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Semantic segmentation of mitochondria from electron microscopy (EM) images is an

essential step to obtain reliable morphological statistics about mitochondria. However,

automatically delineating plenty of mitochondria of varied shapes from complex

backgrounds with sufficient accuracy is challenging. To address these challenges, we

develop a hierarchical encoder-decoder network (HED-Net), which has a three-level

nested U-shape architecture to capture rich contextual information. Given the irregular

shape of mitochondria, we introduce a novel soft label-decomposition strategy to

exploit shape knowledge in manual labels. Rather than simply using the ground truth

label maps as the unique supervision in the model training, we introduce additional

subcategory-aware supervision by softly decomposing each manual label map into two

complementary label maps according to mitochondria’s ovality. The three label maps are

integrated with our HED-Net to supervise the model training. While the original label map

guides the network to segment all the mitochondria of varied shapes, the auxiliary label

maps guide the network to segment subcategories of mitochondria of circular shape

and elliptic shape, respectively, which are much more manageable tasks. Extensive

experiments on two public benchmarks show that our HED-Net performs favorably

against state-of-the-art methods.

Keywords: image segmentation, convolutional neural networks, electron microscopy image, hierarchical

encoder-decoder, mitochondria segmentation

1. INTRODUCTION

Mitochondria are the site of oxidative metabolism in eukaryotes and an essential place to synthesize
adenosine triphosphate (ATP) to provide power for cells (Brand et al., 2013). The latest research
(Seo et al., 2019) has found that mitochondria are closely related to the occurrence of genetic
diseases and the survival of cancer cells. The changes in mitochondrial morphology have a
direct impact on the normal realization of their functions. Mitochondria delineation in Electron
Microscopy (EM) images plays a vital role in assisting neuroscientists to analyze mitochondrial
morphology and distribution of mitochondria. However, manual delineation of mitochondria in
many high-resolution EM images requires a vast amount of time and effort by annotation experts.
Therefore, automated mitochondria segmentation algorithms with sufficient accuracy are highly
desirable to help neurologists analyze EM images. However, mitochondria have varied shapes,
ranging from punctuating structures to tubular networks (Wei et al., 2020). Therefore, accurately
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segmenting mitochondria from complex backgrounds is
challenging. Example slices of EM images from two datasets
are shown in Figure 1. where mitochondria show irregular
shapes and other subcellular structures in the background show
similar appearance and shape with mitochondria. Significantly,
mitochondria show large variance in roundness. Figure 2A

illustrates the ovality distribution of mitochondria on images
from the EPFL dataset (Lucchi et al., 2013) and the Kasthuri++
dataset (Casser et al., 2020). The ovality p of each mitochondrion
is defined as the length a of its major axis over the length
b of its minor axis. The median of ovality p distribution is
1.56 on the EPFL dataset and 1.60 on the Kasthuri++ dataset.
Further illustrations are shown in Figures 2B,C. in which we
conducted ellipse fitting for each mitochondrion instance. It
can be seen that some mitochondria have p over 10, while some
others have p lower than 1.5. It is challenging for a model to
delineate mitochondria of different shapes simultaneously, which
motivates us to exploit subcategory information in our learning
based segmentation model.

Recently, various methods (Lucchi et al., 2013; Cheng and
Varshney, 2017; Cetina et al., 2018; Xiao et al., 2018; Casser
et al., 2020; Peng and Yuan, 2020; Yuan et al., 2021) have been
introduced to address mitochondria segmentation. According
to the features they used, mitochondria segmentation can be
categorized into two classes: traditional methods with hand-
crafted features (Lucchi et al., 2011, 2013; Cetina et al., 2018; Peng
and Yuan, 2020) and deep learning methods with automatically
learned features (Cheng and Varshney, 2017; Xiao et al., 2018;
Casser et al., 2020; Yuan et al., 2020, 2021). Generally speaking,
deep-learning-based methods, especially methods based on fully
convolutional neural networks (Ronneberger et al., 2015; Litjens
et al., 2017; Shelhamer et al., 2017), show better performance
than traditional machine learning and computer vision methods
(Lucchi et al., 2013; Cetina et al., 2018; Peng and Yuan, 2020).
Since EM images are volumetric data, both 3D models and
2D models have been adopted in each class. Typically, 3D
models (Çiçek et al., 2016; Xiao et al., 2018; Yuan et al., 2021)
show better performance by taking advantage of full spatial
contexts but at the expense of high computational cost; in

