poisson
pulses are needed.

Neural Sampling Machine for
Approximate Bayesian Inference
In biological neural networks, synaptic stochasticity occurs at
the molecular level, and due to the presynaptic neuronal spike,

the neurotransmitters at the synaptic release site release with a
probability of approximately 0.1. Dutta et al. (2021) presented
a neuromorphic hardware framework to support a recently
proposed class of stochastic neural networks called the neural
sampling machine (NSM), which mimics the dynamics of noisy
biological synapses. NSM incorporates a Bernoulli or “blank-
out” noise in the synapse to being multiplicative, which has an
important role in learning and probabilistic inference dynamics.
This performs as a continuous DropConnect mask on the
synaptic weights, where a subset of the weights is continuously
forced to be zero. Stochasticity is switched off during inferencing
in DropConnect, whereas it is always on in an NSM providing
probabilistic inference capabilities to the network. Figure 4
shows the hardware implementation of NSM using hybrid
stochastic synapses. These synapses consist of an embedded non-
volatile memory, eNVM [a doped HfO2 ferroelectric field-effect
transistor (FeFET)-based analog weight cell] in series with a two-
terminal Ag/HfO2 stochastic selector element. By changing the
inherent stochastic switching of the selector element between the
insulator and the metallic state, the Bernoulli sampling of the
conductance states of the FeFET can be performed. Moreover,
the multiplicative noise dynamics has a key side effect of self-
normalizing, which performs automatic weight normalization
and prevention of internal covariate shift in an online fashion.
The conductance states of the eNVM in the crossbar array (which
performs row-wise weight update and column-wise summation
operations in a parallel fashion) are adapted by weights in
the Deep Neural Network (DNN). In order to implement an
NSM with the same existing hardware architecture, selectively
sampling or reading the synaptic weights Gij with some degree
of uncertainty is required. A selector device as a switch has
been employed, stochastically switching between an ON state
(representing ξij = 1, ξijgenerated for each of the synapse and is a
random binary variable) and an OFF state (ξij = 0). Figure 4B
depicts an input voltage V in3 applied to a row of the synaptic
array with conductance states G = {G1, G2, G3, G4,. . ., GN},
and based on the state of the selectors in the cross-points, an
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FIGURE 4 | An NSM implemented in hardware using crossbar array architecture. (A) The utilized NSM with an input layer, three hidden layers, and an output layer.
(B) The stochastic selector device used for injecting Bernoulli multiplicative noise is placed at each cross-point connected to an analog weight cell implemented
using eNVMs. The stochastic selector element provides the selectively sampling or reading the synaptic weights Gij with some degree of uncertainty controlled by
random binary variables ξij.

output weighted sum current Iout = {0, G2.V in3, 0, G4.V in3, 0}
is obtained, which is exactly the same as multiplying the weight
sum of WijZj (Zj, is the activation function of the neuron j) with
a multiplicative noise ξij.

For Bayesian inference, the hardware NSM captures
uncertainty in data and produces classification confidence.
To this end, in Dutta et al. (2021), the hardware NSM has
been trained on the full MNIST dataset. During the inference
mode, the performance of the trained NSM on continuously
rotated images has been evaluated where, for each of the rotated
images, 100 stochastic forward passes are performed and the
softmax input (output of the last fully connected hidden layer
in Figure 4A) as well the softmax output were recorded. The
NSM will correctly predict the class corresponding to an input
neuron if the softmax input of a particular neuron is larger than
all the other neurons. However, as the images are rotated more,
even though the softmax output can be arbitrarily high for, e.g.,
neuron 2 or 4 predicting that the image are 2 or 4, respectively,
the uncertainty in the softmax output is high, showing that the
NSM can account for the uncertainty in the prediction. The
uncertainty of the NSM has been quantified by looking at the
entropy of the prediction, defined as H = −

∑
P∗log(P), where p

is the probability distribution of the prediction. When the NSM
makes a correct prediction, the uncertainty measured in terms of
the entropy remains 0. However, in the case of wrong predictions,
the uncertainty associated with the prediction becomes large.
This is in contrast to the results obtained from a conventional
MLP network (deterministic neural network) where the network
cannot account for any uncertainty in the data.

NEW COMPUTING ARCHITECTURE
WITH NONVOLATILE MEMORY
ELEMENTS FOR BAYESIAN NETWORK
IMPLEMENTATION

In this section, several Bayesian network implementation systems
will be discussed that make use of new nonvolatile magnets

and CMOS circuit elements. We will first explain FPGA-
like architectures and then discuss developed spintronic-based
inference systems.

Direct Physical Equivalence
Implementation of Bayesian Networks
In Khasanvis et al. (2015a), in addition to transistors, strain-
switched magneto tunneling junctions (S-MTJs) are used for a
Bayesian hardware implementation. S-MTJs as nonvolatile
devices provide low switching energy (Atulasimha and
Bandyopadhyay, 2013). As shown in Figure 5A, it has four
terminals and the resistance between reference and output
terminals can be changed by the two input digital voltage
terminals change. It shows hysteresis in resistance vs. voltage
characteristics that provides non-volatility. Khasanvis et al.
(2015a) represents a mindset of physical equivalence, which
means each digit in the probability representation is mapped
directly (without any abstraction layer) to S-MTJ resistance
with equivalent digital voltage representation (Figure 5B),
while the proposed work in Faria et al. (2018) and Debashis
et al. (2020) need the PSL abstraction level to map Bayesian
networks in hardware.

For encoding, n spatially distributed digits p1, p2,. . ., pn have
been defined (Figure 5B), each digit pi can be any one of k values,
the number of states of the physical device (e.g., for devices with
two states, k = 2 and pi ∈ {0, 1}). The encoded probability P is
defined by: P =

∑n
i = 1 pi

n(k−1) , which is called a flat linear representation
(resolution is determined by the number of digits n). These
digits have been physically represented in resistance domains
using two-state S-MTJs, where Rlow represents digit 1 and Rhigh
represents digit 0. For Bayesian computations in hardware, it is
necessary to have analog arithmetic functions such as probability
addition and multiplication. Figures 5C–E depict arithmetic
composers, which are operating intrinsically on probabilities as
elementary building blocks. Figures 5C–E show the addition
composer, multiplication composer, and add–multiply operation
composer, respectively, as well as support circuits such as
amplifiers, implemented with CMOS operational amplifiers.

Frontiers in Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 728086

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-728086 November 27, 2021 Time: 10:35 # 8

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 5 | Probability encoding via Strain-switched Magneto-Tunneling Junction (S-MTJ) device. (A) A S-MTJ Device. (B) Probability data encoding by spatially
distributed digits, and two-state S-MTJs for physically equivalent representations. Probability value P = 0.4 has been encoded with 10 digits (resolution of 0.1).
Probability composer framework. (C) Addition composer. (D) Multiplication composer. (E) Add–Multiply composer. Physically Equivalent Architecture for Reasoning
(PEAR). (F) Tree Bayesian Network. (G) Mapping every node in a Bayesian network graph to a Bayesian cell (BC) on PEAR. (H) Flat-Radix information representation
pattern. Probability is encoded in segments where each segment has a radix arrangement and contains flat elements. (I) Probability data encoding by the proposed
information representation scheme, and S-MTJs for physically equivalent representations.

In Khasanvis et al. (2015a), thanks to the analog arithmetic
composers, a paradigm departure from the Von Neumann
paradigm has been developed that uses a distributed Bayesian
cell (BC) architecture. In this architecture, each BC maps a
Bayesian variable in hardware as physical equivalence, shown
in Figures 5F,G, named Physically Equivalent Architecture
for Reasoning (PEAR). BCs are constructed from probability
arithmetic composers and are used to include CPTs, likelihood
vectors, belief vectors, and prior vectors; BCs locally store these

values continuously and perform inference operation, removing
the need for external memory (Khasanvis et al., 2015a). Metal
routing layers are used for BC interconnection. This connectivity
is programmable through reconfigurable switch boxes (SBs)
(similar to FPGAs) to map arbitrary graph structures.

Bayesian networks using binary trees, as shown in
Figures 5F,G, have been mapped directly in hardware on
PEAR. This computing architecture scales the number of
variables to a million. Although for a resolution of 0.1, it gains
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three orders of magnitude efficiency improvement in terms of
runtime, power, and area over implementation on 100-core
microprocessors, it does not support efficient scaling for higher
resolutions. To increase the resolution, it is needed to change
the abovementioned flat linear representation that increases
area linearly (where a single probability value requires multiple
physical signals). To this end, as shown in Figures 5H,I, another
S-MTJ-based circuit paradigm leveraging physical equivalence
with a new approximate circuit-style has been reported (Kulkarni
et al., 2017a), where the computation resolution is 1/(nM)
where M is the number of Radix segments where each segment
is composed of flat elements. This is a new direction on
scaling computational resolution, which is a hybrid method
for representing probabilities, aiming to provide networks with
millions of random variables. Here, precision scaling provides
much lower power and performance cost than in Khasanvis et al.
(2015b) for PEAR implementation via offering area overhead at
a logarithmic vs. linear scale. Results show a 30× area reduction
for a 0.001 precision vs. prior direction (Khasanvis et al., 2015a)
while obtaining three orders of magnitude benefits over 100-core
processor implementations.

Stochastic Hardware Frameworks for
Learning Bayesian Network Structure
A Bayesian network has two major aspects: the structure of
the graph and the parameters in the CPT and determining the
structure of a Bayesian network is known as structure learning.
In Kulkarni et al. (2017b), the stochastic behavior of emerging
magneto-electric devices is used to accelerate the structure
learning process of Bayesian learning, which results in reducing
the runtime by five orders of magnitude for Bayesian inference.
For structure learning, based on the data, an algorithm starts
with a random graph, then a scoring mechanism determines
how well the structure can explain the data, where this quality
is typically a mix of simplicity and likelihood. The graph
structure is updated based on the score; as a graph provides a
better score, it is accepted. To perform scoring, the framework
should support mapping of arbitrary Bayesian networks; hence,
configurability is necessary. The proposed design employs an
FPGA-like reconfigurable architecture constructed from a set
of programmable SBs and Stochastic Bayesian Nodes (SBNs).
For scoring a Bayesian structure, nodes are mapped into SBN
and the connectivity between nodes is implemented by SBs
(Figures 6A,B).

Stochastic Bayesian Nodes represents a node in a Bayesian
network. The node consists of multiplexers, a digital pulse width
modulator (DPWM), and perpendicular magnetic anisotropy
spin transfer torque magnetic tunnel junctions (PMA-STT
MTJs). The switching operation of PMA-STT MTJ is probabilistic
and directly controlled via modulating the duration of the
applied current; this unique property has been employed to
design circuits to perform probabilistic operations. As shown
in Figure 6A, the CPT values are preconfigured in the SRAM
cell. An appropriate CPT value to be sent to the DPWM is
selected by multiplexers based on the output of the parent SBN.
A DPWM generates voltage pulses with precise duration. Once

the pulse corresponding to the CPT value is fed to the MTJ,
the output is stored in a flip-flop. The output of the flip-flop
is available for read-out and is also sent to the next node. The
configured Bayesian structure is stochastically sampled to reach
sufficient statistics. The sampled data are employed to calculate
the Bayesian score of that structure, through Equation (2).

Through this hardware acceleration of the structure discovery
(via scoring mechanism) process of Bayesian learning, the
runtime for Bayesian network inference has been highly reduced
(Kulkarni et al., 2017b). This property attracts more attention to
structure learning acceleration and turns out to be a promising
field to be studied.

Stochastic Bitstream Generator Blocks
for Bayesian Network Implementation
In Jia et al. (2018), the inherent stochastic behavior of
spintronic device, MTJs, has been used to build a stochastic
bitstream generator (SBG), which is critical for the Bayesian
inference system (BIS).

Figures 7A,B describe the diagram of the proposed BIS
in Jia et al. (2018). A SBG block consists of a RNG and
a comparator, which together generate the corresponding bit
stream (Figure 7A). The input of BIS is shown in Figure 7B,
which is a series of bias voltages proportional to evidence
or likelihood. These evidences or likelihoods may come from
sensors of different platforms. The SBG matrix and the SC
architecture are two key components of a BIS. The SBG matrix is
employed to translate the input voltages to stochastic bitstreams.
The stochastic computing architecture is constructed by simple
logic gates such as AND gate and scaled addition implemented
by a multiplexer (MUX) and takes SBs as inputs. Stochastic
computing block implements Bayesian inference by a novel
arrangement of logic gates.

