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The arterial baroreflex system plays a key role in maintaining the homeostasis of arterial
pressure (AP). Changes in AP affect autonomic nervous activities through the baroreflex
neural arc, whereas changes in the autonomic nervous activities, in turn, alter AP
through the baroreflex peripheral arc. This closed-loop negative feedback operation
makes it difficult to identify open-loop dynamic characteristics of the neural and
peripheral arcs. Regarding sympathetic AP controls, we examined the applicability of a
nonparametric frequency-domain closed-loop identification method to the carotid sinus
baroreflex system in anesthetized rabbits. This article compares the results of an open-
loop analysis applied to open-loop data, an open-loop analysis erroneously applied to
closed-loop data, and a closed-loop analysis applied to closed-loop data. To facilitate
the understanding of the analytical method, sample data files and sample analytical
codes were provided. In the closed-loop identification, properties of the unknown central
noise that modulated the sympathetic nerve activity and the unknown peripheral noise
that fluctuated AP affected the accuracy of the estimation results. A priori knowledge
about the open-loop dynamic characteristics of the arterial baroreflex system may be
used to advance the assessment of baroreflex function under closed-loop conditions in
the future.

Keywords: baroreflex, white noise, sympathetic nerve activity, arterial pressure, transfer function

INTRODUCTION

The arterial baroreflex system is one of the most important negative feedback systems that stabilize
arterial pressure (AP). Identifying the dynamic characteristics of the arterial baroreflex system is
essential to understand the homeostasis of AP in daily activities. When we focus on sympathetic
AP controls, the arterial baroreflex system can be divided into two principal subsystems (Ikeda
et al., 1996). One is the neural arc subsystem, which defines the relationship between a baroreceptor
pressure input and efferent sympathetic nerve activity (SNA). The other is the peripheral arc
subsystem, which defines the relationship between SNA and AP. The neural and peripheral arcs
can be regarded as the controller and the plant of the arterial baroreflex system, respectively.
Under normal physiological conditions, the arterial baroreflex system operates as a closed-loop
negative feedback system. Changes in AP affect SNA, whereas changes in SNA, in turn, affect
AP. This closed-loop operation hampers the application of a nonparametric frequency-domain
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system identification method based on a conventional transfer
function analysis because the Fourier transformation is
mathematically noncausal.

Although we reported a nonparametric frequency-domain
closed-loop identification method in previous studies (Kawada
et al., 1997; Kawada and Sugimachi, 2016, 2019), the method was
described as a set of equations. A certain gap exists between a set
of equations and its implementation to programming. This paper,
therefore, provides sample codes for the analytical method with
sample data files. Although the codes were written in good faith,
they could contain unexpected errors. The use may be limited
because the codes were developed for analyzing specific datasets.
The programs are explained using open-source software GNU
Octave and Scilab so that most readers can test the codes on
their own (see Appendix). However, the programs were originally
developed in commercial software Matlab (MathWorks). The
readers are asked to understand those limitations and use the
programs on their responsibility. Most figures were drawn on
the basis of screenshots so that the readers can easily follow the
results of the sample codes.

A dilemma faced frequently in the medical engineering field
is that the accuracy of system identification is not parallel with
the usefulness of the identification result. Even if the system
identification is not perfect, the result may remain useful for
diagnosis, risk stratification, prediction of prognosis, and so
on. In this article, however, accuracy was sought as a goal of
the closed-loop identification. Before explaining the method of
closed-loop identification, we will review open-loop dynamic
characteristics of the arterial baroreflex system including those
in animal models of cardiovascular diseases. The open-loop
dynamic characteristics of a system are regarded as the answer
to the closed-loop identification. If the closed-loop identification
is successful, the identification result will conform to the open-
loop dynamic characteristics. After reviewing the methods and
results of an open-loop analysis applied to open-loop data, we
will discuss a closed-loop analysis. In the section of the closed-
loop analysis, we will discuss an open-loop analysis erroneously
applied to closed-loop data, followed by a closed-loop analysis
applied to closed-loop data.

MATERIALS AND EQUIPMENT

The sample data were obtained from past studies (Kawada et al.,
1997, 2001). All animal experiments were performed following
strict accordance with the Guiding Principles for the Care and
Use of Animals in the field of Physiological Sciences, as approved
by the Physiological Society of Japan. The experimental protocols
were reviewed and approved by the Animal Subject Committee
at the National Cerebral and Cardiovascular Center.

The detailed experimental setup was described previously
(Kawada et al., 1997, 2001). For the open-loop analysis, the AP
was recorded via a catheter-tip, high-fidelity pressure transducer
inserted from the femoral artery in anesthetized rabbits. The
heart rate (HR) was derived from the AP signal through a
cardiotachometer. The carotid sinus baroreceptor regions were
isolated from the systemic circulation so that the baroreceptor

input pressure was controlled externally with a servo-pump
system. The vagal and aortic depressor nerves were sectioned
bilaterally at the neck to minimize confounding reflex effects
from the aortic arch and cardiopulmonary regions. Efferent SNA
was recorded from a branch of the cardiac sympathetic nerve.
The nerve signal was amplified and bandpass filtered between
150 to 1,000 Hz. The signal was then full-wave rectified and
low-pass filtered with a cut-off frequency of 30 Hz using an
analog circuit. Although SNA was expressed in µV, the absolute
magnitude of SNA varied depending on the recording conditions,
such as the contact between the electrodes and nerve. After the
completion of the preparation, the carotid sinus pressure (CSP)
was adjusted to AP to obtain the closed-loop operating point of
the carotid sinus baroreflex. After that, the CSP was perturbed
according to a binary white noise signal around the operating
point pressure.

For the closed-loop analysis, the isolated carotid sinuses were
connected to the left common carotid artery. Hence, the carotid
sinus baroreflex operated as a closed-loop system despite the
isolation of the carotid sinus regions. A catheter for blood
withdrawal and infusion was inserted from the other femoral
artery and placed at the abdominal aorta.

OPEN-LOOP ANALYSIS

Time-Series Data
See the Appendix to set up GNU Octave. Figure 1 shows the
first 10 s (2,000 points) of the sample data file “rabbit1-open.dat,”
which can be drawn by the following codes:

A= recread(′c:/SampleData\rabbit1-open.dat′, 4);
figure, recplot(A(:, 1:2000), 200);

The user-defined function recread reads the data file into a
matrix variable A. The first argument specifies the data file name.
The folder name needs to be changed according to the location of
the sample data file. The second argument specifies the number
of channels in the data file as 4. The user-defined function recplot
plots the time series data. The sampling rate (200 Hz) is specified
as a numeric argument. Alternatively, the time-axis data can be
provided as the first input argument of recplot as follows:

A= recread(′c:/SampleData\rabbit1-open.dat′, 4);
t= (0:2000− 1) / 200;
figure, recplot(t, A(:, 1:2000));

When neither the sampling rate nor the time-axis data are
specified, the abscissa indicates the number of data points. The
first channel of Figure 1 indicates CSP, which was changed every
500 ms according to a binary white noise signal. Small ripples
were present at high and low values of CSP owing to a limited
performance tuning of the servo-pump system. In the second
channel, SNA was suppressed during the high CSP level. A closer
look indicates a certain delay between the increment of CSP and
the suppression of the burst activities of SNA. The third and
fourth channels represent the AP and HR signals, respectively.
Since the data file is a bare binary file, the number of recorded
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FIGURE 1 | Time series of carotid sinus pressure (CSP), sympathetic nerve activity (SNA), arterial pressure (AP), and heart rate (HR) obtained in one rabbit. CSP was
perturbed according to a binary white noise signal. A slight delay was observed between an increment in CSP (vertical dotted lines) and the suppression of the burst
activity of SNA.

channels and the format of the stored value need to be known
separately. It is advisable to check the waveform of each signal
before processing the data. If the data are not decoded correctly
(for instance, if the number of recorded channels is wrong), the
signals are corrupted.