FIGURE 1 | Illustration of typical EM images, in which mitochondria show

varied shapes. (A) The EPFL data (Lucchi et al., 2013) were taken from CA1

hippocampus region of a mouse brain, (B) the Kasthuri++ data (Casser et al.,

2020) were taken from mouse cortex. The red contours represent the

corresponding ground-truth segmentation.

contrast, 2D models (Ronneberger et al., 2015; Casser et al.,
2020) are more computationally efficient but may neglect inter-
slice consistency and show inferior performance. However, 2D
methods are flexible to process EM images with large slice
thickness. In this study, we follow the slice-by-slice segmentation
strategy and aim to devise a powerful 2D model in the deep
learning framework.

Among the deep-learning-based methods, the 2D U-Net
(Ronneberger et al., 2015) and 3D U-Net (Çiçek et al.,
2016), typical encoder-decoder networks with skip connections,
are strong baseline models for 2D segmentation and 3D
segmentation, respectively. Casser et al. (2020) used a modified
2D U-Net with an on-the-fly data augmentation and Z-
filtering postprocessing, and their model showed obviously
improved performance over 2D U-Net. Cheng and Varshney
(2017) improved the 2D/3D U-Net with factorized convolutions
and online feature-level augmentations and showed improved
results over the 2D/3D U-Net. Xiao et al. (2018) proposed an
effective approach using a modified 3D U-Net, a 3D residual
convolutional network with deep supervision. Yuan et al.
(2021) introduced a lightweight HIVE-Net with state-of-the-
art performance. Their method conducted 3D segmentation
but essentially with only more computationally-efficient 2D
convolutions. An auxiliary centreline detection task is augmented

FIGURE 2 | The ovality distribution of mitochondria on images from the EPFL

dataset and the Kasthuri++ dataset. The ovality p of each mitochondrion is

defined as the ratio of the length of its major axis a to the length of its minor

axis b, which can be obtained by performing ellipse fitting on the label maps.

The median of ovality p distribution (A) is 1.56 on the EPFL dataset and 1.60

on the Kasthuri++ dataset. The red contours in (B,C) represent mitochondria

with p over 1.60, and the green contours represent those with p lower

than 1.60.
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to capture intrinsic shape prior. Given the high computational
complexity of 3D networks, we follow the slice-by-slice
segmentation strategy with 2D networks. However, due to the
ambiguity of mitochondria segmentation, it is challenging to
accurately delineate plenty of mitochondria of varied shapes with
information from a single image slice.