For an SBG, the small margin input voltages (Jia et al., 2018)
is highly problematic when it generates the output probability.
Digital-to-analog converters (DACs) with high precision are
needed for precise mapping from digital probabilities to
voltages. In addition, tackling the nonlinear relationship between
probabilities and voltages is difficult and a slight noise or
process variation may translate a probability to a wrong voltage
value. In order to address these limitations, for the specified
applications a prebuild SBG array utilizing SBG sharing strategy is
employed. It is implemented by hybrid CMOS/MTJ technologies
named spintronic-based Bayesian inference system (SPINBIS)
(Figure 7C). The aim of proposing the SPINBIS is to enhance the
stability of SBG and to use a smaller number of SBGs (Jia et al.,
2020). The outcome probability of each SBG is predetermined
and is then multiplexed through the switch matrix, which is a
crossbar array. This crossbar array is constructed from transistors
implemented at cross points, which are controlled by the switch
controller. Since the SBG array is prebuilt, it should provide
enough kinds of bitstreams to have an accurate stochastic
computing block. In order to improve the energy efficiency and
speed of SBG circuit, a state-aware self-control mechanism is
utilized. Thanks to the SBG sharing property, the inputs with
the same evidence can be modeled by the bitstream of the same
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FIGURE 6 | Design flow for structure learning in Bayesian networks. (A) Building blocks of Stochastic Bayesian Nodes (SBN). (B) Every node in a Bayesian network
is mapped to an SBN reconfigurable framework. The links of the Bayesian network are implemented with metal routing layers and the connectivity programmed
through switch boxes. Stochastic bitstream generator blocks for Bayesian network implementation.

FIGURE 7 | (A) Stochastic bitstream generator (SBG) block design. (B) Stochastic Bayesian inference system. (C) Spintronic-based Bayesian Inference System
(SPINBIS) diagram work in this figure (switch matrix).

SBG. However, for the inputs that are related together by one
or more logic gates, which are called conflicting inputs, sharing
the same SBG is problematic and is not allowed. The SBG
sharing mechanism provides a much smaller number of SBGs
compared with the input terminals of stochastic computing logic
since the non-conflicting terminals are allowed to share the same
bitstream. For data fusion applications, SPINBIS provides 12×
less energy consumption compared to the MTJ-based approach
(Jia et al., 2018) with 45% area overhead and about 26× compared
to the FPGA-based implementation. On the other hand, the
relation between probability and voltage is not very smooth; as
a result, the stability of the proposed SBG needs improvement.
Although the scale can be reduced, the switch matrix can show a
congestion problem; hence, the reduction of the scale of SPINBIS
is also worth exploring.

BAYESIAN INFERENCE HARDWARE
IMPLEMENTATION WITH DIGITAL LOGIC
GATES

In this section, digital implementation of Bayesian inference
will be discussed. First, we describe an implementation of

Bayesian inference on HMM structures in digital logic gates.
Next, an approximate inference algorithm based on a novel
abstraction defined by stochastic logic circuits and some other
hardware implementations of MRFs will be explained. Then, we
describe C-Muller circuits as implemented with standard cells for
Bayesian inference. Finally, we discuss probabilistic nodes based
on CMOS technology. Hardware implementation of Bayesian
inference employs the HMM network.

Hardware Implementation of Bayesian
Inference Employing Hidden Markov
Model Network
In Thakur et al. (2016), a hardware implementation of an
HMM network has been proposed that utilizes sequential Monte
Carlo (SMC) in SNNs. An HMM shown in Figure 8A models
a system defined by a process that generates an observable
sequence depending on the underlying process (Yu et al., 2018).
In an HMM, Xt and Y t represent the signal process and the
observation, respectively. In a first order HMM, Y t , is considered
as a noisy function of Xt and the development of a hidden
state depends only on its current state. Xt is computed by its
posterior distribution based on the noisy measurements or Y t.

Frontiers in Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 728086

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-728086 November 27, 2021 Time: 10:35 # 11

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 8 | FPGA implementation of different Bayesian networks (A) An HMM architecture, in which the random variables X t and Y t are the hidden state at time t
and the observation at time t, respectively (conditional dependencies are shown by arrows). (B) Digital Hardware implementation of HMM algorithm for Bayesian
inference in Thakur et al. (2016). Implement the Gibbs sampling algorithms for Markov random fields in Mansinghka et al. (2008). (C) The schematic and CPT for a O
gate, which flips a coin by specifying the weight on IN as a binary number [e.g., for IN = 0111, P(OUT = 1| IN) = 7/16]. A comparator that outputs 1 if RAND ≤ IN has
been employed for implementing the O gate. (D) The proposed circuit for sampling, for a binomial distribution, utilizes nh bits of entropy to perform sampling while
considering n flips of a coin of weight. (E) Gibbs pipeline, for Gibbs sampler depicting the required operations to numerically sample an arbitrary-size variable.

For a discrete-time problem, Equation (8) defines the first-order
HMM, in which dt and vt denote random noise sequences.

Xt = f (Xt–1, dt),Yt = g(Xt, vt) (8)

The posterior density function P (Xt| Y1:t) is computed
recursively in two steps (i) prediction, and (ii) update. In the
prediction step, the next state is estimated based on the current
state utilizing the state transition model, without making use of
new observations [see Equation (9)]. In contrast, the predicted
state is updated utilizing the new observations at time t as shown
in Equation (10).

P(Xt|Y1:t-1) =
∑
Xt-1

P(Xt|Xt-1)P(Xt-1|Y1:t-1) (9)

P(Xt|Y1:t) =
P(Yt|Xt)P(Xt|Y1:t-1)∑
Xt
P(Yt|Xt)P(Xt|Y1:t−1)

(10)

In Thakur et al. (2016), to estimate a fly’s position at time t, a
digital framework working based on the HMM rule shown in

Figure 8B is utilized, through which a dragonfly tracks a fruit
fly in a randomly flickering background. The sensory afferent
neurons of the dragonfly fire probabilistically, when there is a
fruit fiy or a false target (noise).

Dividing the state space (Xt) into M discrete states reflects
the fly’s (discretized) position at time t. A sensory neuron and
an inference neuronal circuit demonstrate each discrete state.
The fruit fly’s position at time t is predicted by the dragonfly’s
central nervous system through utilizing the statistics of the
output spikes of the sensory afferent neurons until time (t-1), and
updates the prediction when it receives a new observation (Y t), at
time t. Utilizing prediction and update Equations (9) and (10), it
can be written as:

P (Xt | Y1:t) ∝ P (Yt | Xt)
∑
Xt−1

P (Xt | Xt−1)P (Xt−1 | Y1:t−1)

(11)
where P(Y t | Xt) is the likelihood, P(Xt | Xt−1) is the transition
probability, and P(Xt−1| Y1:t−1) is the posterior at the previous
time step. Here, Y ∈ RM, and M denotes the total number of
states. At each time step, for each state, the probability of the
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fly is computed. To this end, a WTA circuit is used to predict
the fruit fly position by finding the maximum a posteriori of the
probability distribution over states.

To predict the position of the fruit fly, the posterior
probabilities of the state space is employed. To this end, an
algorithm is utilized, which is similar to the SMC technique as
a Monte Carlo method, useful for sequential Bayesian inference
(Gordon, 1993). In the proposed framework, spikes denote a
probability distribution over a set of states (i.e., the probability
of a state is proportional to the sum of its spikes) and the RS
(resampling) neuron block encodes the transition model, P(Xt |
Xt−1) through spatial connections (Figure 8B).

The likelihood generator block has a Poisson neuron (PN),
generating spike trains based on its intrinsic firing rate, α and αβ

(α: the probability of firing of the kth sensory neuron, either due
to a fruit fly or a distractor; αβ is a spike when there is no fly, but a
distractor instead). To implement the posterior generator block,
the two subblocks of the Coincidence Detector (CD) neurons
along with the normalization (norm) neural circuits have been
utilized. Since the likelihood spike train does not depend on the
prior spike train, a simple AND logic gate for the CD neuron can
be utilized for the posterior implementation. The output spike
trains of the CD neurons as the posterior probabilities of not
having a fly and having a fly, respectively, are sent to the norm
block to normalize spike trains.

Recurrent connection weights in the framework (shown
by red, orange, and purple arrows in Figure 8B) are based
on the transition probabilities. Spikes from the posterior
distributions of adjacent norm neural circuits by considering
their transition probabilities are sampled for a pathway by the
RS block utilizing an inverse transform sampling approach in a
discrete distribution.

Through collecting statistics of the spikes over many HMM
time steps, the observation model parameters, α and αβ, are
computed. At the start of the learning process, through stochastic
exponential moving average filters (SEMAs), the parameters α

and αβ are initialized and updated at each HMM time step
for each location. An RNG circuit is implemented by the
commonly used linear feedback shift register (LFSR) circuit.
Neuronal building blocks used for implementing the HMM in
Figure 8B are the PN, CD neuron, division, and normalization
neural circuit, LFSR, and SEMA, which all are implemented on
FPGA while all pathways are implemented in parallel on the
FPGA hardware too. The implementation of these frameworks
using simple logic gates will pave the way for stochastic
computing to have digital hardware implementation of Bayesian
inference using other approximation inference algorithms in
spiking networks.

Hardware Implementation of
Approximate Inference Algorithm Using
MCMC With Stochastic Logic Gates
By employing a novel abstraction, called combinational stochastic
logic, probabilities are directly mapped to digital hardware in
a massively parallel fashion (Mansinghka et al., 2008). On each
work cycle, the output of a Boolean logic gate is a Boolean

function of its inputs. Each gate represents a truth table whereas
stochastic gates represent CPTs. Figure 8C shows the CPT and
schematic for a gate called O, which generates flips of a weighted
coin by specifying the weight on its input lines (IN) with h
random bits on RAND. A comparator is utilized to implement
the O gates where the output will be 1 if RAND ≤ IN.

Figure 8D shows a serial circuit composed of a stochastic logic
gate, an accumulator, and a D flip-flop to implement the Gibbs
sampling algorithms for MRFs. For a binomial distribution, this
circuit utilizes nh bits of entropy to perform sampling while
considering n flips of a coin of weight. It provides O(log(n))
space and O(n) time complexity. For a given variable, in order
to implement a Gibbs MCMC kernel, a pipeline platform
depicted in Figure 8E has been proposed (Mansinghka et al.,
2008). Each possible setting while considering its neighbors
under the joint density of the MRF has been scored by the
pipeline and those scores have been tempered. Then, it computes
the (log) normalizing constant and normalizes the energies.
The normalized energies are translated to probabilities, and
finally the pipeline outputs a sample. This pipeline can provide
linear time complexity in the size of the variable by utilizing
standard techniques and with a stochastic accumulator for
sampling (using the circuit in Figure 8D). To this end, a fixed-
point format is utilized to represent the state values, energies
(i.e., unnormalized log probabilities), and probabilities. The
logsumexp(e1,e2) function used for adding and normalizing the
energies and the exp(e1) function used for converting the energies
to probabilities are approximated. Then, the pipeline samples
by exact accumulation. Moreover, numerically tempering a
distribution, i.e., exponentiating it to some, can be utilized as
energy bit shifting.

The proposed stochastic circuits have been implemented on
Xilinx Spartan 3 family FPGAs. Typically large quantities of truly
random bits are needed for stochastic circuit implementation. In
almost all Monte Carlo simulations high quality pseudorandom
numbers are used. For the FPGA implementation in Mansinghka
et al. (2008), the XOR-SHIFT pRNG (Marsaglia, 2003) is used.

In order to develop more sophisticated circuits, such as circuits
for approximate inference in hierarchical Bayesian models, which
is a challenging research field, it is needed to combine the
stochastic samplers with stack-structured memories and content-
addressable memories (Shamsi et al., 2018; Guo et al., 2019).
Moreover, directly using sub-parts from the proposed Gibbs
pipeline to implement more sophisticated algorithms, including
SMC methods and cluster techniques like Swendsen-Wang, is a
promising research effort for the future.

There are a couple of works that provide MRF implementation
for different applications via utilizing FPGA, application-specific
integrated circuit (ASIC), graphics processor unit (GPU), and
hybrid implementation via CPU+FPGA. Gibbs sampling as a
probabilistic algorithm is utilized to solve problems represented
by an MRF. In Gibbs sampling method, all random variables
in MRF are iteratively explored and updated until converging
to the final result (Bashizade et al., 2021). Ko and Rutenbar
(2017) explores sound source separation while considering real-
time execution and power constraints to isolate human voice
from background noise on mobile phones. The implementation
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uses MRFs and Gibbs sampling inference, which demonstrates
a real-time streaming FPGA implementation that achieves a
speedup of 20× over a conventional software implementation. In
addition, the approach also has a preliminary ASIC design-based
implementation, which requires fewer than 10 million gates, with
a power consumption of 52× better than an ARM Cortex-A9
software reference design. For more ASIC optimization, it is
necessary to use a lower-power technology library and design
optimization for lower memory usage.

