AUTHOR=Nallathambi Abinand , Sen Sanchari , Raghunathan Anand , Chandrachoodan Nitin TITLE=Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks JOURNAL=Frontiers in Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.694402 DOI=10.3389/fnins.2021.694402 ISSN=1662-453X ABSTRACT=

Spiking neural networks (SNNs) have gained considerable attention in recent years due to their ability to model temporal event streams, be trained using unsupervised learning rules, and be realized on low-power event-driven hardware. Notwithstanding the intrinsic desirable attributes of SNNs, there is a need to further optimize their computational efficiency to enable their deployment in highly resource-constrained systems. The complexity of evaluating an SNN is strongly correlated to the spiking activity in the network, and can be measured in terms of a fundamental unit of computation, viz. spike propagation along a synapse from a single source neuron to a single target neuron. We propose probabilistic spike propagation, an approach to optimize rate-coded SNNs by interpreting synaptic weights as probabilities, and utilizing these probabilities to regulate spike propagation. The approach results in 2.4–3.69× reduction in spikes propagated, leading to reduced time and energy consumption. We propose Probabilistic Spiking Neural Network Application Processor (P-SNNAP), a specialized SNN accelerator with support for probabilistic spike propagation. Our evaluations across a suite of benchmark SNNs demonstrate that probabilistic spike propagation results in 1.39–2× energy reduction with simultaneous speedups of 1.16–1.62× compared to the traditional model of SNN evaluation.