To address these challenges, we propose a novel hierarchical
encoder-decoder network, named HED-Net, with three-level
nested encoder-decoder architecture to capture multi-scale
contextual features, which are crucial to discriminate objects
from complex backgrounds. Inspired by Qin et al. (2020),
we used micro U-Nets to substitute standard convolutions,
which constitutes the deeper level of encoder-decoder of our
HED-Net. To improve the identification of mitochondria of
varied shapes, we propose to exploit shape knowledge from
manual labels. Note that manual labels are typically just used
as pixel-wise supervision on the final output layer during model
training. However, the manual label map for each training image
contains more global and semantic information that can be
explored to boost the segmentation. Although it is impractical
to build a statistical shape model as the prior for multi-object
segmentation, it is relatively easy to identify the roundness of
each mitochondrion. Based on this observation, we take an
easy-to-hard strategy for this challenging binary segmentation
problem and introduce subcategory information according to
the roundness of the mitochondria, i.e., mitochondria of elliptic
shape and mitochondria of circular shape. To guide the model
training, we construct two auxiliary label maps with a soft
label-decomposition strategy, which decomposes the ground
truth label map into two complementary label maps. One label
map takes higher values on mitochondria of elliptic shape and
lower values on mitochondria of elliptic shape; the other label
map takes lower values on mitochondria of elliptic shape and
higher values on mitochondria of circular shape. All of the
three label-maps jointly supervise the proposed HED-Net. To
this end, the outer-level of our HED-Net consists of a soft
label-decomposition subnet and a label-fusion subnet, both of
which are encoder-decoders. A closely-related method is the
decompose-and-integrate strategy in Zhang et al. (2019) for
multi-class segmentation, where they split multi-class label map
into several binary ones. Our method’s significant difference is
that we address the binary segmentation problem with a novel
soft-label decomposition strategy. The underlying observation is
that it is impractical to classify mitochondria into elliptic shapes
and circular shapes using a hard threshold based on the ovality
of mitochondria.

The main contributions of this study can be summarized
as follows,

• We propose a soft label-decomposition strategy to exploit side
shape information in manual labels.

• A three-level nested encoder-decoder network is introduced to
capture rich contextual information and facilitate the facilitate
the integration of subcategory-aware supervision.

• Validations on two challenging benchmarks show that the
proposed 2D method can achieve competitive performance in
terms of class-level and instance-level measures.

The remainder of this paper is arranged as follows. We elaborate
on the proposed methods in section 2. We present experiments
and results in section 3. Section 4 concludes this study.

2. METHOD

In this section, we describe the proposed HED-Net in details. To
segment mitochondria from volumetric EM images, we follow
the slice-by-slice segmentation strategy. To capture inter-slice
continuity, the proposed model takes 5-adjacent slices as the
input but only outputs the prediction for the centering slice of
the multichannel input.

2.1. Overview of the Proposed Model
Figure 3 provides an overview of the proposed HED-Net, which
is composed by two stages of encoder-decoder with cross-stage
skip-connections and supervised by multiple supervising labels,
which will be discussed later in details. The first stage of the
HED-Net is a two-head encoder-decoder, named Soft Label-
Decomposition Sub-Net, which is supervised by auxiliary soft
labels for subcategories of mitochondria. The second stage of the
HED-Net is an encoder-decoder, named Soft Label-Fusion Sub-
Net, which fuses the information from the predictions in the first
stage and the original images and supervised by original ground
truth label map.

In both stages of the HED-Net, we use a slightly modified
U-Net with residual connections as the encoder-decoder.
The standard U-Net architecture has a contracting path as
the encoder to extract semantic features and a symmetric
expanding path as the decoder for precise boundary delineation.
The standard U-Net used skip-connections between the
corresponding encoding and decoding layers. In our model, each
encoder has four down-sampling layers including one strided
3×3 convolution layer (the first layer) and three 2×2 max-
pooling layers, and each decoder has four bilinear up-samplings.
In terms of architecture, the main differences of the used U-Net
in this paper and the standard U-Net (Ronneberger et al., 2015)
are the using of strided 3×3 convolution for downsampling and
bilinear interpolation for unsampling. Moreover, we use residual
connections to achieve residual learning (He et al., 2016).

To capture rich contextual features, we replace standard 3×3
convolutional layers with micro U-Nets in all the encoder-
decoders in the two stages. Each micro U-Net has three max-
pooling layers for down-sampling in the encoder and three
bilinear up-sampling layers in the decoder. Note that the idea
of using small U-Net as the building blocks in U-Net was firstly
introduced in Qin et al. (2020) for salient object detection.