In Seiler et al. (2009), an optimization framework utilizing a
hierarchical Markov-random field (HMRF) implemented on a
GPU is presented to deal with prediction/simulation of soft tissue
deformations on medical image data. A method that combines
mechanical concepts into a Bayesian optimization framework
has been proposed (Seiler et al., 2009). This method has been
implemented on a GPU and has been defined and solved under
an HMRF approach. Providing an HMRF feature is an appealing
technique that is able to solve the proposed stochastic problem
since it was found that local minima are avoided. Where using
a hierarchical approach and in addition, the nature of the
hierarchical approach leads to a straightforward implementation
in the GPU. It is assumed that the number of hierarchical levels
on the number of iterations for the model to converge has a
strong influence, which can be further explored in the future.

In Choi and Rutenbar (2013, 2016) to demand fast and high-
quality stereo vision, a custom hardware-accelerated MRF system
has been proposed for 3D gesture recognition and automotive
navigation. The stereo task has been modeled as statistical
inference on an MRF model and shows how to implement
streaming tree-reweighted message-passing style inference at
video rates. To provide the required speed, the stereo matching
procedure has been partitioned between the CPU and the FPGAs.
This partitioning provides using both function-level pipelining
and frame-level parallelism. Experimental results show that this
system is faster than several recent GPU implementations of
similar stereo inference methods based on belief propagation.

As can be seen, there are still open windows to utilize new
emerging nonvolatile devices and crossbar arrays to implement
MRFs rather than just utilizing FPGA, ASIC, GPU, and
hybrid implementations (CPU + FPGA). Moreover, refining
the algorithms to make them more amenable to hardware
implementations is needed while keeping the accuracy high.

Muller C-Element Based Bayesian
Inference
In order to calculate the probability of an event V, Bayesian
inference incorporates the probability of V given the prior
P(V) and evidence input E1 as in Equation (12), where, with
parameter as defined by Equation (13), Equation (14) gets
rewritten as Equation (15).

The Muller C-element reported in Friedman et al. (2016),
a two-input memory element, characterized by the truth table
of Figure 9A, and shown in Figure 9B, performs the complete
inference of Bayes’ rule. The output Z keeps its state, Zprev
while both inputs X and Y are opposite the current output
state; afterward, it switches to the shared input value. A Muller

C-element is able to compute Equation (14), thereby enabling
efficient inference circuits. Note that input signals i with
switching probabilities ai and bi for 0- > 1 and 1- > 0 switching,
respectively, show no autocorrelation if ai + bi = 1. Then,
considering no autocorrelation for input signals, the output
probability is defined by Equation (15) for C-element, where
P∗(E1), P(V), and P(V | E1) are substituted by for P(X), P(Y), and
P(Z). The reported Equation (15) is equivalent to Equation (14),
representing the Bayesian inference provided by C-elements.

P(V|E1) =
P(E1|V)P(V)

P (E1 | V)P (V)+ P(E1|V)P(V)
(12)

P∗(E1) ≡
P(E1|V)

P(E1|V)+ P(E1|V)
(13)

P(V|E1) =
P∗(E1)P(V)

P∗(E1)P (V)+ (1−P∗ (E1) )(1−P (V) )
(14)

P (Z) =
P(X)P(Y)

P(X)P(Y)+ (1−P(X))(1−P(Y))
(15)

Clocked bitstreams in stochastic computing are utilized to encode
probabilistic signals permitting complex computations with
minimal hardware and significantly improve the computation
power consumption and inference speed when compared with
conventional methods. Stochastic computing is not an exact
computing technique and the slight loss of accuracy arises from
several reasons. Compared to fixed or floating-point methods,
in stochastic computing, the probability values P are usually
translated to a stochastic bitstream with a lower quantization
accuracy and the correlations between bitstreams usually lead to
the loss of accuracy, since these bitstreams are usually generated
by pseudo RNGs. Addressing this inherent imprecision and
correlations need novel design techniques.

In Friedman et al. (2016), the number of “1”s in a bitstream
encodes its probability and has nothing to do with the position of
the 1 bits. In a stochastic bitstream, to represent a state switching
probability a (b), i.e., the dynamics of a 0-> 1(1-> 0) switching,
the probability R defined as R = a/(a+b). For an uncorrelated
bitstream (i.e., a+b = 1), the probability is equivalent to R = a,
where being “1” has a probability of R and being “0” has a
probability of 1-R. Then, the switching rate for an uncorrelated
bitstream is defined by Equation (16):

S = 2R(1-R) = 2a(1- a) (16)

The C-element outputs a stochastic bitstream, which is
probabilistic and converging more slowly toward the exact
Bayesian inference. If the switching rate of the output was low,
the longer “domains” of consecutive “0”s and “1”s are needed and
it leads to a more imprecise bitstream. Hence, more computation
time is required to provide a precise output.

For multi-input Bayesian inference calculation, utilizing
multi-stage C-element circuits is necessary, which would need
one additional cycle per stage to compute a bitstream. On the
other hand, the floating-point circuit provides a highly precise
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FIGURE 9 | Digital implementation of Bayesian inference. (A) Muller C-element truth table in Friedman et al. (2016). (B) Standard cell C-element design of Muller
C-element. PCMOS-based Bayesian network in Weijia et al. (2007). (C) p-switch circuit implementation block. (D) Probabilistic generating cells (PGCs) block.
(E) The inference system utilizes a probabilistic generating block and a logic network.

output while needing multiple pipelined computations and a
long characteristic delay time. Hence, the C-element structure’s
performance benefit is dependent on the required precision for
the specific application.

For embedded decision circuits, where different independent
sources of evidence are considered, for computing the
probability of an event, C-element trees can provide direct
stochastic hardware implementation. However, exploring
the autocorrelation and inertia mitigation through signal
randomization is required for further studies. For extreme inputs
with low switching rates, the loss of accuracy is significantly
increased. By increasing the length of the bitstream, the output
signals converge in a polynomial manner to Bayesian precise
inference. In addition, C-element trees have larger errors for
opposing extreme input combinations. It is mentioned that
this type of input and the error can be considered as strong
conflicting evidence and the inference uncertainty, respectively.

The standard cells from Synopsys (Synopsys, 2012)
SAED-EDK90-CORE library are used (Tziantzioulis et al.,
2015) for C-Muller module implementation. For a two-
input Bayesian inference implementation the standard cells

have been employed and the simulation results showed
that the floating-point circuit utilizes 16,000× area more
than a C-element. This is due to the fact that for a two-
input inference problem, just one C-element is required
while the conventional floating-point circuit needs addition,
multiplication, and division units. Also, for multi-input
Bayesian inference, the C-element still outperforms the
floating-point circuit.

Probabilistic CMOS Based Bayesian
Inference
In Weijia et al. (2007), probabilistic CMOS (PCMOS) technology
has been used to implement RNGs to create a highly randomized
bit sequence suitable for inference in a Bayesian network.
A PCMOS-based RNG is composed of the PCMOS switch or
p-switch, which is a CMOS switch with a noise source coupled
at its input node. Figure 9C shows a p-switch block. The resistor
is employed as a source of thermal noise, which follows the
Gaussian distribution. An amplifier is used to amplify the noise
signal to have a comparable signal with supply voltage.
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The inference system is shown in Figure 9E, composed
of probabilistic generating block and logic network. The
probabilistic generating block generates random bits with
different probabilities, and the logic network defines the edges
between the nodes in a Bayesian network. The probabilistic
generating block is composed of a number of probabilistic
generating cells (PGCs), each of which generates a “1” bit with
a probability. A PGC shown in Figure 9D is made up of a
p-switch, a buffer, and a flip-flop. The buffer constructed from
two inverters strengthens the output signal of the switch. The flip-
flop, formed by two D latches, synchronizes the PGCs. Arithmetic
operations (addition and multiplication in Bayesian network)
computed in computers require a lot of time and energy. Here,
two simple logic gates (an AND gate and an OR gate), together
with some inverters, are employed to construct the logic network.
To determine the approximate probability of the output at each
node, a simulation has been performed to generate a 10,000-bits
sequence at each node and then measure the “1”-bits in each
sequence. The PCMOS-based hardware implementation of the
Bayesian network outperforms the software counterpart in terms
of energy consumption, performance, and quality of randomness.
However, making use of mixed-signal implementations needs
paying attention to noise and variation sources as well as
examining the multiple independent sources of evidence for
embedded decision circuits that require circuit design remedies.

CROSSBAR ARRAYS FOR BAYESIAN
NETWORKS IMPLEMENTATION

In this section, two brain-inspired hardware implementations
of inference in naïve Bayesian (NB) classifiers will be discussed.
These implementations use memristors as nonvolatile elements
for the inference algorithm implementation. Bayesian reasoning
machine with magneto-tunneling junction-based Bayesian
graph is explained.

Crossbar Arrays for Naïve Bayesian
Classifiers
A crossbar array of memristors is a promising hardware platform
for Bayesian processing implementation in a massively parallel
and energy-efficient way (Yang et al., 2020). Figure 10A depicts
a schematic view of a memristor cell, in which a storage layer
is sandwiched between the top and bottom electrodes, and the
conductance of the device is dependent on the applied voltage.
Figure 10B shows a crossbar array; it represents a maximum
area efficiency of 4F2 per cell (Wu et al., 2019). Memristor
crossbar arrays provide a natural implementation of matrix-
vector multiplication (MVM). The current flowing through a
memristor cell at the wordline x and bitline y is equal to Vxg(x,y).
Here, V i is the voltage applied to the wordline x and g(x, y) is
the conduction of the cell. The total current through the bitline y
is
∑

x Vx g(x, y), which implements a dot product of Vx. g(x, y).
The algorithmic complexity of MVM is reduced from O(n2) to
O(1), which makes them a promising computing paradigm for
different machine learning applications (Wu et al., 2019).

To perform Bayesian inference, Figure 10C shows a
memristive crossbar array where a discrete distribution
represented by a voltage is injected to the wordlines, the
conditional probability P(B| A) translate to the memristor
conductance, and all bit-lines are virtually earthed. Utilizing
the current summing action of the crossbar bitlines, the current
of each memristor is proportional to P(B| A)·P(A) = P(A, B),
which is marginalized to P(B). Finally, inputs are multiplied by
memristor conductances (gk) and exit as currents.

In analog systems, due to the noise, mismatch, and other
variation sources, the input vectors do not necessarily meet the
fact that the probability distributions of random variables must
sum up to 1. To this end, the “normalizer” circuit is employed
as a supporting module. Moreover, utilizing a linear method to
convert the probability into voltage levels or memristor resistive
states limits the dynamic range of the probability. That is, very
small probability values may be translated into voltages below
the noise levels in the system (Serb et al., 2017). However, the
normalizers could scale these values when they are very low,
but similar. It turns out to be problematic if there are very
large probability values as well as very low ones in the same
distribution. To solve this issue, it has been suggested that the
resistive state/voltage needs to be mapped to the log probability
domain (Wu et al., 2019).

Naïve Bayesian classifiers assume that the feature variables
are all independent of each other (Serb et al., 2017) and the
classification is based on the Bayesian theorem. For a test instance
x, represented by an attribute value vector (A, B), the NB finds a
class label c that provides the maximum conditional probability
of c given A, B.