Depending on the system under study, the original sampling
rate may be unnecessary to capture the overall system dynamic
characteristics. Typically, we down-sampled the signals from 200
to 10 Hz. Figure 2 illustrates the whole data of “rabbit1-open.dat”
after 10-Hz resampling, which can be obtained from the following
codes:

B= recresample(A, 20);
figure, recplot(B, 10)

The user-defined function recresample down-samples the
data by simply taking an average of each signal every 20 points.
After the resampling, the information on the systolic and diastolic
pressures of AP is lost. If one wants to analyze the systolic and
diastolic pressures, those values need to be obtained before the
resampling procedure.

Conventional Linear Transfer Function
Analysis
The neural arc transfer function from CSP to SNA, the peripheral
arc transfer function from SNA to AP, and the transfer function of
the total reflex arc from CSP to AP were estimated. Although the
data before initiating the CSP perturbation were not recorded on

the file, a transition from no perturbation to binary perturbation
occasionally caused transient changes in the SNA and AP
responses. To analyze the stationary portion of the data, we
typically discarded the data for the first 120 s (1,200 points) after
the initiation of the CSP perturbation. The 10-Hz resampled data
were then divided into eight half-overlapping segments of 1,024
points each (Figure 2). The segment length was 102.4 s, which
corresponded to the fundamental frequency (f 1) of 0.0098 Hz
of the Fourier transformation. Depending on the system under
study, the segment length would need to be adjusted. As a rule
of thumb, the phase value of the estimated transfer function at
the lowest frequency approaches zero radians for a system with
a positive response and −π radians for a system with a negative
response when the segment length is sufficiently long to capture
the system dynamic characteristics. The segment length may need
to be prolonged when the phase value at the lowest frequency
is not close to either zero or −π radians. An increase in the
number of (non-overlapped) segments contributes to reducing
the random errors in the transfer function estimation (Bendat
and Piersol, 2010). However, too long an observation period
would violate the assumption that the system under study can be
regarded as time-invariant.

In each segment, a linear trend was removed, and a Hanning
window was applied. Next, the frequency spectra of the input
signal, X(f ), and the output signal, Y(f ), were obtained through
the fast Fourier transformation. Ensemble averages of the input
power, XX(f ), output power, YY(f ), and cross spectra between
the input and output signals, YX(f ), were calculated over the eight
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FIGURE 2 | Time series of carotid sinus pressure (CSP), sympathetic nerve activity (SNA), arterial pressure (AP), and heart rate (HR) after 10-Hz resampling. Typically,
the data from the first 120 s were discarded to analyze the stationary portion of the data. Sg1 through Sg8 denote the half-overlapping segments for the open-loop
transfer function analysis.

segments. The linear transfer function is then obtained using the
following equation (Bendat and Piersol, 2010):

H(f ) =
YX(f )
XX(f )

(3.2.1)

The magnitude-squared coherence function can also be
obtained using the following equation (Bendat and Piersol, 2010):

Coh(f ) =

∣∣YX(f )
∣∣2

XX(f )YY(f )
(3.2.2)

The coherence function indicates the linear dependence of
the output signal on the input signal in the frequency domain.
The zero coherence indicates that the output signal is linearly
uncorrelated with the input signal. The unity coherence indicates
that the output signal is completely explained by the linear
dynamics with the input signal.

Plotting the Transfer Functions
Since the transfer function is complex-valued, it can be described
by the modulus (absolute value) and phase angle as follows:

Gain(f ) = abs(H(f ))

Phase(f ) = angle(H(f ))
(3.3.1)

The modulus of the transfer function is referred to as gain
because it describes the amplitude ratio of the output signal to
the input signal at each frequency. The phase of the transfer
function describes the difference in the phase between the input
and output signals at each frequency.

A caveat in plotting the estimated transfer function is that f
in the above equations needs to be interpreted as an index of
the frequency relative to the fundamental frequency. In addition,
the lower bound of the array subscript (the integer number
pointing to the element in the array) is 1, not 0, in programming
languages that use a matrix as an elementary variable including
GNU Octave and Matlab. Hence, the first element of the transfer
function, H(1), corresponds to the direct current component of
the Fourier transformation, which is not used in the transfer
function analysis. The second element, H(2), represents the
transfer function at the fundamental frequency (f 1 = 0.0098 Hz).
The (1 + k)th element, H(1 + k), represents the k-th harmonic
component observed at (k× f 1) Hz.

When we use a programming language allowing 0 for
the lower bound of the array subscript (such as Microsoft
Visual Basic) and implement the Fourier transformation
accordingly, the situation is different. The first element becomes
H(0), and the relation with the frequency index becomes
more straightforward; i.e., H(k) represents the k-th harmonic
component at (k× f 1) Hz.
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FIGURE 3 | Open-loop transfer function of the baroreflex neural arc, H1 (A), the input power of the carotid sinus pressure (CSP), IP1 (B), and the output power of
the sympathetic nerve activity (SNA), OP1 (C). The neural arc revealed high-pass or derivative characteristics, which means that dynamic gain increased as the
frequency increased from 0.01 to 0.5 Hz.

Open-Loop Dynamic Characteristics of
the Neural and Peripheral Arcs
Neural Arc
Figure 3 illustrates the open-loop dynamic characteristics of the
baroreflex neural arc obtained from the following codes:

[H1 C1 IP1 OP1]= calctf(B, [1 2]);
IP1= IP1 / 10 / 0.3746; OP1= OP1 / 10 / 0.3746;
figure, subplot(1, 2, 1), tfplot(H1, C1, ′r′);
subplot(2, 2, 2), psplot(IP1), subplot(2, 2, 4), psplot(OP1);

The user-defined function calctf calculates the transfer
function from channel 1 (row 1, CSP) to channel 2 (row 2,
SNA) of the matrix variable B and returns the neural arc transfer
function, H1, coherence function, C1, input power spectra, IP1,
and output power spectra, OP1. Since the power spectra were
calculated on the basis of the unit sampling rate of 1 Hz, they need
to be divided by 10 to adjust the values for the 10-Hz resampling
data. Further, the power spectra were not corrected for process
loss caused by the window function. In the case of the Hanning
window, the correction factor of 1/0.3746 may be applied. The
denominator of the correction factor for the segment length of
1,024 can be obtained from the following calculation:

c= sum(hanning(1024).∧ 2) / 1024

where “ˆ2” denotes the element-wise application of the
power of 2.

The user-defined function tfplot plots the transfer function
and the coherence function. The common logarithm (the
logarithm with base 10) of the gain value and the phase value are
plotted against the common logarithm of the frequency (a Bode
plot). The third input argument of tfplot dictates that the phase
is plotted in the range from −2π to 0 radians rather than the
default range from −π to π radians. The user-defined function
psplot plots the power spectra. The upper frequency bound of the
abscissa displayed by tfplot and psplot was 5 Hz, which is half of
the sampling frequency of 10 Hz. When the sampling rate of the
analyzed data is different from 10 Hz, the sampling rate needs
to be specified as a numeric argument for tfplot and psplot. The
lower frequency bound of the abscissa displayed by tfplot and
psplot was determined from the length of H1, which equals the
segment length of 1,024. By default, the lower frequency bound is
the same as the fundamental frequency (10/1,024= 0.0098 Hz).