2.2. Soft Label-Decomposition Subnet
The significant challenges for mitochondria segmentation are
the varied shapes and complicated background in EM images,
which typically result in missed detection, false detection, and
inaccurate boundary delineation, especially for mitochondria of
irregular shape. Typically, the manual labels are just used as
pixel-wise supervision on the final output layer during model
training. However, the manual label map for each training image
contains more global and semantic information that can be
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FIGURE 3 | An overview of the proposed HED-Net, which is a three-level nested encoder-decoder with micro U-Nets as the basic building blocks. The HED-Net

consists of a soft label-decomposition stage and a soft label-fusion stage. The model is trained under the supervision of ground truth label maps and

subcategory-aware label maps.

explored to boost the segmentation of mitochondria. Therefore,
we explore general shape knowledge extracted from label maps
as side information to improve the segmentation. Although it is
impractical to build a statistical shape prior for simultaneously
segmenting plenty of mitochondria with varied shape from each
EM image, it is relatively easy to identify the roundness of
each mitochondrion. Based on this observation, we take an
easy-to-hard strategy for this challenging binary segmentation
problem and introduce subcategory information according
to the roundness of the mitochondria, i.e., mitochondria
of elliptic shape and mitochondria of circular shape. The
two decoders in the Soft Label-Decomposition Sub-Net focus
on the segmentation of mitochondria belongs to the two
subcategories, respectively.

2.2.1. Soft Label-Decomposition
Since there is ambiguity to define mitochondria of elliptic shape
and mitochondria of circular shape, we introduce a soft label-
decomposition strategy to construct auxiliary label maps for
supervising the two decoders in the Soft Label-Decomposition
Sub-Net. Specifically, given the label map Y of a training image
X, we construct two auxiliary label maps Y1 and Y2 according
to the roundness of each mitochondrion in Y . Suppose a is
the length of the major axis of a mitochondrion instance, and
b is the length of the minor axis. We measure the roundness
of each mitochondrion instance in Y by p = a/b, where
the major axis and minor axis are estimated by ellipse fitting,
as shown in Figure 2. The mitochondria in Figure 2 show
significantly difference in roundness. When p approaching 1,

the mitochondrion instance is more like a circle. With a given
threshold on p, we can categorize the mitochondria into two
sub-classes, mitochondria of circular shape and mitochondria of
elliptical shape, as shown in Figure 4. The two auxiliary label
maps are defined as:

Y1(x) =

{

α, p(x) ≤ T

1− α, p(x) > T
, (1)

Y2(x) =

{

1− α, p(x) ≤ T

α, p(x) > T
, (2)

Y = Y1 + Y2, (3)

where x is a pixel inX, p(x) is the roundness of themitochondrion
instance that x belongs to, α ∈ [0.5, 1] is a positive constant, and
the ovality threshold T is a positive value. With α ∈ (0.5, 1], the
label maps Y1 and Y2 put unequal weights on mitochondria of
different shapes. In our experiments, the parameter T is set as 1.6
according to the mitochondrion instance’s statistical distribution
in the training dataset. We set α=0.9 to make the two label maps
Y1 and Y2 highlight mitochondria of different subcategories.
Although we can also achieve a hard label-decomposition by
setting set α = 1, it is challenging for a segmentation model to
identify mitochondria in each subcategory.
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FIGURE 4 | Illustration of the proposed soft label-decomposition. A ground truth label map Y in the training data is decomposed into two complementary label maps

Y1 and Y2 according to roundness of each mitochondrion instance. All the three label maps are jointly used to supervise the model training. (A) EM image, (B) full

label map Y , (C) circular label map Y1, (D) oval label map Y2.

2.2.2. Subcategory-Aware Supervision
The two auxiliary label maps Y1 and Y2 are used as deep
supervision to guide the model training. The soft label-
decomposition subnet consists of two decoders: a circular
decoder that is mainly responsible for detecting circular
mitochondria, and an ellipse decoder that is mainly responsible
for detecting oval-shaped mitochondria. Since there is ambiguity
on the class boundary between circular mitochondria and oval-
shaped mitochondria, each decoder segments all mitochondria
but puts higher weights on its focused subcategory.