In Serb et al. (2017), a small graphical model for the prediction
of potential health issues (Figure 10D) has been supposed to
be implemented in memristor crossbar arrays, where A shows
the air quality as A ∈ {bad, medium, good}, and B shows the
corresponding heartbeat of the patient for two different activities
B ∈ {resting, exercising}. Then, by considering random variables
A, B, in order to predict the probability of a health crisis, and
thus to clarify whether to warn the patient, i.e., C ∈ {safe, crisis}
with a classic NB classifier, the goal of NB is to find a class label c
that has the maximum conditional probability of c given A, B (as
attributes):

C∗ = maxC{P (C|A,B)}

where P (C|A,B) α P (A|C)P (B|C)P (C) (17)

C∗ is defines as the maximum a posteriori estimate.
Figure 10E depicts the hardware implementation process of

the proposed NB framework. With air quality level A as input
and the crisis level prediction C as an output, first, a crossbar
stores P(A, C) = P(A| C)P(C), before factoring heart rate B in.
Then, the output is sent in parallel to two arrays of memristors
that maintain P(B = resting | C) and P(B = exercising | C),
respectively. Based on the heartbeat B, one of the two outputs
would be selected to put into the normalizer to calculate P(C|
A, B). Finally, the max-finder module finds the estimate C∗. This
inference platform depicts that with the crossbar arrays as well

Frontiers in Neuroscience | www.frontiersin.org 15 December 2021 | Volume 15 | Article 728086

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-728086 November 27, 2021 Time: 10:35 # 16

Bagheriye and Kwisthout Brain-Inspired Hardware for Bayesian Inference

FIGURE 10 | (A) Schematic of the memristor device in which the device’s active material is surrounded by two electrodes [top (wordline) and bottom (bitline)].
(B) Ohm’s law: i = g. V is utilized to perform multiplier operation. (C) The crossbar array is used as a Bayesian inference system. (D) Graphical model for Bayesian
network. (E) Implementation of the Bayesian classifier. (F) Implementation of the naïve Bayesian classifier for a network of two attributes. (G) Implementation of a
different way to calculate Ic. In this method, the weight of the ith attribute (wi ) is stored in the cell resistance.

as utilizing a cascade of small modules, it is able to scale to more
complicated graphical models.

As discussed above, by directly employing the multiply
accumulate capabilities of the crossbar array, the inference can be
performed. During learning, as new data arrives, the conditional
probability matrix needs to be updated; thus, the devices in the
crossbar need to be programmed. The conductance stability and
the energy efficiency of memristor switching, i.e., how many
attempts are needed to reach the memristors desired state,
determine the energy, speed, and circuit complexity cost of the
probability updates (Serb et al., 2017). In Equation (17), it has
been assumed, given the class, that all attributes (A, B) are fully
independent of each other. The classification accuracy would be
harmed when this assumption is violated in reality.

Wu et al. (2019) propose another analog crossbar computing
architecture to implement the NB algorithm while considering
the abovementioned concerns. It assigns every attribute a

different weight to indicate different importance between each
other. This assignment relaxes the conditional independence
assumption. The prediction formula is formally defined as:

C∗(x) = max{P(c)P(A|c)wAP(B|c)wB}, c ∈ C (18)

where wA and wB are the weight of attributes A and B,
respectively. The NB classifier in Equation (17) is a special
case of the Weighted NB (WNB) classifier when wA and
wB are equal to 1.

Naïve Bayesian formula [Equation (18)] transformation to the
crossbar array Equation (18) cannot be directly applied to the
Memristor crossbar array (concern 1). So, a log(•) operation is
applied because P(•) ∈ (0, 1). log P(•) is a negative value that
cannot be represented by the conductance of memristor cells as
the conductance is always positive; then, ρ(•) denotes -log P(•)
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and then Equation (18) is rewritten as:

C∗(x) = min{ρ(c)+wA · ρ(A|c)+ wB.ρ(B|c)} c ∈ C

q(c) = ρ(c)+wA.ρ(A|c)+wB.ρ(B|c) (19)

The q(c) rewritten in the form of a dot product v→ . g→ , where
v→ = [1 wA, wB ] and g→ = [ρ (c) , ρ (A | c) , ρ (B | c)]. Hence,
it is feasible to compute q of every class by the MVM.

After training, every prior probability ρ (c) is stored, as well as
every conditional probability ρ(A| c) in the crossbar array in the
form of memristor conductance, where c ∈ C.

For attribute A, voltage wA is applied to the wordline
(Figure 10F) and the current gathered on this sub-bitline (IA

c).
With the addition of ρ(c), the final result is obtained as current on
one bitline. Multiple bitlines together give answers of Equation
(19) to all classes. Optimization has also been proposed to the
input voltage. Due to the I–V nonlinearity of the ReRAM cell,
the analog input voltage (i.e., wi) might result in inaccuracy.
The weight wi is included in the cell conductance shown in
Figure 10G.

The simulations show that the design offers a high runtime
speedup up with negligible accuracy loss over the software-
implemented NB classifier. This brain-inspired hardware
implementation of NB algorithm as well as providing insights
from techniques like mean-field approximation (Yu et al., 2020)
will help to find an optimal balance between structure and
independence, using hardware feasibility considerations and
independence assumptions as mutually constraining objectives,
which can be a promising research field.

Bayesian Reasoning Machine With
Magneto-Tunneling Junction-Based
Bayesian Network
Predictions from Bayesian networks can be accelerated by a
computing substrate that allows high-speed sampling from the
network. Nasrin et al. (2020) provide the development of such
a platform to map an arbitrary Bayesian network through an
architecture of the MTJ network along with circuits to writing,
switching, and interactions among MTJs. By these means,
electrically programmable sub-nanosecond probability sample
generation, voltage-controlled magnetic anisotropy (VCMA),
and spin-transfer torque (STT) have been co-optimized.
As Figure 11A shows for programmable random number
generation, VCMA, STT (applied via the voltage VCMA), and
magnetostriction, i.e., strain (injected with the voltage VSt), in
an MTJ are co-optimized. To stochastically couple the switching
probability of one MTJ depending on the state of the other,
as Figure 11B depicts, MTJ integration is required, in which
dipole coupling, controlled with local stress, is applied to one
MTJ. This results in electrically tunable correlation between
the bits “A” and “B” (encoded in the resistance states of the
two MTJs), without requiring energy-inefficient hardware like
OP-AMPS, gates, and shift-registers for correlation generation.
To compute posterior and marginal probabilities in Bayesian
networks via stochastic simulation methods, samples of random
variables are drawn to determine the posterior probabilities.

For the platform, mere stochasticity in devices is not enough,
and for a scalable Bayesian network, “electrically programmable”
stochasticity to encode arbitrary probability functions, P(x); x = 0
or 1, is required; moreover, this “electrically programmable”
stochasticity is necessary for stochastic interaction among devices
for conditional probability, P(x| y). In the presence of thermal
noise at room temperature, the “flipping” is stochastic, i.e.,
the magnetization will precess when VVCMA is turned on and
can either return back to the original orientation or flip to
the other orientation. By adjusting the magnitude of VVCMA,
the probability of flipping can be tuned. Therefore, the voltage
VVCMA as a knob controls the probability of getting either “0”
or “1.” The MTJ grid in Figure 11C only enables the nearest-
neighbor correlation, and each node can only have binary states.
For nodes with more than two states, splitting by binary coding
is required. In order to run a general Bayesian network on
the 2D grid, new mapping and graph partitioning/restructuring
algorithms must be developed.

In Figure 11C, an example mapping strategy is shown to
run general edges in a graph. Graph nodes are duplicated by
setting the coupling voltages for perfect anti-correlation. To
perform independent sampling on the MTJ grid, it is required
to map the parent variables on the parent MTJ column and the
children on the successive columns. In the stochastic simulation,
different sampling algorithms on the grid are tested to speed
up the process of sample generation of random variables in a
Bayesian network to compute the posterior probabilities. These
algorithms speed up the inference in Bayesian networks but
can still fall short of the escalating pace and scale of Bayesian
network-based decision engines in many Internet of Things
(IoT) and cyber-physical systems (CPS). With a higher degree
of process variability, prediction error for P(F) increases. By
increasing the size of the components (resistive memory, current
biasing transistor, etc.) as well as post-fabrication calibration,
tolerance to process variability in the proposed design can
be increased. The discussed platform would pave the way for
a transformational advance in a novel powerful generation
of ultra-energy-efficient computing paradigms, like stochastic
programming and Bayesian deep learning.

BAYESIAN FEATURES IN NEURAL
NETWORKS

In this section, employing Bayesian features in neural networks
is represented. To this end, first Bayesian neural networks are
explained. Then, Gaussian synapses for PNNs will be introduced.
Afterward, a PNN with memristive crossbar circuits is described.
At the end of this section, approximate computing to provide
hardware-friendly PNNs and an application of probabilistic ANN
for analyzing transistor process variation are explained.

Bayesian Neural Networks
Bayesian deep networks define the synaptic weights with a sample
drawn from a probability distribution (in most cases, Gaussian
distributions) with learnt mean and variance and inference
based on the sampled weights. In Malhotra et al. (2020), the
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FIGURE 11 | Stochastic random number generation utilizing MTJs with programmable probability. (A) MTJ with VCMA and STT (applied via the voltage VVCMA). For
programmable random number generation, the magnetostriction, i.e., strain (controlled with the voltage VSt) can be co-optimized. (B) MTJ integration utilizing the
effect of dipole coupling (controlled with local stress applied to one MTJ) can be used to couple the switching probability of one MTJ depending on the state of the
other. Thereby, the correlation between the bits “A” and “B” can be controlled via the resistance states of the two MTJs. (C) MTJ network-based Bayesian reasoning
machine to show an example mapping of Bayesian graph on 2D nanomagnet grid.

gradual reset process and cycle-to-cycle resistance variation of
oxide-based resistive random access memories (RRAMs) and
memristors have been utilized to perform such a probabilistic
sampling function.

Unlike standard deep networks, defining the network
parameters as probability distributions in Bayesian deep
networks allows characterizing the network outputs by an
uncertainty measure (variance of the distribution), instead of just
point estimates. These uncertainty considerations are necessary
in autonomous agents for decision-making and self-assessment
in the presence of continuous streaming data. In Bayesian
formulation, defined by Equation (20), P(W) represents the
prior probability of the latent variables before any data input
to the network and P(D| W) is the likelihood, corresponding
to the feedforward pass of the network. P(W| D) is the
posterior probability density where two popular approaches,

variational Bayes inference methods and Markov chain Monte
Carlo methods, are used to make its estimation tractable.

P (W | D) =
P (D |W)P(W)

P(D)
(20)

In Malhotra et al. (2020) and Yang et al. (2020), the variational
inference approach has been used since it is scalable to large-scale
problems. In the variational inference approach, to approximate
the posterior distribution, a Gaussian distribution, q(W, θ), is
used. q(W, θ) is characterized by parameters, θ = (µ, σ) in
which µ and σ, respectively, are the mean and standard deviation
vectors for the probability distributions representing P (W|
D) [see Equation (21)]. The main hardware design concerns
for implementation of Bayesian neural networks are Gaussian
random number generation block and dot-product operation
between inputs and sampled synaptic weights.
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A Normal distribution with a particular mean and variance is
equivalent to a scaled and shifted version of a Normal distribution
with zero mean and unit variance. This consideration would
allow partitioning the inference equation as shown in Equation
(22). The jk, and σjk are the mean and variance of the probability
distribution of the corresponding synaptic weight. As shown in
Figure 12A, to construct the resultant system, the domain-wall
MTJ memory devices based on two crossbar arrays are used for
the jk and σjk implementation, respectively. While the inputs
of a particular layer are directly applied to the crossbar array
storing the mean values, they are scaled by the random numbers
generated from the RNG unit.

The output of the network, y, corresponding to input, x,
is defined by Equation (21). As all the posterior distributions
are learnt, the network output averages the outputs provided
by sampling from the posterior distribution of the weights, W,
where, f (x,W) is the network mapping for input x and weights,
W.

y = EP(W|D)
[
f(x,w)

]
~Eq(w,θ)

[
f(x,w)

]
~

1
S

s∑
i = 1

f (x,wi) (21)

The approximation is done over S independent Monte Carlo
samples from the Gaussian distribution, q(W,θ). f (x,Wi) for the
jth neuron can be decomposed into Equation (22), by considering
just a single layer and neglecting the neural transfer function.

f (x,wij) =
∑

k

xkN(µjk, σjk)

=

∑
k

xk · (µjk + σjk.N(0, 1))

=

∑
k

xk · µjk
∑

k

xk.N (0,1)σjk (22)

The proposed “all-spin” Bayesian neural processor has the
potential of providing orders of magnitude area, power, and
energy consumption efficiency over the state-of-the-art CMOS
implementations. A significant rethinking of the co-design space
of device circuits and algorithms is necessary for Bayesian
deep learning since it provides a unique computing framework
that combines both deterministic (dot-product evaluations of
sampled weights and inputs) and stochastic computations
(sampling weights from probability distributions).

