AUTHOR=Charlebois Chantel M. , Caldwell David J. , Rampersad Sumientra M. , Janson Andrew P. , Ojemann Jeffrey G. , Brooks Dana H. , MacLeod Rob S. , Butson Christopher R. , Dorval Alan D. TITLE=Validating Patient-Specific Finite Element Models of Direct Electrocortical Stimulation JOURNAL=Frontiers in Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.691701 DOI=10.3389/fnins.2021.691701 ISSN=1662-453X ABSTRACT=
Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against