The dynamic gain of the neural arc transfer function increased
as the frequency increased from 0.01 to 0.5 Hz (Figure 3A).
These characteristics are referred to as the high-pass or derivative
characteristics of the neural arc (Ikeda et al., 1996). The input
power spectra showed that CSP power was fairly constant up to
1 Hz and dropped sharply, making a nadir at 2 Hz (Figure 3B).
The nadir occurs at the frequency corresponding to the switching
interval of the CSP input signal (500 ms). Since the input power
is the denominator to calculate the transfer function (Eq. 3.2.1),
the input power at a given frequency needs to be sufficiently
large for a stable estimation of the transfer function. A white
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FIGURE 4 | Open-loop transfer function of the baroreflex peripheral arc, H2 (A), the input power of the sympathetic nerve activity (SNA), IP2 (B), and the output
power of the arterial pressure (AP), OP2 (C). The peripheral arc revealed low-pass characteristics, with the slope of decreasing gain between 0.1 and 0.5 Hz close to
the –20 decibel/decade (the oblique red line). The vertical dotted lines indicate that the frequency of the peak in the SNA power (endogenous respiratory frequency)
is not the same as the frequency of the peak in the AP power (artificial ventilation frequency).

noise signal, which is rich in frequency components, is an ideal
input signal to rigorously test a system within a short observation
period (Marmarelis and Marmarelis, 1978). Since a theoretical
white noise is unrealizable, a band-limited white noise signal is
used in actual applications. In this example, the input power
decreased to 10 mmHg2/Hz (the red horizontal dotted line) at
approximately 1.5 Hz, and hence, the transfer function may be
reliable up to 1.5 Hz at the most. The peak in the gain plot at
2 Hz was the artifact due to the division by small numbers at
the nadir of the input power. The coherence function reduced
to near zero in the frequency range above approximately 1.2 Hz
in these data.

The phase of the neural arc transfer function was close to
−π radians at the lowest frequency, indicating that the signal
inversion for the negative feedback occurred in the neural arc.
The inhibitory neurons projecting from the caudal ventrolateral
medulla to the rostral ventrolateral medulla are responsible for
signal inversions (Masuda et al., 1992). The phase plot is slightly
convex-upward relative to −π radians. The phase was delayed
as the frequency increased from 0.2 to 1 Hz. A discontinuous
phase deflection was observed at approximately 0.7 Hz, which
was accompanied by a discontinuous drop in the coherence
at the same frequency. The gain plot also shows a small
deflection at 0.7 Hz. The SNA power had a sharp peak at 0.7 Hz

(Figure 3C). This peak is considered a physiological noise of
SNA associated with endogenous respiratory activity, which was
linearly uncorrelated with the CSP input signal.

Peripheral Arc
Figure 4 illustrates the open-loop dynamic characteristics of the
baroreflex peripheral arc obtained from the following codes:

[H2 C2 IP2 OP2]= calctf(B, [2 3]);
IP2= IP2 / 10 / 0.3746; OP2= OP2 / 10 / 0.3746;
figure, subplot(1, 2, 1), tfplot(H2, C2, ′r′);
subplot(2, 2, 2), psplot(IP2), subplot(2, 2, 4), psplot(OP2);

The peripheral arc transfer function was calculated between
channel 2 (row 2, SNA) and channel 3 (row 3, AP) of the
matrix variable B. The dynamic gain of the peripheral arc transfer
function decreased as the frequency increased from 0.05 to
1 Hz, indicating the low-pass characteristics of the cardiovascular
response to SNA (Figure 4A). A sharp peak was observed at
0.58 Hz in the gain plot. This peak was due to the AP fluctuations
at the frequency of artificial ventilation (35 cycles/min). The
frequency of the peak in the AP power (0.58 Hz) was different
from the frequency of the peak in the SNA power (approximately
0.7 Hz) (Figures 4B,C). The mechanical inflation and deflation
of the lungs affected AP independently of SNA. Hence, the
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FIGURE 5 | Fitting results of the mathematical models to the estimated transfer functions for the neural arc, H1 (A), and for the peripheral arc, H2 (B). The smooth
orange lines represent the transfer functions of the mathematical models, H1fit (Eq. 3.5.1) and H2fit (Eq. 3.5.2). Kn, the steady-state gain of H1fit; fc1, the corner
frequency describing the derivative characteristics of H1fit; fc2, the corner frequency describing the high-cut characteristics of H1fit; Kp, the steady-state gain of H2fit;
fn: the natural frequency of H2fit.

peak in the gain plot at 0.58 Hz, which was accompanied by
a discontinuous drop of the coherence, does not represent the
true characteristics of the AP response to SNA. The decreasing
slope of dynamic gain between 0.1 and 0.5 Hz was close to the
line of the −20 dB/decade (the oblique red line), which means
that the dynamic gain decreased to 1/100 with a 10-fold increase
in the frequency.

The phase approached 0 radians at the lowest frequency,
suggesting that the steady-state AP response to a step input
in SNA was positive. The phase was delayed as the frequency
increased and reached −2π radians at approximately 0.6 Hz.
Although the phase was wrapped between −2π and 0 radians in
this plot, we may unwrap the phase by assuming a continuous
phase change along the frequency axis.

Mathematical Models of Transfer
Functions
Model Description
Enumerating all gain and phase values on the Bode plot is one
way to describe the estimated transfer function. However, by
fitting a mathematical model to the estimated transfer function,
we can describe the transfer function with only a few parameter

values. The neural arc transfer function may be described using
the following mathematical model (Kawada et al., 2002):

H1model(f ) = −Kn
1+ f

fc1
j(

1+ f
fc2

j
)2 e−2π fLnj (3.5.1)

where j denotes the unit imaginary number (j =
√
−1). Kn,

fc1, fc2, and Ln denote the steady-state gain (in µV/mmHg), the
corner frequency relating to the derivative characteristics (in Hz),
the corner frequency relating to the high-cut characteristics (in
Hz), and the pure delay (in s), respectively. The negative sign in
front of Kn indicates that the signal is inverted through the neural
arc. The dynamic gain of H1model asymptotically approaches Kn
as the frequency tends to 0.

The peripheral arc transfer function may be described using a
second-order low-pass filter with pure delay as follows (Kawada
et al., 2002):

H2model(f ) =
Kp

1+ 2ζ f
fn

j+
(

f
fn

j
)2 e−2π fLpj (3.5.2)
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where Kp, fn, ζ, and Lp denote the steady-state gain (in
mmHg/µV), the natural frequency (in Hz), the damping
ratio (dimensionless), and the pure delay (in s), respectively.
Depending on the value of ζ, the system behaves as underdamped
(0 ≤ ζ < 1), critically damped (ζ = 1), or overdamped (1 < ζ).
The dynamic gain of H2model asymptotically approaches Kp as the
frequency tends to 0.

The structure of the mathematical model is not uniquely
determined for a given transfer function. As an example, the
denominator of H1model could have the same form as that
of H2model, in which case the total number of parameters in
H1model increases from 4 to 5 (Petiot et al., 2001). Although
an increase in the number of parameters of the mathematical
model can improve the fitting ability of a model to the estimated
transfer function, the meaning of each parameter may become
more complicated. Further, possible interdependence between
parameters makes the parameter estimation more unstable.

Parameter Estimation
The fitting of the mathematical model to the estimated transfer
function requires nonlinear least-squares fitting. Although there
are many ways to perform such a task, we provided the user-
defined function simplex based on a method described by Nelder
and Mead (1965). Although the convergence of this method is
slow, it has a merit in that it does not require a derivative form of
the target function. A risk of the convergence to a local minimum
needs to be noted, though the risk is not specific to this method.

The error function for the least-squares fitting is difficult
to assign because the transfer function is complex-valued.
Empirically, we use the following error function, which gives a
reasonable fitting result on the Bode plot:

err =
N∑

k=1

∣∣log10
[
Hest(f )

]
− log10

[
Hmodel(f )

]∣∣2
k

f = f1 × k

(3.5.3)

where Hest and Hmodel denote the estimated and model transfer
functions, respectively. N represents the number of data points
from the lowest frequency used for the fitting. During the
implementation to the programming, the fact that Hest is discrete
and Hest(1) corresponds to the direct current component needs
to be considered.

Figure 5A depicts the fitting result of H1model to the neural arc
transfer function, which was obtained from the following codes:

x= (0:512)′/(1024/10);
H1model= @(x, p)− p(1) ∗ (1+x/p(2) ∗ 1j)./

(1+ x/p(3) ∗ 1j).∧2. ∗ exp(−2 ∗ pi ∗ x ∗ p(4) ∗ 1j);
pout1= simplex(x(2:151), H1(2:151), [abs(H1(2)) 0.1 1 0.5],

H1model);
H1fit= [H1model(x, pout1); zeros(511,1)];
figure, subplot(1, 2, 1), tfplot([H1 H1fit], C1, ′r′);

The first line defines the variable x as the array of frequency
values, including 0 for the direct current component. For
instance, x(1) is 0, x(2) is the fundamental frequency, x(3) is the

second harmonic frequency, and so on. The upper bound of x
corresponds to half of the sampling rate; i.e., x(513)= 5.