Gaussian Synapse-Based Hardware
Implementation for Probabilistic Neural
Networks
In the computing revolution era, scaling in the semiconductor
industry is inevitable and has three characteristic aspects: energy
scaling, size scaling, and complexity scaling. Energy scaling
satisfies the situation of the practically constant computational
power budget. Through size scaling, more transistors can
be fabricated in the same chip area, which consequently
provides a faster and cheaper computing system. Complexity
scaling ensures incessant growth in the computational power
of a single on-chip processor. Considering these requirements,

Sebastian et al. (2019) enable the hardware implementations of
PNNs (shown in Figure 12B) via introducing a new class of
analog devices, namely, the reconfigurable Gaussian synapses
based on the heterostructure of atomically thin 2D layered
semiconductors (shown in Figure 12C). The 2D materials satisfy
aggressive size scaling while energy scaling is ensured via analog
Gaussian synapses, and complexity scaling is met by PNNs. Via
threshold engineering of the proposed device, it shows complete
compatibility of amplitude, mean, and standard deviation of
the Gaussian synapse. As shown in Figure 12B, unlike ANN,
which employs multiple hidden layers with a large number
of nodes in each layer, PNN proposed by Specht (1990) is a
supervised learning neural network based on Bayesian decision
rule and is composed of a pattern layer and a summation
layer. PNNs are able to map any input pattern to any number
of output classifications. Furthermore, in ANNs, activation
functions such as sigmoid and rectified linear unit (ReLU) are
used, where various derivatives of these functions have been
utilized to determine the pattern statistics (which are extremely
difficult for non-linear decision boundaries to perform with
reasonable accuracy). In PNNs, parent probability distribution
functions (PDFs) are used for the class probability. PDFs
are approximated by a Parzen window and a non-parametric
function, which is a Gaussian distribution for a Gaussian
kernel (Specht, 1990). In PNNs, arbitrarily shaped decision
boundaries are used, which facilitate the accurate classification
of complex patterns. Moreover, since multivariate Gaussian
kernels are simply generated from the product of univariate
kernels, PNNs can be extended to map higher-dimensional
functions. A reconfigurable Gaussian synapse, with dual-gated
(DG) MoS2 and BP FETs, is shown in Figure 12C. Hydrogen
silsesquioxane (HSQ) was used for the fabrication of the top-
gate dielectric. Nickel/gold was used (Ni/Au) for the top-
gate electrode fabrication for different top-gate voltages (VN).
The back-gate threshold voltage (VTN of the MoS2 FET) is
tuned by VN. The top-gate voltage is tuned to control the
height of the potential barrier for electron injection inside the
MoS2 channel. Moreover, a back-gate voltage conducts current
from the source to the drain terminal. The PNN architecture
has been implemented on brainwave recording data, for each
type of brainwaves. The frequency pattern of the normalized
power spectral density (PSD) is extracted from the fast Fourier
transform (FFT) of the time domain electroencephalography
(EEG) data with increasing sampling times. As the training set
becomes large, the discrete frequency responses of each type
of brainwave evolve into continuous spectrums representing
complex patterns. The functional dependence of the PSDs on
the frequency makes the system highly nonlinear. Hence, using
conventional ANNs can be challenging for the classification of
brainwave patterns. To provide reasonable accuracy in ANNs,
optimum training algorithms and extensive feature extraction
and preprocessing of the training sample are required, while
PNNs provide single-pass learning. This learning mechanism
happens via defining the class PDF for each of the brainwave
patterns in the frequency domain through employing the
Gaussian mixture model (GMM). As described by Equation (23),
GMM is represented as the weighted sum of a finite number of
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FIGURE 12 | (A) All-spin Bayesian neural network implementation. The RNG unit performs sampling operation from Gaussian random number generators and the
two crossbar arrays provide the “In-Memory” computing kernels (Malhotra et al., 2020). (B) The structure of the Probabilistic Neural Network (PNN) model (Gaussian
Synapse based PNN) translates any input pattern to any number of output classifications through using a pattern layer and a summation layer. (C) Schematic of a
reconfigurable Gaussian synapse composed of dual-gated n-type MoS2 and p-type black phosphorus (BP) back-gated field-effect transistors (FETs). Hydrogen
silsesquioxane (HSQ) was used as the top-gate dielectric and nickel/gold (Ni/Au) was used as the top-gate electrode. (D) PNN Architecture for Brainwave
recognition. The amplitude of the FFT data is passed from the input layer to the pattern layer as drain voltage (VD) of the Gaussian synapses, and the frequency
range is mapped to the back-gate voltage (VG) range. The summation layer integrates the current over the full swing of VG from the individual pattern blocks and
communicates with the winner-takes-it-all (WTA) circuit and then the output layer recognizes the brainwave patterns. (E) The architecture of the PNN (Akhmetov and
Pappachen, 2019) is implemented with crossbar arrays where each class has been implemented with a crossbar array where NTR denotes the total size of the
training set (classes). (F) Block diagram of the hidden layer block.
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scaled (different variance) and shifted (different mean) normal
distributions. ψI as component weights, µi as component means,
and σi

2 as variances are for parameterizing a GMM with K
components through which the total probability distribution
must normalize to unity.

P(x) =
k∑

j = 1

ψiN
[
x
µ i
, σi

]
;N

[
x
µi
, σi

]

=
1√
2ψ2

i

· exp
−
(x−µi)

2

2σ2
i ;

k∑
j = 1

ψi = 1 (23)

For each type of brainwave pattern, the GMM parameters for
the K components are estimated based on the training data and
utilizing the non-linear least square method. Root mean square
errors (RMSEs) are calculated as a function of K. K denotes the
number of Gaussian curves used in the corresponding GMMs.
For each of the brainwaves, to define the non-linear decision
boundary, a limited number of Gaussian functions are required.
Hence, the energy and size constraints for the PNNs based on
Gaussian synapses are enormously reduced. Finally, the PNN
architecture shown in Figure 12D is evaluated for the detection
of new brainwave patterns. The amplitude of the new FFT data in
PNN (which consists of input, pattern, summation, and output
layers) is passed as the drain voltage (VD) of the Gaussian
synapses from the input layer to the pattern layer. The frequency
range is translated to the back-gate voltage (VG) range. The
summation layer collects the current over the full swing of VG
from the individual pattern blocks. After current integration
in the summation layer, the currents communicate with the
WTA circuit. The WTA detects the brainwave patterns in the
output layer. It is shown that utilizing Gaussian synapses in
PNN architecture can recognize complex neural oscillations and
brainwave patterns from a large number of EEG data providing
extreme energy efficiency, which will foster the feasibility of
efficient hardware implementation of PNNs and subsequently
high-performance and low-power computing paradigm.

Probabilistic Neural Network With
Memristive Crossbar Circuits
Probabilistic neural network architecture (Specht, 1990) provides
a fast training mechanism in which weights are derived from
training samples directly and set in the first initialization stage.
Then, the density functions of the categories are estimated based
on the training dataset. The input samples are classified based on
these density functions. PNNs provide the ability to converge to
Bayes optimal decision surface without trapping to local minima.
Moreover, a new training pattern can be added to the network
that does not require any global retraining process. On the other
hand, for hardware implementation of the near-edge computing
devices, the processing speed, the size of the network, and the
power consumption are critical. PNN’s parallel computational
nature and fast learning PNNs make them attractive for hardware
implementation and utilization in near-edge computing devices.
In Akhmetov and Pappachen (2019), a hardware implementation
of the PNNs based on the memristive (ReRAM based) crossbar

architecture has been proposed (shown in Figure 12E); to this
end, a crossbar with NTR dimensions is utilized to perform
dot product between weights of the pattern neurons and
input vector, where NTR denotes the total size of the training
set. The proposed circuit provides the density estimation and
classification performed by the PNN. As shown in Figure 12B,
the input layer of the PNN distributes an input to pattern
neurons. The pattern layer performs a dot-product operation
and exponential activation. The summation neurons integrate
the outputs of pattern neurons belonging to one class and then
in the output layer the decision is made. In the output layer,
the density functions are scaled by their prior probability and
loss function; after that, the category with the highest posterior
probability is chosen as the output of the PNN. The hidden layer
block shown in Figure 12E computes the approximate density
functions of categories based on the training set and is composed
of summing circuits, a subtraction circuit, and the exponential
function generator (Figure 12F). The sub-blocks of the hidden
layer block are implemented with CMOS circuits. The system-
level simulation showed that the proposed implementation of
the PNN is insusceptible to process variation of the ReRAM
and provides a high accuracy on the MNIST dataset. Future
studies should implement a memristor programming circuit (to
provide on-chip learning), employ alternative kernel functions
and ReRAM devices, and utilize a larger dataset.

Approximate Computing to Provide
Hardware Friendly Probabilistic Neural
Networks
Approximate computing greatly improves computing in
computer systems via accomplishing more tasks under the
same resource consumption. On the other hand, a large number
of floating-point operations and multipliers are required
in DSP hardware architectures needing a large number of
hardware resources. Although by using fixed-point arithmetic
implemented in hardware the DSP algorithm can process
the constant multiplication simultaneously, this can reduce
the accuracy of the calculation. To solve these hardware
circuit design problems, the PNN hardware architecture of
approximate calculation using a genetic algorithm (GA) has
been proposed in Chen et al. (2019). GA realizes approximate
calculation of the hardware circuit of PNN, to achieve the
best balance between maintaining good classification ability
and the least hardware resource consumption to reduce the
hardware complexity. The key concept of GAs is to imitate
the natural evolution law of natural selection in nature
and to solve the optimization problem utilizing three main
operators: reproduction, crossover, and mutation. Firstly, one
encodes all the parameters into chromosomes, and defines a
fitness function. The evolution starts from the population of
completely random individuals, evaluates the adaptability of
each chromosome to the environment in each iteration process,
and then generates the new population through natural selection
and mutation. This is to be repeated until the final break
conditions are met. The hidden layer neurons of PNNs (shown
in Figure 12B) are responsible for the computer rate density
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function, which performs the nonlinear transformation from
the input space to the hidden layer. The weight vector of hidden
layer neurons represents a training pattern, and the probability
density function is a Gaussian function in multidimensional
feature space, which is a nonlinear function. Such nonlinear
functions are often implemented on hardware. In addition, the
Gaussian function is decided by a smoothing coefficient of its
distribution scope σ. The larger σ, the wider the breadth, and
the smaller σ, the narrower the breadth. If the input vector
is located close to the center of the Gaussian function, the
hidden layer node will generate a larger output. In practical
engineering, the look-up table is often used to approximate
these nonlinear functions. In Chen et al. (2019), the number
of bits encoded by the smoothing parameters and probability
values of a PNN is used as the gene encodes each individual
in GA, and the recognition rate of the PNN classifier is used
as the fitness function, using GA to optimize the parameters
to obtain the circuit structure with both the correct rate and
the low memory resource consumption. While ensuring that
the correct rate is not affected, GA is used to search for the
optimal parameters of the PNN and establish a look-up table
method for nonlinear functions to simplify the complexity
of the hardware architecture, reduce the use of logic gates
(the Altera MAX 10 device was used for simulation), and
increase the operation speed. This work provides new insights
to utilize evolutionary algorithms in a Bayesian computing
platform to optimize the rules and consequently improve the
hardware efficiency.

Probabilistic Artificial Neural Network for
Analyzing Transistor Process Variation
Line-edge-roughness (LER) is a process-induced random
variation source that causes undesirable random variation in the
performance of transistors such as metal oxide semiconductor
field effect transistor (MOSFET), fin-shaped field effect transistor
(FinFET), and gate-all-around field effect transistor (GAAFET).
LER can be analyzed with technology computer-aided design
(TCAD), which is fundamentally very time-consuming.
A machine learning-based method to solve this issue is proposed
in Lim et al. (2021), which predicts the LER variations in
FinFETs, through which LER parameters (i.e., amplitude and
correlation length X, Y) are provided as inputs for an ANN.
ANN predicts seven parameters: off-state leakage current (Ioff),
saturation drain current (Idsat), linear drain current (Idlin),
low drain current (Idlo), high drain current (Idhi), saturation
threshold voltage (Vtsat), and linear threshold voltage (Vtlin).
To this end, a 3-D quasi atomistic model for LER was used.
FinFET was simulated with MATLAB and TCAD by applying the
mentioned parameters and the two-dimensional autocovariance
function. Considering that the performance metrics of transistors
approximately follow Gaussian distribution is not applicable
due to non-ideal effects (short-channel effects in transistors)
and the different distribution shapes for each LER parameter.
Hence, the mixture of multivariate normal distributions (MVN)
is used during the training process. Negative log-likelihood
(Negloglik) was used as a loss function [see Equation (24)]

instead of mean-squared error since, during the training, the
weight matrices and bias vectors of ANN are updated for the
given layer attached to output neurons returning the PDF of
variables. The training process is run to minimize this loss
function; hence, training ANN becomes the process of maximum
likelihood estimation.