2.3. Soft Label-Fusion Subnet
To integrate the predictions and features of the soft label-
decomposition stage, we introduce a soft label-fusion stage,
which is supervised by full ground truth labels and jointly
trained with the first stage. The soft label-fusion subset takes the
predictions of the first stage and the original image as input. The
features in the encoders of the first stage is reused in the decoder
of the second stage with skip-connections and concatenation.
The soft label-decomposition subnet and the soft label-fusion
subnet constitute the proposed HED-Net.

2.4. The Total Loss
Let P1, P2, and P be the predictions of the circle decoder, the
ellipse encoder, and the decoder of the second stage, respectively.
The total loss of our HED-Net is defined as following,

Ltotal = λLcircle + λLellipse + L, (4)

where λ is a positive trade-off parameter. Lcircle, Lellipse, and L
denotes the losses for the circle decoder, the ellipse encoder, and
the decoder of the second stage. They are defined based on the
Dice loss function,

Dice(P,Y) = 1−
2
∑

x Y(x)P(x)
∑

x Y(x)Y(x)+
∑

x P(x)P(x)+ ǫ
, (5)

where x is a pixel location.
It is noteworthy that, since the auxiliary label maps Y1 and

Y2 take different values on different mitochondrion instances,
Dice(P1,Y1) and Dice(P2,Y2) are essentially weighted Dice losses.

3. RESULTS AND ANALYSIS

In this section, we first evaluate the segmentation and detection
performance of our method on two public benckmarks, and then
conduct an ablation analysis of our model.

3.1. Datasets
We evaluate model performance on two mitochondria datasets,
which have different voxel spacings and different volume sizes.
The public EPFL dataset1 provides two stacks for model training
and testing, respectively; each stack has 165 consecutive slices of
size 768 × 1,024, which were scanned with focused ion beam
scanning EM (FIBSEM) from CA1 hippocampus region of a
mouse brain. Kasthuri++ dataset2 contains 85 consecutive image
slices of size 1,643 × 1,613 for model training and 75 slices of
size 1,334 × 1,553 for model testing. The images in Kasthuri++
dataset were taken from 3-cylinder mouse cortex with serial
section EM (ssEM). The Kasthuri++ dataset was relabeled by
Casser et al. (2020). The two datasets have significantly different
voxel spacing. While the voxel spacing of EPFL dataset is 5 nm3

per voxel and the voxel spacing of Kasthuri++ dataset is 3×3×30
nm per voxel.

3.2. Evaluation Criteria
3.2.1. Criteria for Evaluating Binary Segmentation
Dice similarity coefficient (DSC) and Jaccard-index coefficient
(JAC) are used to measure the agreement between the binary
ground truth Y and predicted segmentation P.

DSC =
2|P ∩ Y|

|P| + |Y|
, JAC =

|P ∩ Y|

|P ∪ Y|
. (6)

3.2.2. Criteria for Evaluating Instance Segmentation
We use the aggregated Jaccard-index (AJI) (Kumar et al., 2017)
and Panoptic Quality (PQ) (Graham et al., 2019; Kirillov et al.,
2019) to evaluate the instance segmentation performance.

AJI =

∑N
j=1 |Y

j ∩ Pj
∗

|
∑N

j=1 |Y
j ∪ Pj

∗
| +

∑

i∈FP |P
i|
, (7)

1https://cvlab.epfl.ch/data/em.
2https://casser.io/connectomics/.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 687832

https://cvlab.epfl.ch/data/em
https://casser.io/connectomics/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Luo et al. HED-Net for Mitochondria Segmentation

where N is the total number of instance in Y , Pj
∗

is the segment
(i.e., connected region) in the predicted segmentation that has
the largest overlapping (in terms of JAC) with the segment Y j;
FP is the set of false positive regions in P without the matched
mitochondria in Y .