The second line defines the target function, H1model, based on
Eq 3.5.1. The variable p is the array of parameters, such that p(1),
p(2), p(3), and p(4) correspond to Kn, fc1, fc2, and Ln, respectively.
In the above definition, H1model takes the variables x and p as
the input arguments and returns the transfer function values
corresponding to x.

The user-defined function simplex performs nonlinear least-
squares fitting. The first and second arguments of simplex are
the frequency and the corresponding transfer function values,
respectively. Only the first 150 points from the fundamental
frequency were used. Note that the subscript range should be
“(2:151)”, not “(1:150)”, to skip the direct current component.
The third argument of simplex gives initial parameter values for
Kn, fc1, fc2, and Ln. The initial value for Kn was given as the
absolute value of H1(2) rather than a hard number because the
dynamic gain of the neural arc varied significantly depending
on the absolute amplitude of SNA (e.g., the quality of the SNA
recording, position of the electrode relative to the nerve, etc.).
Alternatively, we may use arbitrary units for presenting SNA after
normalizing SNA values by the average dynamic gain value of
H1 in the frequency range, for instance, below 0.03 Hz (Kawada
et al., 2001). When the SNA is normalized, the initial value for Kn
can be unity. The last argument of simplex specifies H1model as a
target function.

The variable pout1 receives the array of parameter values
for Kn, fc1, fc2, and Ln that attained the minimum value of
the error function. In this example, the parameter values of
pout1(1) = 0.066, pout1(2) = 0.035, pout1(3) = 0.598, and
pout1(4)= 0.198 were obtained.

H1fit is the fitting result calculated based on x and pout1.
Since the user-defined function tfplot determines the frequency
axis based on the length of the transfer function data, the length
of H1fit needs to be adjusted to 1,024 points for its proper
presentation on the Bode plot. For this purpose, an array of
zeros was added, but this has nothing to do with a zero-padding
procedure to increase the frequency resolution. If H1fit does not
fit to H1 well by visual inspection of the Bode plot, the initial
parameter values need to be changed according to the profile
of H1. For instance, the initial value for fc2 may be selected
near the frequency of the maximum gain within the fitting
range (Figure 5A).

Figure 5B depicts the fitting result of H2model to the peripheral
arc transfer function, which was obtained from the following
codes:

H2model= @(x, p) p(1)./(1+2 ∗ p(3) ∗ x/p(2) ∗ 1j
+(x/p(2) ∗ 1j).∧2). ∗ exp(−2 ∗ pi ∗ x ∗ p(4) ∗ 1j);

pout2= simplex(x(2:101), H2(2:101), [abs(H2(2)) 0.1 1.5 1],
H2model);
H2fit= [H2model(x, pout2); zeros(511,1)];
subplot(1, 2, 2), tfplot([H2 H2fit], C2, ′r′);

The target function, H2model, is defined based on Eq. 3.5.2. For
the peripheral arc, only the first 100 points from the fundamental
frequency were used to determine the parameters of H2model. The
initial parameter values for Kp, fn, ζ, and Lp were given as the
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third argument of simplex. The initial value for ζ was arbitrarily
assigned to 1.5, but a different value could be tested. After the
fitting was performed, parameter values of pout2(1) = 8.812,
pout2(2) = 0.049, pout2(3) = 0.925, and pout2(4) = 0.962 were
obtained in this example. Using the variables x and pout2, the
fitting result was calculated as H2fit and compared with H2 using
tfplot.

In the user-defined function simplex, the fitting weight of
the error between the model and estimated transfer functions is
reduced by a factor of 1/k according to Eq. 3.5.3 because the data
points become denser as the frequency increased on the Bode
plot. The error function can be modified if needed as an optional
input argment to simplex:

w= 1./(1:100)′. ∗ C2(2:101);
pout2= simplex(x(2:101), H2(2:101),
[abs(H2(2)) 0.1 1.5 1], H2model, w);
H2fit= [H2model(x, pout2); zeros(511,1)];
subplot(1, 2, 2), tfplot([H2 H2fit], C2, ′r′);

In the above codes, the array for the fitting weight is
provided, taking the coherence, C2, into consideration. When the
coherence value at a given frequency is low, the fitting weight
of the error is reduced. The resulting H2fit , however, was not
changed much in this example.

Simulation of Baroreflex Dynamic
Characteristics
Design of a Block Diagram
Once the parameters of the model transfer functions are
determined, a closed-loop baroreflex response can be simulated
by using software such as Xcos (Scilab) and Simulink (Matlab).
In the following examples, Xcos was used. Before constructing a
block diagram in Xcos, the following variables need to be defined
on the Scilab console:

fc1= 0.035; fc2= 0.6; Ln= 0.2;
fn= 0.049; zeta= 0.92; Lp= 0.96;

Figure 6A illustrates the block diagram simulating
the baroreflex response to a step pressure perturbation
(“dynamic_step.zcos”). The neural and peripheral arc transfer
functions can be implemented using a function block named
CLR. The frequency response of a system described in the
s-domain can be obtained by replacing s with jω, where ω= 2πf.
For instance, the first-order low-pass filter with a corner
frequency of fc can be converted from the frequency domain to
the s-domain as follows:

H(f ) =
1

1+ f
fc

j
=

1

1+ 2πfj
2πfc

↔ H(s) =
1

1+ 1
2πfc

s
(3.6.1)

Hence, the CLR block describing the neural arc, excluding the
parameters of dynamic gain and pure delay, can be designed as

H1model(s) =
1+ 1

2πfc1
s(

1+ 1
2πfc2

s
)2 (3.6.2)

Likewise, the CLR block describing the peripheral arc,
excluding the parameters of dynamic gain and pure delay, can
be designed as

H2model(s) =
1

1+ 2ζ 1
2πfn

s+
(

1
2πfn

)2
s2

(3.6.3)

As a tip of programming, the constant π (3.14159. . .) is
given by “pi” in GNU Octave and Matlab, whereas it is given
by “%pi” in Scilab. The pure delay can be implemented using
a TIME_DELAY block. For convenience, the delay was defined
by a variable Ln or Lp rather than by a hard number. The buffer
size of the TIME_DELAY block was increased to 4,096 to avoid
an error relating to the short of the buffer size. The gain of the
total reflex arc can be assigned using a GAINBLK block. The gain
value was set to −1 to reflect the negative feedback nature of the
total reflex arc.

The step input can be implemented using a
STEP_FUNCTION block. The step time was set at 10, and
the final value was set at −30, which means that a pressure
disturbance of −30 mmHg was imposed at 10 s. The output
from the STEP_FUNCTION block was then combined with the
output from the peripheral arc using a SUMMATION block.
The number of inputs to the SUMMATION block was set to 2.
The output from the SUMMATION block was displayed on a
CSCOPE block. The refresh period parameter of the CSCOPE
block was set to 60. The CSCOPE block requires a clock input,
which was generated by a CLOCK_c block. The interval of the
CLOCK_c block was set at 0.005 s (200 Hz), which is the rate
at which the visualization is refreshed. The output from the
SUMMATION block can also be stored on a workspace variable
A using a TOWS_c block. The buffer size of the workspace
variable was set to the time resolution (200 Hz) multiplied by the
total simulation time (60 s).