Negloglik(P,Q) = −
∑

k

P(x)logQ(x) (24)

In Equation (24), P(x) and Q(x) stand for the PDF of
observation and hypothesis, respectively. The proposed ANN
models have reduced the simulation time by ∼6 times
and can pave a new road to analyzing the impact of
LER to overcome the timely design process via simulating
the electrical behavior of the transistor as well as DC
behavior of critical digital circuit blocks in processors such
as SRAM bit cells.

HARDWARE IMPLEMENTATION OF
PROBABILISTIC SPIKING NEURAL
NETWORKS

In this section, employing Bayesian features in SNN is
represented, in which the feasibility of nonvolatile devices
as synapses in SNN architectures will be first discussed for
Bayesian-based inference algorithms. Then, a scalable sampling-
based probabilistic inference platform with spiking networks is
explained. Afterward, a probabilistic spiking neural computing
platform with MTJs is explained. The high learning capability
of a probabilistic spiking neural network implementation and
utilization of the probabilistic spike propagation mechanism are
described. At the end of this section, memristor-based stochastic
neurons for probabilistic computing and Loihi-based Bayesian
inference implementation are discussed.

Bayesian Inference Implementation in
Spiking Neural Networks With Memristor
Synapses
Memristors are another type of nonvolatile (i.e., the device could
save its state when there is no voltage source) memory devices.
They are promising circuit elements that mimic the functionality
of biological synapses in a neuromorphic computing system (W.
Burr et al., 2017). Their resistance can be tuned based on the
spike-timing dependent plasticity (STDP) rule, which is based on
the spike timing differences of the pre- and postsynaptic neurons.
There are practical challenges in the fabrication of reliable
nanoscale memristors. In order to address these challenges,
an alternative approach is proposed to use the compound
memristive synapse model, where M bistable memristors in
parallel model a synapse (Bill and Legenstein, 2014) with a total
weight of:

Wki = ω.mki (25)

A compound synapse provides M+ 1 discrete weight levels
from 0 to the maximum level Wmax = ω·M, where mki ∈
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FIGURE 13 | (A) STDP pulsing scheme along with pre- and postsynaptic spikes behavior for LTP and LTD phenomena. (B) Stochastic memristors construct the
compound memristive synapse. (C) The winner-take-all mechanism in SNN with compound memristive synapses.

{0, 1,..., M} in Equation (26) represents the number of active
memristors. The weight change of the compound memristive
synapse is controlled by pre- and postsynaptic activity. An input
pulse (Figure 13A) of the ith input is defined by yi(t) = 1
[and no presynaptic pulse by yi(t) = 0] and tfk denotes the
spike time of the f th spike of postsynaptic neuron Zk. A neuron
Zk generates a spike train Sk(t) represented as the sum of
Dirac delta pulses δ(·) at the spike times: Sk(t) =

∑
f δ(t −tfk).

When a synaptic Wki is subject to a stochastic long-term
potentiation (LTP), where the presynaptic neuron spikes before
the postsynaptic neuron, there are (M - mki) inactive memristors
(Figure 13B). Each memristor independently turns into its
active state with probability πup, hence contributing ω to the
Wki. Thereby, the weight change for the LTP condition is
equal to (M - mki).ω.πup. A similar argumentation applies to
the long-term depression (LTD) case, where the post neuron
spikes first (before the presynaptic neuron). Note that LTP
(LTD) occurs when the presynaptic pulse equals yi(t) = 1
[yi(t) = 0], respectively. Then, the weight change of the compound
memristive synapse is:

<
d
dt

Wki >

= Sk(t) · [(M −mki)ωπupyi(t)︸ ︷︷ ︸
LTP

−mkiωπdown(1−yi(t))]︸ ︷︷ ︸
LTD

(26)

Compound memristive synapses with the STDP property
have been employed in winner-take-all (WTA) (Wang et al.,
2019) networks to provide stochastic learning capability from
a Bayesian perspective as an unsupervised model optimization
with the expectation-maximization method (Bill and Legenstein,
2014). As shown in Figure 13C, N spiking input neurons,
y1,..., yN, and K spiking network, Z1,..., ZK, construct the WTA
network. In the WTA network, the forward synapses provide
all-to-all connectivity and the network neurons perform lateral
inhibition in which the network neurons are competing with
each other to fire.

Network neuron Zk, with the membrane potential uk,
integrates the inputs yi(t) and the linear membrane potential can
be implemented with leaky integrators (a common neuron model
in neuromorphic computing paradigm). The neurons Zk have a
stochastic firing rate ρk(t) and spike in a Poissonian manner. ρk(t)
defined by Equation (27), is a function of the membrane potential
uk(t) and lateral inhibition uinh(t).

ρk(t) = rnet · euk(t)−uinh(t) (27)

The rnet constant scales the overall firing rate of the network. The
lateral inhibition contribution uinh(t) : = log

∫ k
j = 1 exp (Uj (t) )

depicts WTA competition among the network neurons to fire
over a given stimulus y1 (t),..., yN (t).

When one of the network neurons, Zk, fires, the probability
distribution Pnet(Z | Y) represents the network response that is
proportional to the firing rate ρk(t) of neuron Zk:

Pnet(Zk = 1|Y = y(t)) =
ρk(t)

rnet

= euk(t) − uinh(t) =
k∑

j = 1

ebj(t)+
∑N

i = 1 Wij·yi(t) (28)

Claiming that the response distribution Pnet(Z | Y) provides
a Bayesian performance is valid, by considering input y(t) as
the observation variable and the spike response of a neuron
Zk as the hidden cause. The network is viewed as a generative
model with a prior distribution P(Z) over hidden causes Zk and
a set of likelihood distributions P(Y | Zk = 1), one for each
hidden cause Zk.

Maximum likelihood learning finds parameters that bring the
implicit distribution P(Y) of the generated model as close as
possible to the actually observed input distribution. Likelihood
distributions P(Y | Zk = 1) optimized by a WTA circuit with
compound-synapse STDP are computed through the product of
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the likelihoods of individual inputs:

P(Y i = y(t)|Zk = 1) =
N∏

i = 1

P(Y i = yi(t)|Zk = 1) (29)

where the likelihood for each individual input yi is represented by
a Gaussian distribution:

P(Y i = yi(t)|Zk = 1) =
1

√
2πσ

2 · e
−

(yi(t)−µki)
2

2σ (30)

For the likelihood distributions, µki and σ are the mean values
and the standard deviation, respectively, and are identified as:

µki =
Wki

Wmax
=

mki

M
and σ = 1/

√
Wmax (31)

During online learning, a Mixture of Gaussians (MoG) generative
model has been depicted by this probabilistic model of the
WTA network, where compound memristive synapses show
synaptic weight changes. This property on average causes the
lower bound of the log-likelihood function to increase and leads
to finding a local optimum. After training, Bayesian inference
for the hidden causes based on the given input observation is
employed; simulations have shown that even only four bistable
memristors per synapse are sufficient for applications such as
reliable image classification.

In hardware implementations of the WTA network, capacitors
and other circuit elements have been used to implement the
stochastic neurons, while synaptic weights are represented by
conductance of compound memristors.

There are several challenges in this approach, mentioned
below, which need further study:

- More complex inputs and plasticity mechanisms are
needed to support a versatile STDP pulsing scheme; to
this end, utilizing memristors with more than two stable
states are required.

- Other arbitrary patterns of the input signal (y(t)) for
compound memristor synapses are required to depict a
clear picture of the Gaussian likelihood distributions P(Y |
Z), which has the capability of performing inference over
arbitrary real-valued input states.

- In compound memristor synapses, the switching
probability (πup·Wmax) could be considered as the
learning rate during online learning. This learning rate
controls the number of samples of the input history of
the implicit generative model. The number of samples is
dependent on the size of the dataset. When the dataset
is complex, it relies on small learning rates, i.e., on
small switching probabilities, To achieve sufficiently
small switching probabilities, it needs some remedies in
hardware integration by using control peripherals.

Scalable Sampling-Based Probabilistic
Inference With Spiking Networks
The BrainScaleS platform (Schemmel et al., 2010), a physical-
model neuromorphic device, emulates networks of spiking

neurons. This platform is a mixed-signal neuromorphic
system, using 180-nm CMOS technology for fabrication,
on which Kungl et al. (2019) proposed the first scalable
implementation of sampling-based probabilistic inference with
spiking networks. In order to sample from target distributions
and hierarchical spiking networks with higher-dimensional
input data, fully connected spiking networks have been
trained. Similar to systems that operate in biological real
time, it provides a higher acceleration factor that shows
the advantages of brain-inspired physical computation and
maintain main building blocks for large-scale neuromorphic
applications. Moreover, by co-embedding the stochasticity
within the same substrate, the feasibility of a fully embedded
neural sampling model with highly reduced demands on
off-substrate I/O bandwidth has been shown, where having
a fully embedded implementation allows the runtime
of the experiments to scale as O(1) with the size of the
emulated network.

The most notable limitation of the BrainScaleS system
for this application was the size of the emulated spiking
sampling network (SSNs). The maximum connectivity is
limited (synapse loss) between different locations within the
area, due to limited software flexibility, system assembly,
and substrate yield; hence the applicable hardware real-
estate was limited to a patchy and non-contiguous area.
In order to write analog parameters, significant trial-to-
trial variability for any given trail is needed, which leads
to a heterogeneous substrate and a low sampling accuracy.
The ability of the SSN to approximate target distributions
has been hindered since the symmetry in the effective
weight matrix is imperfect (due to analog variability of
the synaptic circuits) and the resolution of the synaptic
weights is low. Hence the “jumping” behavior between
approximate and target distribution in the final stages of
learning has been seen. Moreover, as the underlying neuron
and synapse are deterministic, for a more biologically plausible
implementation, one needs to consider stochastic neurons
such that the framework can be extended to sampling from
arbitrary probability distributions rather than only binary
random variables.

Probabilistic Spiking Neural Computing
Platform With Magnetic Tunnel Junctions
In Sengupta et al. (2016), by enabling the neural computing
unit with the stochastic switching behavior of an MTJ, the
implementation of a deep SNN has been explored for high-
accuracy and low-latency classification tasks and provided an
energy improvement of 20× over a baseline CMOS design
in 45-nm technology. Despite the huge success at complex
recognition problems due to the high computational costs
needed for training and testing of deep ANNs, researchers are
motivated to develop alternative computing models; therefore,
more biologically realistic SNNs have been introduced. In
SNNs, information is transferred between the neural nodes
as spikes rather than real-valued analog signals. Spiking
networks exploit the prospects of event-based computing
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which lead to the development of specialized custom hardware
implementations. Sengupta et al. (2016) discusses that the
technologically mature spintronic devices, such as the MTJ
(being binary switching devices), with variation in the magnitude
of the input current showing switching probability variation
similar to the sigmoid function. An ANN-to-SNN conversion
scheme has been proposed utilizing the sigmoid function like
switching probability of MTJs, and assuming that the neural
units generate spikes depending on a probability density function
(similar to the original ANN transfer function). It has been
proved that such a conversion mechanism approximates
the original ANN functionality to a reasonable degree
of precision, potentially paving the way for probabilistic
neuromorphic platforms that employ the variability and inherent
stochasticity of emerging neuromagnetic devices. Nonvolatile
emerging devices based on a probabilistic neural computing
platform that models complex neural transfer functions
in the time domain provide high-accuracy energy-efficient
cognitive recognition platforms over conventional CMOS
designs.

High Learning Capability Probabilistic
Spiking Neural Network Implementation
Using sequential processors to run algorithms, there is a struggle
to simultaneously fulfill learning speed, learning performance,
power consumption, and area requirements in portable and
biomedical applications. Hence, hardware-implemented neural
networks are used extensively and even though the circuit is
implemented using analog very-large-scale integration (VLSI),
variations in sensor fabrication, background noise, and human-
dependent parameters complicate the restrictions on power
consumption and area. One type of neural network that
comprises spiking neurons with probabilistic parameters is called
the probabilistic spiking neural network (PSNN). These PSNNs
are hardware-friendly and compare with deterministic neural
networks in hardware compatibility. PSNNs have relaxed weight
resolution requirements and are insensitive to noise and analog
process variation. A PSNN does not suffer from multiplicative
linearity. In the spiking neuron model, the presynaptic spike
of a neuron can be considered as a control signal, and the
weight controls the postsynaptic current. As a result, when
a presynaptic spike stimulates a neuron, the post synapse
generates a current. In Hsieh et al. (2018, 2017), an analog
implementation of PSNNs has been proposed for biomedical
applications through which online learning adjusts weights by
spike-based computation. The weight is saved in the long-
term synaptic memory. Switched capacitor circuit structures
have been utilized for the implementation of most of the
circuits to provide low-power consumption and a small area
and consequently provide high learning performance. This
learning chip was fabricated in 0.18-µm CMOS technology
and can process the e-nose and electrocardiography (ECG)
data, yielding comparable accuracy to the simulated accuracy
that indicates that the learning chip can be employed into
portable and implantable devices, to facilitate convenient use
and intelligence. This hardware implementation opens up new

windows to achieve efficient portable and biomedical devices via
utilizing PSNNs.