PQ =

∑

j∈TP JAC(Y
j, Pj

∗

)

|TP|
︸ ︷︷ ︸

×
|TP|

|TP| + 1
2 |FP| +

1
2 |FN|

︸ ︷︷ ︸

,

Segmentation Quality(SQ) Detection Quality(DQ)

(8)

where true positives (TP), false positives (FP), and false negatives
(FN) representing the matched pairs of segments with at least
50% overlapping in JAC, unmatched predicted segments, and
unmatched ground truth segments, respectively.

3.2.3. Criteria for Evaluating Detection
By default, we use F1-75, which requires at least 75% overlap
in JAC. Moreover, given the TP and FN, we also report the
sensitivity (SEN) and specificity (SPE).

SEN =
|TP|

|TP| + |FN|
, SPE =

|TN|

|TN| + |FP|
. (9)

FIGURE 5 | Visual comparison of the proposed method with two strong baselines, i.e., 2D U-Net (Ronneberger et al., 2015) and 3D U-Net (Çiçek et al., 2016) and a

state-of-the-art 3D model, i.e., HIVE-Net (Yuan et al., 2021), on examples from the EPFL dataset and the Kasthuri++ dataset. (A) Ground truth, (B) 2D U-Net, (C) 3D

U-Net, (D) HIVE-Net, (D) our.

TABLE 1 | Comparison of the proposed method with other 2D/2.5D/3D top-performing methods for mitochondria segmentation on EPFL dataset.

Type Method
Binary seg. Instance seg.

DSC JAC AJI PQ

3D

Lucchi et al. (2013) 86.0 75.5 74.0 63.5

Cetina et al. (2018) 86.4 76.0 – –

Peng and Yuan (2020) 90.9 83.3 75.4 67.7

3D U-Net (Çiçek et al., 2016) 93.5 87.8 86.9 80.6

Cheng and Varshney (2017) (3D) 94.1 88.9 – –

Xiao et al. (2018) 94.7 90.0 88.6 83.1

HIVE-Net (Yuan et al., 2021) 94.8 90.1 89.0 83.9

2D

U-Net (1-slice input) 91.5 84.4 83.0 75.5

Cheng and Varshney (2017) (2D) 92.8 86.5 – –

Casser et al. (2020) (w/o Z-Filtering) 93.8 88.4 88.0 81.5

Casser et al. (2020) (w Z-Filtering) 94.2 89.0 88.5 83.0

HED-Net (1-slice input) 94.2 89.1 89.1 84.0

2.5D
U-Net (5-slice input) 92.9 86.8 86.6 78.7

HED-Net 94.7 89.9 89.7 85.0

The evaluation results under measures (%) for binary segmentation and instance segmentation.

Best results are highlighted in bold.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 687832

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Luo et al. HED-Net for Mitochondria Segmentation

The detection performance in F1 under different overlapping
requirements (50–85%) are also used. Especially, F1-80 and F1-85
are very strict measures.

3.3. Implementation Details
We use Pytorch (Paszke et al., 2019) on a workstation with
64 GB RAM and one GTX 2080Ti GPU to implement our
experiments. The trade-off parameter λ is fixed and set as 0.5 to
make the training losses of the first stage and the second stage
have the similar magnitudes. Thus, the two stages have the same
importance. The model is optimized by Adam (Kingma and Ba,
2014), and the weight decay is set to 10−5. The initial learning
rate is set as 5× 10−4 and a step-wise learning rate decay scheme
is employed. For the EPFL dataset, the step and decay rate is set
to 30 and 0.9, respectively; For the Kasthuri++ dataset, the step

and decay rate is set as 60 and 0.9, respectively. Our network
is trained using randomly cropped images of size 512×512 and
batch size 3 for all the two datasets. Synthesized images and
the corresponding label maps through flipping, gaussian blur,
median blur, and random rotations of ±90◦ are used as data
augmentation to the training data. At the inference time, we apply
the test-time argumentation, including flipping and rotation of
±90◦ to improve the performance further.