Role of the Neural Arc
The contribution of the neural arc to the baroreflex-mediated
dynamic AP response can be examined by removing the CLR
block of the neural arc from the simulation (Figure 6B,
“dynamic_step_no_neural.zcos”). The simulation result is then
stored on another workspace variable B. Figure 7 compares the
simulation results with and without the neural arc, which was
obtained by the following code on the Scilab console:

t= (0:length(A.values)− 1)′ / 200;
figure, plot(t, [A.values B.values]);

When the first recovery point that exceeded the steady-state
response was used to compare the response speed, the removal of
the neural arc delayed the recovery of AP by a few seconds in this
example. Although the actual baroreflex system is nonlinear and
the presence of the pulsatility affects the AP response (Chapleau
et al., 1989; Kawada et al., 1992, 2002), the simulation results
suggest that the neural arc accelerates the baroreflex-mediated AP
response (Ikeda et al., 1996).
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FIGURE 6 | (A) A block diagram of the arterial baroreflex system for simulating the closed-loop arterial pressure (AP) change in response to a step pressure
perturbation. The red capital letters denote the types of function blocks of Xcos (Scilab). SNA, sympathetic nerve activity; Ln, the pure delay relating to the neural arc;
Lp, the pure delay relating to the peripheral arc. (B) A block diagram that lacks the dynamic characteristics of the neural arc.

FIGURE 7 | Simulation results showing the effect of the neural arc on the closed-loop arterial pressure (AP) response to a step pressure perturbation. The neural arc
shortened the recovery time as assessed by the first point that reached the steady-state response.
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Static Nonlinearity of the Baroreflex
Although we do not treat the nonlinearity of the baroreflex in
this article, the open-loop static characteristics of the neural arc
approximated an inverse sigmoidal function. By contrast, the
static characteristics of the peripheral arc approximated a straight
line within the physiological response range of the baroreflex
(Kawada and Sugimachi, 2016). These static characteristics may
be implemented in the simulation, which helps interpret certain
aspects of the baroreflex characteristics, such as the dependence
of the baroreflex gain on the pulsatility of AP (Kawada et al., 1992,
2002) and on AP waveforms (Kawada et al., 2017).

Open-Loop Dynamic Characteristics of
the Total Reflex Arc
Total Reflex Arc
The neural and peripheral arc subsystems are serially connected
to constitute the total reflex arc. When the two transfer functions,
H1 and H2, are serially connected, the overall transfer function,
H3, is obtained from the product of H1 and H2 in the frequency
domain. In theory, the gain of H3 is a product of gain values of
H1 and H2. The phase of H3 is a sum of phase values of H1 and
H2. This result can easily be understood using a polar form of the
transfer function as follows:

H1(f ) = G1(f )ejθ1(f )

H2(f ) = G2(f )ejθ2(f )

H3(f ) = H1(f )H2(f ) = G1(f )G2(f )ej[θ1(f )+θ2(f )]
(3.7.1)

where G1 and θ1 are the gain and phase values of H1, respectively,
and G2 and θ2 are the gain and phase values of H2, respectively.

The open-loop dynamic characteristics of the total reflex arc
can be directly estimated as a transfer function from CSP to AP
using the following codes:

[H3 C3]= calctf(B, [1 3]);
figure, subplot(1, 2, 1), tfplot(H3, C3);

The dynamic gain of the total reflex arc decreased as
the frequency increased, indicating the low-pass characteristics
(Figure 8A). The peak at 0.58 Hz is an artifact relating to the
artificial ventilation frequency. The decreasing slope of dynamic
gain between 0.1 and 0.5 Hz was less steep than the line of the
−20 dB/decade (the oblique red line) observed for the peripheral
arc (Figure 4, left) and close to the line of the −10 dB/decade
(the oblique green line). The increasing slope of dynamic gain in
the neural arc (Figure 3, left) contributes to increasing dynamic
gain values of the total reflex arc between 0.1 and 0.5 Hz. This
is the reason why the closed-loop AP response to an exogenous
pressure perturbation becomes faster with the neural arc than
without (Figure 7; Ikeda et al., 1996).

The phase at the lowest frequency approached π radians, but
this result needs to be interpreted as −π radians because of
the causality between CSP and AP under baroreflex open-loop
conditions. The causality came from the isolated baroreceptor
preparation where CSP was controlled independently of AP.
The phase delayed as the frequency increased and reached
−π radians (or should be interpreted as −3π radians) at
approximately 0.5 Hz.

FIGURE 8 | (A) Open-loop transfer function of the baroreflex total loop, H3. The slope of decreasing gain between 0.1 and 0.5 Hz was less steep than that of the
–20 decibel/decade (the oblique red line) and was close to that of the –10 decibel/decade (the oblique green line). (B) Comparison of H3 (the blue lines) and the
product of the neural and peripheral arc transfer functions (H1 × H2, the orange lines).
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Comparison With a Product of Neural and Peripheral
Arc Transfer Functions
In actual datases, the total reflex arc transfer function, H3, does
not exactly equal the product of H1 and H2 because of the
nonlinearity of the system and the presence of noise in the system.
The following codes are used to compare H3 and the product of
H1 and H2:

[H1 C1]= calctf(B, [1 2]); [H2 C2]= calctf(B, [2 3]); [H3 C3]
= calctf(B, [1 3]);

subplot(1, 2, 2), tfplot([H3 H1. ∗ H2], C3);

where “H1. ∗ H2” indicates the element-wise multiplication of H1
and H2. As can be seen in Figure 8B, there was a deviation of H3
(the blue lines) from the product of H1 and H2 (the orange lines)
mainly in the lower frequency range. When the calculations of
the cross and power spectra are written down, the three transfer
functions are estimated as

H1(f ) =
E
[
SNA(f )CSP∗(f )

]
E
[
CSP(f )CSP∗(f )

]
H2(f ) =

E
[
AP(f )SNA∗(f )

]
E
[
SNA(f )SNA∗(f )

] (3.7.2)

H3(f ) =
E
[
AP(f )CSP∗(f )

]
E
[
CSP(f )CSP∗(f )

]
where E[] represents the ensemble averaging operation over
multiple segments. X∗ denotes the complex conjugate of X; i.e.,
X∗ = a− bj when X= a+ bj. Dividing H3 by H1 yields

H3(f )
H1(f )

=
E
[
AP(f )CSP∗(f )

]
E
[
SNA(f )CSP∗(f )

] (3.7.3)

The right-hand side of Eq. 3.7.3 is not the same as the
equation for calculating H2 in Eq. 3.7.2. Figure 9A illustrates
a block diagram of a baroreflex open-loop experiment. CSP is
controlled independently of AP. Nc represents the unknown
central noise that fluctuates SNA, such as that derived from
a central command. Np represents the unknown peripheral
noise that fluctuates AP, such as that associated with artificial
ventilation. If Np is absent, and the peripheral arc subsystem
is purely linear, the relationship between SNA and AP can be
described as

AP(f ) = H2(f )SNA(f ) (3.7.4)

Substituting AP in Eq. 3.7.3 with Eq 3.7.4 yields

H3(f )
H1(f )

=
H2(f )E

[
SNA(f )CSP∗(f )

]
E
[
SNA(f )CSP∗(f )

] = H2(f ) (3.7.5)

The above transformation assumes that H2 is time-invariant
during the observation period and can be treated as a constant
with respect to the ensemble averaging operation. Hence, when
Np is absent and the peripheral arc subsystem is purely linear,

H3/H1 mathematically equals H2; i.e., the product of H1
and H2 equals H3.

Next, let us suppose that Nc is absent and the neural arc
subsystem is purely linear. In this case, the relationship between
CSP and SNA can be described as

SNA(f ) = H1(f )CSP(f ) (3.7.6)

Substituting SNA in the calculation of H2 in Eq. 3.7.2 with
Eq. 3.7.6 yields

H2(f ) =
E
[
AP(f )

(
H1(f )CSP(f )

)∗]
E
[
SNA(f )

(
H1(f )CSP(f )

)∗]
=

E
[
AP(f )CSP∗(f )

]
H1∗(f )

E
[
SNA(f )CSP∗(f )

]
H1∗(f )

=
H3(f )
H1(f )

(3.7.7)

Hence, when Nc is absent and the neural arc subsystem is
purely linear, the product of H1 and H2 again equals H3. The
fact that H3 was not the same as the product of H1 and H2 in
the actual datasets (Figure 8B) suggests that both Nc and Np
were present during the experiment. It may be of note that the
nonlinear system responses in the neural and peripheral arcs
are treated as Nc and Np, respectively, from the viewpoint of
the linear systems analysis. The nonlinearity of the total reflex
arc was estimated in different papers (Moslehpour et al., 2015,
2016a,b).