Hardware Implementation of Spiking
Neural Networks Utilizing Probabilistic
Spike Propagation
As mentioned in Section “Bayesian Inference Implementation
in Spiking Neural Networks With Memristor Synapses,” SNNs
provide intrinsic desirable attributes where information is
represented as discrete spike events that provide an event-
driven paradigm of computation. SNNs are implemented on
low-power event-driven hardware, and the time and energy
consumption are proportional to the number of spike events.
When processing a spike, SNNs do not require multiplication to
be performed and hence provide a reduced hardware complexity
compared to conventional ANNs; as a result, SNNs are not well-
suited to be implemented on hardware platforms like GPUs.
Spiking networks still need a large number of memory accesses
although they are event-driven. It is necessary to know the
fanout neurons of a spiking neuron, which determines the
connectivity information that needs to be fetched along with
the weights of the corresponding synapses. Then, the membrane
potentials of the fanout neurons are fetched and updated.
Defining techniques for reducing the number of memory accesses
in SNNs is necessary for improving their energy efficiency since
data fetching from memory is more expensive than arithmetic
computations. The spiking activity that is measured as spike
propagation along a synapse from a single source neuron to a
single target neuron has a strong role in the complexity of an
SNN. Nallathambi et al. (2021) introduce an approach that is
named probabilistic spike propagation to optimize rate-coded
SNNs. In this approach, synaptic weights are represented as
probabilities, and these probabilities are utilized to regulate spike
propagation. The approach reduces the propagated spikes, which
cause a reduction in time and energy consumption. To this
end, an SNN accelerator named probabilistic spiking neural
network application processor (P-SNNAP), which supports
probabilistic spike propagation, has been represented, where
a probabilistic method for spike propagation to reduce the
number of memory accesses in rate-coded SNNs has been
proposed. This method would save both runtime and energy. The
proposed probabilistic spike propagation mechanism has been
realized through probabilistic synapses shown in Figures 14A,B.
Conventionally, the weight of a synapse determines the amount
by which the potential of postsynaptic neuron membranes
increases whenever presynaptic neuron spikes. This weight
defines how likely it is that a spike will propagate across
the synapse (Figures 14A,B). A probabilistic synapse does not
propagate all spikes to the postsynaptic neuron. Instead, only a
subset of its outgoing synapses propagate the spike (which has
weights above a certain threshold) as neuron spikes. P-SNNAP
is shown in Figure 14C. The P-SNNAP architecture consists of
three different modules, the Spike Neural Processing Element
(SNPE), the Eval unit, postsynaptic spikes, the weight memory
that stores the weights, and the state memory that stores
the neuronal state variables. The Eval unit performs neuron
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FIGURE 14 | (A) A generic structure of spiking neural networks. (B) Neuron 3 receives spikes from Neuron 1 and Neuron 2. (C) P-SNNAP accelerator architecture in
Nallathambi et al. (2021). (D) Stochastic neuron based probabilistic spiking neural network implantation for the uncertainty quantification problem in medical
diagnosis (Wang et al., 2021). The probabilistic SNN consists of the input encoding layer, the output layer, and the inhibitory layer. Neurons mimic the biological
neurons behavior. Each feature of breast cancer data is encoded by the firing rate of a small population of Poisson neurons. The inset depicts the STDP learning
curve of synapses connecting input neurons to the output ones; if the post-spike falls within the time window after the pre-spike, then the synaptic potentiation will
occur. (E) Overall structure of the implemented SNN architecture on the Loihi processor (Tang et al., 2019).

evaluation. Eval unit brings membrane potentials from state
memory, increases it with bias value, and compares it to the
threshold. If the membrane potential goes above the threshold,
a spike is generated and communicated to the controller. The
controller in its first phase of operation controls the SNPEs
and that in the second phase controls the Eval unit. When a
layer is evaluated by Eval, the controller brings spikes from
the previous layer and sends them to SNPEs. As a spike is
received, an SNPE uses the index of the spiking neuron to
iterate through its outgoing synapses. The SNPE calculates the
index of the postsynaptic neuron for each synapse. Next, the
membrane potential and the weight of the corresponding synapse
are fetched for each postsynaptic neuron. Then, membrane
potential is updated and written back. All the information

that is required to perform probabilistic spike propagation is
stored in weight memory in each SNPE lane. The register
transfer level was used for the P-SNNAP engine design and
the Nangate 15-nm technology was used for synthesizing in
Synopsys Design Compiler platform. It has been observed
that the proposed probabilistic approach causes a logic area
and logic power overhead of 12 and 23.5%, respectively, over
a version of SNNAP without support for probabilistic spike
propagation. In this work, it has been shown that the temporal
nature of SNNs allows the network to regain any accuracy
loss caused by this approach. Evaluating alternative synaptic
propagation mechanisms and employing larger networks to
test the scalability of the proposed accelerator turn out to be
further explored.
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Memristor-Based Stochastic Neurons for
Probabilistic Computing
Stochastic firing mechanism in biological neurons (rather than
giving out spikes once reaching a fixed threshold voltage)
provides dynamic excitation behavior and allows the brain
to perform probabilistic inference in the face of uncertainty.
However, due to the complexity of the stochastic firing process,
fabrication of stochastic neurons with bio-realistic dynamics to
probabilistic scenarios is challenging and needs further study.
In Wang et al. (2021), a stochastic neuron has been fabricated
based on CuS/GeSe threshold switching memristor (TSM) and
applied to implement Bayesian computing in a PSNN that
can quantify uncertainty with incomplete or inaccurate data.
The experimental results have indicated that compared to
VO2 and GeTe6, which are typical metal-insulator transition
(MIT) and ovonic threshold switching (OTS), CuS/GeSe as a
conductive-bridge TSM shows the most appropriate randomness
of threshold switching as desired by the stochastic firing of
neurons. The proposed physical modeling and simulation have
revealed that this can be attributed to the similarity between
the ion motion tuning in conductive-bridge threshold switching
and in biological neurons. In particular, the positive feedback
process of Cu electromigration enhanced Joule heating and
temperature and thereby accelerated thermal diffusion of Cu,
substantially facilitating the formation of the conductive bridge
and the stochasticity of ion motion, which leads to the desired
variation of threshold voltages. The intrinsic random formation
of the Cu conductive bridge in the device is utilized to emulate
the stochasticity of the opening of ion channels in the biological
membrane. Moreover, the random switching parameters of the
device fulfill the requirement to achieve the stochastic neurons in
a PSNN. Utilizing the stochastic firing properties of the fabricated
CuS/GeSe neuron to a probabilistic SNN is shown in Figure 14D.
This probabilistic SNN is capable of giving superior prediction on
a typical probabilistic inference problem, namely, breast cancer
diagnosis with high diagnostic accuracy, and improves the fidelity
of the judgment compared to deterministic neuron-based SNN.
Moreover, the stochastic neurons enable the SNN to estimate the
uncertainty of predictions, a feature that will be of great help
for achieving a good balance between diagnostic accuracy and
medical cost and avoiding the fatal diagnostic misclassification
error often encountered by conventional ANNs. The software
synapses used in this demonstration can be achieved by non-
volatile memristors, indicating the possibility of implementing a
fully memristive probabilistic SNN in the near future. Utilizing
developed and optimized stochastic neurons and their powerful
application in uncertainty quantification problems open up
a new horizon of probabilistic computing in neuromorphic
computing systems.

Loihi-Based Bayesian Inference
Implementation
Through asynchronous computations and event-based
communications in a network of neurons, the brain solves
simultaneous localization and mapping (SLAM) while it
consumes very low energy; as Tang et al. (2019) show,

SNNs (which are famous for mimicking this computational
paradigm of the brain) can be used to solve SLAM problems
on energy-efficient neuromorphic hardware for mobile
robots exploring unknown environments. The proposed
SNN shown in Figure 14E is integrated into Intel’s Loihi
neuromorphic processor fabricated on 14-nm FinFET
technology (Davies et al., 2018). Loihi is a non-Von Neumann
hardware mimicking the brain’s computing paradigm and is
optimized for SNN computations and online learning algorithms
(Thakur et al., 2018).

Via multisensory cues (called visual and odometry
information) to implement spike-based recursive Bayesian
inference, Tang et al. (2019) proposed a model to determine
the robot’s heading. To perform head direction localization
and mapping, the recursive SNN suggests a cue-integration
connectome on Loihi. The head direction and border cells in
the network provide biologically realistic performance; thus, to
implement them, the proposed model utilizes spiking neurons,
multi-compartmental dendritic trees, and plastic synapses,
each of which is implementable by Loihi. The model has two
sensory spike rate encoders and five Bayesian networks. The
odometry sensor drives the neural activity of speed cells, which
encodes the angular speed and the RGB Depth camera drives
the neural activity of sensory neurons, which encodes the
distance to the nearest object. The head direction (HD) network
defines the heading of the robot via receiving the input from
the speed cells. The reference frame transformation (RFT)
network generates allocentric distance representation via the
HD network by getting its input from sensory neurons. The
RFT network sends the allocentric observations to the distance
mapping (DM) network and the DM network develops the map
of the robot’s surrounding environment. The DM network sends
its information to the observation likelihood (OL) network,
which calculates the observation likelihood distribution of the
robot’s heading. The Bayesian inference network through the
utilization of the observation likelihood from the OL network
and the odometry likelihood from the HD network provides an
optimal posterior of the robot’s heading and corrects the heading
representation within the HD network.

Note that each one of the networks is implemented on Loihi;
here, the Bayesian inference network block is explained based
on Equation (32).

P(s|d,o)αP(d|s)P(o|s)P(s) (32)

where s, d, and o denote the heading of the robot, the observed
distance, and the odometry sensing, respectively. With a flat
prior P(s), the posterior distribution over the robot’s heading
is proportional to the product of P(d| s) and P(o| s), the two
likelihood functions.

Having known that multiplying two Gaussian distributions
generates another Gaussian distribution, Tang et al. (2019) have
employed likelihood distributions represented by the OL network
and the HD network to predict the posterior distribution.
Dendritic trees have been used for implementation; specifically,
each Bayesian neuron has two dendritic compartments
connected with its corresponding OL neuron and HD cell.
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Results of Loihi-based SNN architecture implementation
show that it consumes 100 times less energy than conventional
GMapping (a common algorithm for SLAM solving) running
on a CPU. This provides a motivation to use Loihi as
a hardware implementation platform for Bayesian inference.
The FinFET technology used in the Loihi architecture is a
promising technology in terms of energy and speed over
conventional CMOS technology (Bagheriye et al., 2016), while
the use of emerging nonvolatile technologies attracts a lot of
attention to developing ultra-low energy computing platforms
for SNN-based Bayesian inference systems (like crossbar arrays
discussed in Section “Crossbar Arrays for Bayesian Networks
Implementation”). However, the fabrication of robust nonvolatile
devices and large-scale crossbar arrays probably require a
lot more insights before they can outperform already highly
developed technology and this approach is worth exploring.

DISCUSSION

In this paper, we have attempted to review and summarize
the recent hardware developments for Bayesian inference.
The review is centered on different possible hardware
implementations considering algorithmic aspects. Different
approaches and their principles have been discussed with
extensive references quoted. We review the pros and cons of
the approaches reported in the literature. Specifically, there are
a number of challenges to be further studied before valid and
robust models can be applied to practical systems. We summarize
them as follows.

- In asynchronous implementation of Bayesian networks
with spintronic devices, updating the network as well
as dealing with variations in the thermal barriers or
interconnect delays necessitates further study.

- In abstraction layer-based implementations based on the
number of linearly independent equations, the appropriate
number of auxiliary variables is needed; it would be
challenging for a large Bayesian network and would
add extra area and energy overhead, which requires
further investigation.

- More complex inputs and plasticity mechanisms are
needed to support a versatile STDP pulsing scheme via
using memristors with more than two stable states as
synapses to have biologically plausible Bayesian inference
in SNNs. Other arbitrary patterns of the input signal for
memristor synapses in SNNs is required to depict the
clear picture of the Gaussian likelihood distributions that
have a capability of performing inference over arbitrary
real-valued input states. In memristor synapses, in SNN,
the switching probability considered as the learning rate
during online learning must be controllable since, for
complex datasets, small learning rates, i.e., small switching
probabilities, are required. Small switching probabilities
need careful remedies in hardware integration by using
control peripherals.

- In analog neuromorphic substrates like the BrainScaleS
platform, due to limited software flexibility, system
assembly, and substrate yield, the maximum connectivity
between different locations is strongly limited; hence,
post-production, assembly, and the mapping and routing
software needed careful consideration to enhance on-wafer
connectivity and thereby automatically increase the size
of emulable networks, as the architecture of the SSNs.
Moreover, approximation of the target distributions is
hindered due to the limited synaptic weight resolution
and the imperfect symmetry in the weight matrix (due to
analog variability of the synaptic circuits). As a result of the
successor system, a new generation of scalable platforms is
needed to be designed with a higher weight resolution.

- Providing accurate digital encoding where Bayesian
network representation is mapped directly (without any
abstraction layer) to S-MTJ resistance with equivalent
digital voltage representation using arithmetic composers
is promising, whereas PSL needs an abstraction level
to map Bayesian networks in hardware. To this end,
using accurate encoding is required to achieve the
required resolution.

- For the structure learning process of Bayesian
learning, hardware acceleration via FPGA like system
implementation is promising, since the runtime for
Bayesian network inference has been highly reduced. This
property attracts more attention to structure learning
acceleration and could be a promising field to be studied
utilizing emerging nonvolatile devices.

- In digital encoding of probabilities, the small margin
input voltage is highly problematic when it generates the
output probability. DACs with high precision are needed
for precise mapping from digital probabilities to voltages.
In addition, tackling the nonlinear relationship between
probabilities and voltages is difficult and a slight noise or
process variation may translate a probability to a wrong
voltage value. The relation between probability and voltage
is not very smooth as a result of the stability of the
SBG, which needs improvement. Although the scale of
hardware can be reduced, the reduction of the scale of
the Bayesian inference system is also worth exploring.
In addition, the resolution is limited since every storage
method adds a resolution limitation; to this end, utilizing
nonvolatile nanomagnets is promising to overcome the
power consumption as well as increasing weight resolution
by multi-state memristors as synapses.

- The C-element (a standard cell-based implementation)
outputs a stochastic bitstream, which is probabilistic
and converging more slowly toward the exact Bayesian
inference. In this case, if the switching rate of the output
was low, the longer “domains” of consecutive “0”s and “1”s
are needed and it leads to a more imprecise bitstream and
adds time, energy, and area overhead. On the other hand,
mixed-signal implementations needs to pay attention to
noise and variation sources as well as examining the
multiple independent sources of evidence for embedded
decision circuits that require circuit design remedies.
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- Constructing circuits for approximate inference
in hierarchical Bayesian models is a challenging
research field that can be via merging stochastic
samplers with stack-structured memories and
content-addressable memories.

- The brain-inspired hardware implementation of
algorithms like NB algorithm provides insights for
techniques like mean-field approximation, which will
help to find an optimal balance between structure and
independence, using hardware feasibility considerations
and independence assumptions as mutually constraining
objectives, which can be a promising research field.

- To provide high-speed stochastic simulations (in which
samples of random variables in a Bayesian network
are drawn to determine the posterior probabilities), a
variety of algorithms with higher sampling efficiency in
Bayesian graphs are required since they still fall short of
the escalating pace and scale of Bayesian network-based
decision engines in many IoT and CPS.

- While providing conditional probability between two
variables via utilizing two MTJs (or other nonvolatile
devices) in a common substrate, the spacing between the
MTJs needs to be carefully defined to have significant
dipole coupling between the two soft layers. Moreover, in
the presence of thermal noise at room temperature, the
“flipping” is stochastic, which needs to be controlled with
peripheral circuit elements and accurate timing.

- With a higher degree of process variability, prediction
error for the probability of a variable is high. Tolerance
to process variability needs to be increased by circuit
innovations as well as post-fabrication calibration.
Adapting ultra-energy-efficient nanomagnetic devices
to stochastic/probabilistic computing, neuromorphic,
belief networks (non-Boolean computing and information
processing) has resulted in rapid strides in new computing
paradigms, especially Bayesian networks that may
experience revolutionary advances.

- In autonomous systems like self-driving cars, decision-
making is based on uncertainty; hence, employing
AI platforms is crucial. The standard supervised
backpropagation-based learning techniques do not
represent uncertainty in the modeling process to solve
this issue; Bayesian deep learning plethora is required
where a probabilistic framework following the classic
rules of probability, i.e., Bayes’ theorem, has been utilized
to train the DNNs.

- In a standard deep learning architecture during the
inference, the dot-product operation between the synaptic
weights and inputs involves the compute energy along with
memory access and memory leakage components. In a
Bayesian deep network, each synaptic weight uses double
memory storage since it is represented by two parameters
(mean and variance of the probability distribution).
Moreover, the dot-product operation does not occur
directly between the inputs and these parameters since
for each inference operation the synaptic weights are
repeatedly updated depending on sampled values from the

Gaussian probability distribution. Hence, direct utilization
of crossbar-based “In-Memory” computing platforms
utilizing non-volatile memory technologies for mitigating
the memory access, leakage, and memory fetch bottlenecks
is not feasible; thus, a significant rethinking is necessary.

- Despite the specialized custom hardware and brain-
inspired possibility of SNNs due to their event-based
computing feature, their training for recognition problems
has been mostly limited to single-layered networks.
On the other hand, Bayesian techniques are more
computationally expensive, thereby limiting their training
and deployment in resource-constrained environments.
Also, the standard von-Neumann bottleneck in current
deep learning networks (where memory access and
memory leakage can account for a significant portion of
the total energy consumption profile) motivates further
research in hardware implementation of multi-layer
probabilistic SNN and is a promising research field.

- In Bayesian neural networks, Gaussian random number
generation operation is a hardware expensive task for
CMOS-based designs since a large number of registers,
linear feedback circuits, etc. are required. To overcome this
issue, non-idealities and stochasticity prevalent in RRAM,
spintronic, and other nonvolatile technologies could be
extensively exploited to this end.

- Stochasticity provides computational features like
regularization and Monte Carlo sampling in a DNN where
such normalization features reduce internal covariate shift
obtaining an alternative process for divisive normalization
in bio-inspired neural networks. Hence, employing the
inherent weight normalization feature exhibited by a
stochastic neural network using nonvolatile devices is a
promising field where it is an online alternative for used
batch normalization and dropout techniques. Saturation
at the boundaries of fixed range weight formats as well
as spurious fluctuations affecting the rows of the weight
matrix have been mitigated.

- Despite the widespread applications and simplicity
of PNNs, their hardware implementation is relatively
underrepresented. This is due to the fact that
multicomponent digital CMOS circuits that cause severe
area and energy inefficiency are required for hardware
implementation of probability functions associated with
the PNNs, such as the Gaussian. Hence, utilizing emerging
nonvolatile technologies to make use of their biological
plasticity features of conductance level changes as well as
their energy efficiency would be a promising solution that
needs to be extensively explored.

- Uncertainty serves as an intrinsic part of neural
computation through which probabilistic computing
empowers the brain to analyze sensory stimuli, produce
adequate motor control, and make reasonable inferences.
On the other hand, quantifying uncertainty is especially
crucial for error-critical applications like medical
diagnostics, which require probabilistic SNN-based
neuromorphic computing systems. The recent literature
of electronic neurons for SNN implantation is mostly
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focused on deterministic neural units or emulating the
complex biological neuronal functions, ignoring the
demand of building intrinsically stochastic neurons.
Hence, developing probabilistic spiking neurons with low
area and power consumption is highly required.

- To foster the neuromorphic computing systems, not only
is the mature device fabrication process required but also
hardware friendly algorithms are inevitable, To this end,
one promising approach that needs further exploration is
utilizing evolutionary algorithms in a Bayesian computing
platform to optimize the rules.

To conclude these observations, we can state that the pace
of the development of efficient hardware implementation of
Bayesian networks has been very quick in recent years, but there
is still a long way to go to overcome the challenges outlined above.
To summarize, comparing the discussed implementations shows
that probabilistic hardware-based implementation of Bayesian
networks, with nonvolatile devices, needs more attention to
solving the scaling issues in Bayesian network hardware; also,
sequential signaling from parent to child nodes, controlling
the stochastic switching variation due to thermal noise and
process variation, defining an abstraction layer, utilizing axillary
nodes, employing complex input pattern for memristor synapse,
and multi-state memristors for WTA mechanism are required.
For NSMs for approximate Bayesian inference, providing
technologically mature nonvolatile devices to solve the scaling
issue in crossbar arrays on one hand and adding noise to
provide uncertainty on the other hand are challenging tasks.
Utilizing nonvolatile memory elements for Bayesian network
implementation via digital encoding needs a high-resolution
encoding mechanism to provide readily highly scaled FPGA-like
architectures not only for inference but also for learning Bayesian
network structure. To this end, utilizing multi-state memristors
rather than two-state spintronic-based devices would provide
higher resolution with a lower area overhead.

Bayesian inference hardware implementation employing
digital logic gates in state-of-the-art FPGA platforms, defining
novel stochastic logic gates, and utilizing standard cells needs
to solve the accuracy and resolution issue of digital bitstreams,
which needs to compromise speed, power, and area overhead.
Crossbar arrays for Bayesian network implementation require
some innovation where providing a hierarchy of crossbar arrays
for approximate Bayesian inference mechanisms like mean-
field approximation, taking inspiration from naïve Bayesian
classifiers, is promising. Crossbar arrays require solving scaling
issues while they act as Bayesian reasoning machines. Utilizing
crossbar arrays in PNNs for dot-product operation needs
serious rethinking while utilizing approximate inference rules.
Moreover, utilizing platforms like BrainScaleS or Loihi is
another option for Bayesian inference while the resolution and
scaling, as well as energy consumption, need to be considered
since these platforms are utilizing mixed-signal CMOS and
FinFET technologies, respectively, rather than energy-efficient
nonvolatile technologies.

CONCLUSION

A Bayesian network provides a simple way of applying Bayes
theorem to complex problems and Bayesian inference is crucial
for statistical machine learning, causal discovery, automatic
speech recognition, email spam filtering, and clinical decision
support systems, to name just a few applications in AI. However,
Bayesian inference is an NP-hard problem even when only an
approximate solution is sought, implying that this computational
problem scales badly, which hinders further progress in AI.
Interestingly, many neuroscientists are convinced that our
brains employ similar processes to combine prior knowledge
with newly arriving information in an approximately optimal
Bayesian fashion. For example, in visual perception, the brain
establishes this integration literally in the blink of an eye.
However, the brain’s energy consumption is orders of magnitudes
less than what is required for state-of-the-art AI applications.
Bayesian network implementations in conventional processor
architectures are problematic due to several issues: (i) software
solutions involve multiple layers of abstraction to support a
non-deterministic framework such as Bayesian networks; (ii)
the inherently separated memory and computation in the
von Neumann processor architecture introduces bottlenecks
in accessing data; and (iii) the non-volatility requirements in
cognitive applications are challenging to meet the efficiency.
Moreover, as mentioned, the computational complexity of belief
updating is an important issue in Bayesian inference. To enhance
the computation speed of Bayesian updating, several techniques
such as conjugate priors, variational Bayes, or approximate
Bayesian computations have been employed, whereas these are
software-based, and their efficacy is less than hardware-based
accelerators. Hence, the practical use of Bayesian inference has
been hindered in many real-world applications (such as large-
scale networks or embedded systems) where computational
cost is an important performance factor. This review paper
has discussed several implementations of Bayesian inference
as well as the implantation of several approximate inference
algorithms and different architectures, from FPGA-like to brain-
inspired ones (crossbar arrays). FPGA-like architectures are not
efficient enough in terms of area and energy overhead when
compared to brain-inspired architectures. Crossbar arrays, a
typical brain-inspired computing paradigm, lead to efficient
computation when the network structure is limited to, e.g.,
naive Bayes classifiers or tree-like structures. Using insights
into Bayesian approximation techniques to find an optimal
balance between structure and independence and using hardware
feasibility considerations and independence assumptions as
mutually constraining objectives are open windows for future
efforts to achieve an efficient computing paradigm.
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