On a different note, E[] can be replaced with a summation,
6[], when E[] appears in both the numerator and denominator
of the calculation as follows:

XX(f ) = E
[
X(f )X(f )∗

]
=

∑[
X(f )X(f )∗

]
M

YX(f ) = E
[
Y(f )X(f )∗

]
=

∑[
Y(f )X(f )∗

]
M

(3.7.8)

H(f ) =
YX(f )
XX(f )

=
E
[
Y(f )X(f )∗

]
E
[
X(f )X(f )∗

] = ∑[
Y(f )X(f )∗

]∑[
X(f )X(f )∗

]
where X(f ) and Y(f ) denote the Fourier transforms of the input
and output of the system, respectively, and M denotes the number
of segments for the ensemble averaging operation.

Species Differences
The derivative characteristics of the neural arc and the low-pass
characteristics of the peripheral arc are commonly observed for
rabbits and rats (Kawada and Sugimachi, 2016). Figures 10A–C
represent the neural arc, peripheral arc, and total reflex arc
transfer functions, respectively, pooled from 12 Japanese white
rabbits. In these plots, the SNA values were normalized by the
averaged dynamic gain value of the neural arc below 0.03 Hz
and expressed in arbitrary units (au). The parameter values of
the models (smooth orange lines) fit to the averaged transfer
functions were fc1 = 0.058 Hz, fc2 = 0.482 Hz, Ln = 0.181 s,
f n = 0.058 Hz, ζ = 1.208, and Lp = 0.782 s. Figures 10D–F
represent the neural arc, peripheral arc, and total reflex arc
transfer functions, respectively, pooled from 12 Wistar-Kyoto

Frontiers in Neuroscience | www.frontiersin.org 12 August 2021 | Volume 15 | Article 694512

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694512 August 24, 2021 Time: 17:0 # 13

Kawada et al. Closed-Loop Identification

FIGURE 9 | (A) A conceptual block diagram describing the open-loop analysis of the carotid sinus baroreflex. Carotid sinus pressure (CSP) was controlled
independently of arterial pressure (AP) by using a baroreceptor isolation procedure. H1 and H2 represent the linear transfer function of the neural and peripheral arcs,
respectively. SNA, sympathetic nerve activity; Nc, unknown central noise; Np, unknown peripheral noise. In the open-loop conditions, Nc does not affect CSP during
the estimation of H1, and Np does not affect SNA during the estimation of H2. (B) A conceptual block diagram describing the closed-loop operation of the carotid
sinus baroreflex. A distinct difference from the open-loop experiment (9A) is that Nc inevitably affects AP through H2 (the green arrows) during the estimation of H1,
and Np inevitably affects SNA through H1 (the red arrows) during the estimation of H2. These closed-loop signal transductions hamper the application of the
conventional open-loop analysis to the closed-loop data.

rats. The parameter values were fc1 = 0.161 Hz, fc2 = 1.023 Hz,
Ln = 0.118 s, f n = 0.074 Hz, ζ= 1.115, and Lp = 0.474 s. The total
reflex arc transfer function may be roughly described with a first-
order low-pass filter with pure delay. The corner frequency and
the pure delay were 0.038 Hz and 1.410 s, respectively, in rabbits.
They were 0.029 Hz and 0.871 s, respectively, in rats. The data
derived from Sprague-Dawley rats can be found in a previous
article (Kawada and Sugimachi, 2016).

As for the total reflex arc transfer function, dogs also show
low-pass characteristics with the natural frequency near 0.02 Hz
(Kawada et al., 1992). Changes in vascular properties rather than
ventricular properties contribute to the dynamic AP response
to CSP (Sakamoto et al., 2015). In humans, the gain of the
transfer function from AP to SNA and that from SNA to AP were
calculated using closed-loop data (Ando et al., 1997). While the
results indicate the derivative characteristics of the neural arc and
the low-pass characteristics of the peripheral arc, further research
is required regarding the accuracy of those gain estimations, as
discussed in section Closed-Loop Analysis.

Animal Models of Cardiovascular
Diseases
Open-loop dynamic characteristics of the carotid sinus baroreflex
in animal models of cardiovascular diseases are briefly reviewed.
In a rat model of chronic heart failure following myocardial
infarction, the baroreflex-mediated dynamic AP regulation was
depressed in both the magnitude and response speed, mainly
due to the attenuation of the dynamic gain in the peripheral
arc (Kawada et al., 2010). The depressed dynamic AP regulation
may partly explain why non-compliance with salt and water
restriction easily leads to acute decompensation even in stable

cardiac patients (Lepage, 2008). Spontaneously hypertensive rats
showed well-preserved dynamic characteristics of AP regulation
compared with normotensive rats despite having significantly
higher baseline AP (Kawada et al., 2011). Hence, changes in the
baroreflex dynamic characteristics are not generally predictable
from changes in static characteristics of the AP regulation, such as
that determined from an inverse sigmoidal relationship between
input and output pressures (Sata et al., 2015). In a streptozotocin-
induced rat model of type 1 diabetes, fc2 (the corner frequency for
the high-cut characteristics in the neural arc) was lower and ζ (the
damping ratio in the peripheral arc) was larger compared with
normal rats (Kawada et al., 2018), which suggests derangements
in both the neural and peripheral arcs. Depending on types
of diseases, functions of the neural and peripheral arcs are
differently affected, though we do not have corresponding human
data. An assessment of the baroreflex dynamic characteristics in
humans will enable the creation of human baroreflex models in
health and diseases. The human baroreflex models would add a
component of autonomic control to a so-called “digital twin” of
a patient, on which we will be able to tailor treatment strategies
(Corral-Acero et al., 2020).

CLOSED-LOOP ANALYSIS

Although the open-loop analysis of the arterial baroreflex is
straightforward, it requires baroreceptor isolation preparation
and cannot be used in human studies. A closed-loop analysis
of the baroreflex dynamic characteristics is a necessary
study direction. We examined whether the system dynamic
characteristics obtained from closed-loop analysis conformed to
those obtained by open-loop analysis.
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FIGURE 10 | The neural arc (A), peripheral arc (B), and total reflex arc (C) transfer functions pooled from 12 Japanese white rabbits. In panels (B) and (C), the
transfer gain shows a peak at artificial ventilation frequency (35 cycles/min = 0.58 Hz). The neural arc (D), peripheral arc (E), and total reflex arc (F) transfer functions
pooled from 12 Wistar-Kyoto rats. In panels (E) and (F), the transfer gain shows a peak at artificial ventilation frequency (80 cycles/min = 1.33 Hz). The black lines
represent mean ± SE values. The smooth orange lines indicate mathematical models fit to the averaged transfer functions. The vertical dotted lines indicate the
upper limit of the frequency range used for fitting. The total reflex arc transfer function was modeled with a first-order low-pass filter with pure delay. au, arbitrary units.

Why Does Open-Loop Transfer Function
Analysis Not Work Correctly on
Closed-Loop Data?
Numerical Consideration on Open-Loop Analysis
Applied to Closed-Loop Data When Endogenous
Noises Exist in Both the Neural and Peripheral Arcs
Figure 9B illustrates a block diagram of the arterial baroreflex
under closed-loop conditions. Nc and Np represent the unknown
central and peripheral noise, respectively. The relationship

between AP and SNA through the neural arc is described in the
frequency domain as

SNA(f ) = H1(f )AP(f )+ Nc(f ) (4.1.1)

The relationship between SNA and AP through the peripheral
arc is described as

AP(f ) = H2(f )SNA(f )+ Np(f ) (4.1.2)
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Why does conventional open-loop transfer function analysis
not work correctly on these data? Let us treat AP and SNA as
the input and output signals, respectively, to estimate the neural
arc transfer function. The ensemble average of the cross spectra
between terms of Eq. 4.1.1 and AP yields

E
[
SNA · AP∗

]
= H1E

[
AP · AP∗

]
+ E

[
Nc · AP∗

]
(4.1.3)

The description of the frequency is omitted for the sake of
brevity. The center dot denotes the multiplication of two complex
values (at each frequency) in this article. Since H1 represents
the system characteristics of the neural arc and is assumed to be
time-invariant during the observation period, it is placed outside
the ensemble averaging operation. Under baroreflex closed-loop
conditions, E[Nc·AP∗] does not diminish asymptotically because
Nc affects AP through the peripheral arc (the green arrows
in Figure 9B). Hence, the following equation, which ignores
E[Nc·AP∗], yields a biased estimation of H1:

H1biased =
E [SNA · AP∗]
E [AP · AP∗]

(4.1.4)

The same argument holds for estimating the peripheral arc
transfer function under the baroreflex closed-loop conditions.
When calculating ensemble averages of the cross spectra between
terms of Eq. 4.1.2 and SNA, E[Np·SNA∗] does not disappear
because Np inevitably affects SNA through the neural arc (the
red arrows in Figure 9B). Hence, the following equation, which
ignores E[Np·SNA∗], also yields a biased estimation of H2:

H2biased =
E [AP · SNA∗]

E [SNA · SNA∗]
(4.1.5)

Numerical Consideration on Open-Loop Analysis
Applied to Closed-Loop Data When Endogenous
Noise Exists Only in the Neural or Peripheral Arc
When Np is absent and Nc alone activates the baroreflex system,
the input-output relationship through the peripheral arc becomes

AP(f ) = H2(f )SNA(f ) (4.1.6)

Calculating ensemble averages of the cross spectra between
terms of Eq. 4.1.6 and SNA yields

E
[
AP · SNA∗

]
= H2E

[
SNA · SNA∗

]
(4.1.7)

Since Np = 0, the estimation of H2 using the right-hand side
of Eq. 4.1.5 is not biased in this case:

H2 =
E [AP · SNA∗]

E [SNA · SNA∗]
(4.1.8)

Next, calculating ensemble averages of the cross spectra
between terms of Eq. 4.1.6 and AP yields

E
[
AP · AP∗

]
= H2E

[
SNA · AP∗

]
(4.1.9)

Comparing Eq. 4.1.9 with Eq. 4.1.4, we have

H1biased =
E [SNA · AP∗]
E [AP · AP∗]

=
1

H2
(4.1.10)

Hence, H1biased is an inverse of H2 and does not reflect
H1 at all. To summarize, when only Nc exists, H2 can be
estimated accurately, but H1biased simply returns an inverse of H2
regardless of the profile of H1. Conversely, when only Np exists,
H1 can be estimated accurately, but H2biased returns an inverse
of H1. In the actual datasets, the relative accuracy of H1biased
and H2biased depends on the relative magnitude of Nc and Np
(Kamiya et al., 2011).

Erroneous Application of Open-Loop Analysis to
Closed-Loop Data
The sample data file “rabbit2-vx.dat” contains SNA and AP
signals obtained from an anesthetized rabbit after vagotomy
but before isolating the carotid sinus baroreceptor regions.
Hence, the carotid sinus baroreflex operated as a closed-loop
feedback system. Figure 11 illustrates the results of an erroneous
application of the conventional open-loop analysis to the closed-
loop data, which was derived from the following codes:

A= recread(′c:/SampleData/ rabbit2-vx.dat′, 4);
B= recresample(A, 20);
[H1b C1b]= calctf(B, [3 2]); [H2b C2b]= calctf(B, [2 3]);
figure, subplot(1, 2, 1), tfplot(H1b, C1b, ′r′); subplot(1, 2, 2),

tfplot(H2b, C2b, ′r′);

In the gain plots, H1b and H2b roughly captured the derivative
characteristics of the neural arc and the low-pass characteristics
of the peripheral arc, respectively. However, the phase plot
of H1b was convex downward rather than upward in the
frequency range from 0.01 to 0.5 Hz. Numerically, the phase
of the transfer function is derived from the cross spectra in
the numerator of the transfer function calculation because the
input power spectra in the denominator are real-valued. For
the application of the conventional open-loop transfer function
analysis to the closed-loop data, the phase of H1b was derived
from E[SNA·AP∗] (Eq. 4.1.4), whereas the phase of H2b was
derived from E[AP·SNA∗] (Eq. 4.1.5), which is (E[SNA·AP∗])∗.
Because angle(X) = −angle(X∗), there is a fixed relation of
angle(H1b) = −angle(H2b). Hence, the phase plots in Figure 11
cannot be simultaneously correct for H1b and H2b over the
entire frequency range. This means that gain plots cannot be
simultaneously correct for H1b and H2b, either, because gain and
phase are inseparable quantity of a transfer function. We cannot
tell about the causality between SNA and AP from the results of
the conventional open-loop analysis applied to the closed-loop
data. As a numerical consequence (Eq. 3.2.2), C1b equals C2b.

When the rabbit is under conscious conditions, the
magnitudes of Nc and Np and their balance may be different
from those under anesthetized conditions. The sample data file
“rabbit3-awake.dat” contains SNA and AP signals obtained from
a conscious rabbit sitting in a small box. The SNA was recorded
from a branch of the renal nerve via a pair of stainless-steel
wire electrodes implanted using a sterile procedure a few days
before. The AP was measured via a catheter inserted into the
central ear artery under local anesthesia. The carotid sinus
baroreceptor regions and the vagal and aortic depressor nerves
were kept intact. The result of an erroneous application of
the conventional open-loop analysis to the closed-loop data is
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FIGURE 11 | The neural arc (A) and peripheral arc (B) transfer functions as estimated from an erroneous application of conventional open-loop analysis to the
closed-loop data obtained from an anesthetized rabbit. H1b and H2b were derived from Eqs. 4.1.4 and 4.1.5, respectively. A fixed relation of
angle(H1b) = –angle(H2b) was observed. C1b equals C2b.

shown in Figure 12. Although we expected that the situations of
the identifiability of the system dynamic characteristics would
differ between conscious and anesthetized conditions, Figure 12
seems qualitatively similar to Figure 11, despite the differences
in the experimental preparations (intact vs. sectioned vagi, the
recording of renal vs. cardiac sympathetic nerve).

Closed-Loop Identification With
Exogenous Pressure Perturbation
Numerical Consideration
Figure 13 illustrates a block diagram of the arterial baroreflex
under closed-loop conditions with an exogenous pressure
perturbation. V and Hv denote the command of the exogenous
pressure perturbation and the transfer function from V to AP,
respectively. The relationship between SNA and AP through the
peripheral arc is described in the frequency domain as

AP(f ) = H2(f )SNA(f )+ Np(f )+Hν(f )V(f ) (4.2.1)

For the closed-loop identification, calculating ensemble
averages of the cross spectra between terms of Eq. 4.1.1 and V
yields

E
[
SNA · V∗

]
= H1E

[
AP · V∗

]
+ E

[
Nc · V∗

]
(4.2.2)

When V is a white noise signal, Nc and V become statistically
independent, and E[Nc·V∗] asymptotically diminishes. Hence,
the neural arc transfer function can be estimated from the
following equation:

H1 =
E [SNA · V∗]
E [AP · V∗]

(4.2.3)

Once H1 is estimated, Nc can be estimated from Eq. 4.1.1 as

Nc = SNA−H1 · AP (4.2.4)

Calculating ensemble averages of the cross spectra between
terms of Eq. 4.2.1 and Nc yields

E
[
AP · N∗c

]
= H2E

[
SNA · N∗c

]
+ E

[
Np · N∗c

]
+HνE

[
V · N∗c

]
(4.2.5)

In the above equation, E[Np·Nc
∗] asymptotically diminishes

because all linear couplings between SNA and AP are expressed
by H1 and H2 in the diagram shown in Figure 13, and Np and Nc
are linearly uncorrelated, by definition. The last term, E[V·Nc

∗],
also asymptotically diminishes when V is a white noise signal.
Accordingly, the peripheral arc transfer function can be estimated
from the following equation:

H2 =
E
[
AP · N∗c

]
E
[
SNA · N∗c

] (4.2.6)
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FIGURE 12 | The neural arc (A) and peripheral arc (B) transfer functions estimated by an erroneous application of conventional open-loop analysis to the
closed-loop data obtained from a conscious rabbit. H1b and H2b were derived from Eqs. 4.1.4 and 4.1.5, respectively. There was a fixed relation of
angle(H1b) = –angle(H2b). C1b equals C2b.

It should be noted that the reliability of the H2 estimation
depends on the properties of Nc. Inputs from higher brain
centers generate Nc, as evidenced by the variation of SNA under

FIGURE 13 | A conceptual block diagram describing the closed-loop
identification of the carotid sinus baroreflex using an exogenous pressure
perturbation. H1 and H2 represent the linear transfer function of the neural
and peripheral arcs, respectively. V and Hv represent the command for the
exogenous pressure perturbation and the transfer function from the command
signal to arterial pressure (AP), respectively. Nc, unknown central noise; Np,
unknown peripheral noise; SNA, sympathetic nerve activity.

a fixed CSP (Moslehpour et al., 2016b). However, if there is
not enough power of Nc in a certain frequency range, the H2
estimation becomes unreliable because of divisions by small
numbers. For calculating H2, a direct estimation of Nc is not
necessary. Substituting Nc in Eq. 4.2.6 with Eq. 4.2.4 yields

H2 =
E
[
AP · (SNA−H1 · AP)∗

]
E
[
SNA · (SNA−H1 · AP)∗

]
=

E [AP · SNA∗]−H1∗E [AP · AP∗]
E [SNA · SNA∗]−H1∗ (E [AP · SNA∗])∗

(4.2.7)

Application of Closed-Loop Identification
The sample data file “rabbit4-closed.dat” contains SNA and AP
signals during an exogenous pressure perturbation induced by
blood withdrawal and infusion obtained in an anesthetized and
vagotomized rabbit. Figure 14 depicts the 10-Hz resampled data
of the whole recording. The first channel represents the command
signal for blood infusion (a positive value) and withdrawal
(a negative value). The command was changed according to
a binary white noise signal with a switching interval of 1 s.
The second and third channels represent SNA and AP signals,
respectively. In the fourth channel, HR showed a decreasing trend
in this example.
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FIGURE 14 | Time series of a command signal for an exogenous pressure perturbation, sympathetic nerve activity (SNA), arterial pressure (AP), and heart rate (HR)
after 10-Hz resampling. The data from the first 120 s were discarded to analyze the stationary portion of the data. Sg1 through Sg8 denote the half-overlapping
segments for the closed-loop transfer function analysis.

Figure 15 illustrates the results of a closed-loop identification,
obtained from the following codes:

A= recread(′c:/SampleData\rabbit4-closed.dat′, 4);
B= recresample(A, 20); figure, recplot(B, 10);
[H1c H2c]= opeclo(B, [1 3 2]);
figure, subplot(1, 2, 1), tfplot(H1c, ′r′); subplot(1, 2, 2),

tfplot(H2c, ′r′);

The user-defined function opeclo calculates the open-loop
transfer functions from the closed-loop data with an exogenous
pressure perturbation. The second argument of opeclo specifies
the channels in the following order: the command signal, the
AP signal that is directly affected by the exogenous perturbation,
and the SNA signal. In Figure 15, the estimated H1c and H2c
captured the derivative and low-pass characteristics, respectively.
The phase plot of H1c revealed the out-of-phase relationship
with a slightly convex-upward shape. The phase plot of H2c
showed that the phase approached 0 radians at the lowest
frequency and delayed with increasing frequency. In contrast
to Figures 11, 12, the phases of H1c and H2c did not show
a fixed relation of angle(H1c) = −angle(H2c). However, the
estimation of H1c in the frequency range above 0.5 Hz was
more dispersed than that derived from the open-loop experiment

(Figure 3). This is partly because the switching interval for
the blood infusion and withdrawal was 1 s, and the input
power of the exogenous pressure perturbation decreased in
the frequency range above 0.5 Hz. The estimation of H2c
in the lower frequency range was more dispersed than that
derived from the open-loop experiment (Figure 4). This result
is partly because the estimation of H2c relies on the unknown
endogenous noise component of SNA. There were no statistically
significant differences between the transfer function parameters
estimated via the closed-loop method and those estimated via
the open-loop method in the same animals, excepting fc2 in
the neural arc (Kawada et al., 1997). The parameter fc2 was
not compared because the lack of input power in the higher
frequency range hampered a reliable estimation of fc2 in the
closed-loop method.

LIMITATIONS

First, we did not treat the cardiac branch of the arterial
baroreflex partly because most of the data were obtained
from anesthetized animals with vagotomy. The vagal branch
exerts a rapid HR response compared with the sympathetic
branch (Kawada et al., 2019). For the analysis of clinical data,
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FIGURE 15 | The neural arc (A) and peripheral arc (B) transfer functions as estimated by a closed-loop identification method with an exogenous pressure
perturbation by blood infusion and withdrawal. H1c and H2c were derived from Eqs. 4.2.3 and 4.2.6, respectively.

whether the dynamic properties of the cardiac branch can
be estimated accurately under conditions with the intact vagi
needs to be examined because cardiac vagal nerve activity
predominantly regulates HR in humans under resting conditions
(Hori and Okamoto, 2012).

Second, the AP regulation involves mechanisms other than
the arterial baroreflex such as autoregulation and blood volume
control. The autoregulation manifests in association with blood
flow control. For instance, cerebral blood flow is autoregulated
near constant over a wide pressure range, while it could be
more pressure passive during low cardiac output conditions
(Lie et al., 2021). The blood volume control by the kidneys is
essential for long-term AP control. An open-loop analysis on
the baroreflex-mediated AP changes and associated urine output
function may provide a clue to connect the arterial baroreflex
and the blood volume control (Kawada et al., 2020). Further
studies are clearly required for an integrative understanding of
the AP regulation.

CONCLUSION

Although there are many closed-loop identification studies,
validation is made indirectly on the basis of the predictability

of the output signal from the input signal. In this article, we
compared the results of a closed-loop identification with the
open-loop dynamic characteristics of the baroreflex system.
Although the frequency-domain closed-loop identification
employing an exogenous pressure perturbation was successful
in separately assessing the transfer functions of the neural and
peripheral arcs, there remains an issue of estimation accuracy
in the higher frequency range of the neural arc and in the
lower frequency range of the peripheral arc. Further efforts are
required to identify open-loop dynamic characteristics of the
arterial baroreflex system from closed-loop data. Alternatively,
a priori knowledge about the open-loop dynamic characteristics
of the arterial baroreflex system may be used to advance the
assessment of baroreflex function under closed-loop conditions.
In this regard, Mannoji et al. (2019) proposed that the ratio
of power spectra of AP between two frequencies be used to
derive an index of baroreflex gain. Clinical data demonstrated
that aging steepens the slope of the AP power spectra, probably
reflecting the deterioration of the arterial baroreflex in older
subjects (Mano et al., 2021). The noninvasive nature of the
AP power spectral analysis is an advantage of the method. On
the other hand, information on the index of baroreflex gain
alone is insufficient to construct a cardiovascular simulator that
enables the prediction of dynamic AP changes in response to
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interventions. Clinical application of closed-loop identification of
baroreflex properties awaits further investigations.
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APPENDIX

Setup of GNU Octave
GNU Octave is available at https://www.gnu.org/software/octave/. The sample codes were tested using GNU Octave, version 6.2.0
(Local) (GUI). After installing the GNU Octave, the path for user function files (∗.m) needs to be added through the [SetPath]
command in the [Edit] menu. Execute “demo_open” to generate Figures 1–8. Execute “demo_closed” to generate Figures 11–15.

Setup of Scilab
Scilab is available at https://www.scilab.org. The sample codes were tested using Scilab version 6.1.0 (64-bit) Desktop. Open
“dynamic_step.zcos” in Xcos after initializing the parameters used in the block diagram (see section “Design of a Block Diagram”).
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