3.4. Segmentation Performance
We compare our method with both 2D methods and 3D
methods, including both traditional methods based on hand-
crafted features (Lucchi et al., 2013; Cetina et al., 2018; Peng
and Yuan, 2020) and deep learning methods (Ronneberger et al.,
2015; Çiçek et al., 2016; Cheng and Varshney, 2017; Xiao et al.,

TABLE 2 | Comparison of the proposed method with other 2D/3D top-performing methods for mitochondria segmentation on Kasthuri++ dataset.

Type Method
Binary seg. Instance seg.

DSC JAC AJI PQ

3D

Lucchi et al. (2013) 86.2 75.8 73.5 57.6

Peng and Yuan (2020) 89.3 80.6 85.8 72.9

3D U-Net (Çiçek et al., 2016) 94.3 89.2 87.9 81.5

Xiao et al. (2018) 95.9 92.2 91.0 85.1

HIVE-Net (Yuan et al., 2021) 96.2 92.8 91.5 86.6

2D

U-Net (1-slice input) 94.0 88.6 87.5 80.2

Casser et al. (2020) (w/o Z-Filtering) 91.5 84.4 83.5 77.8

Casser et al. (2020) (w Z-Filtering) 89.4 81.0 78.3 71.6

HED-Net (1-slice input) 95.9 92.2 91.3 85.1

2.5D
U-Net (5-slice input) 94.4 89.3 88.1 81.6

HED-Net 96.1 92.6 91.6 86.6

The evaluation results under measures (%) for binary segmentation and instance segmentation.

Best results are highlighted in bold.

TABLE 3 | Detection performance on EPFL and Kashuri++.

Type Method
EPFL Kashuri++

F1-75 SEN SPE F1-75 SEN SPE

3D

Lucchi et al. (2013) 42.0 45.3 39.5 57.0 64.0 52.0

Peng and Yuan (2020) 75.7 79.8 72.3 70.3 68.8 72.2

3D U-Net (Çiçek et al., 2016) 87.7 89.8 86.0 84.9 85.5 84.4

Xiao et al. (2018) 87.8 89.0 87.0 87.2 87.4 87.2

HIVE-Net (Yuan et al., 2021) 90.1 91.2 89.3 89.1 89.6 88.8

2D
U-Net (1-slice input) 81.0 85.3 77.6 83.8 82.9 85.1

Casser et al. (2020) (w Z-Filtering) 89.8 90.5 89.6 73.9 72.4 75.8

2.5D
U-Net (5-slice input) 84.4 88.3 81.7 85.6 85.2 86.4

HED-Net 92.0 92.1 92.2 90.3 87.1 93.9

Evaluation results under F1-75, SEN, and SPE are reported which are based on measuring the segment overlapping of matched instances.

Best results are highlighted in bold.
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2018; Casser et al., 2020), on the EPFL dataset and Kasthuri++
dataset. Since our HED-Net takes 5-slice input, which is usually
called 2.5Dmethod, we also compare our method with 2D U-Net
(Ronneberger et al., 2015) that takes five slices as input.

3.4.1. Visual Comparison
Figure 5 provides visual comparisons of the proposed method
with two strong baselines, i.e., 2D U-Net (Ronneberger et al.,
2015) and 3D U-Net (Çiçek et al., 2016) and a state-of-the-art 3D
model, i.e., HIVE-Net (Yuan et al., 2021), on examples in EPFL
dataset and Kasthuri++ dataset. In comparison of the results in
Figures 5B,C,E, we can see that the proposed method obviously
shows fewer false detections and fewer missed detections than 2D
U-Net and 3D U-Net. As shown in Figures 5D,E, the proposed
2D model shows comparable visual performance with the 3D
model HIVE-Net but with slightly better shape integrity.

3.4.2. Segmentation Performance on EPFL Dataset
Table 1 demonstrates the quantitative comparison of our method
with both 3D methods, 2.5D methods, and 2D methods for
mitochondria segmentation on the EPFL dataset. While the
methods in Lucchi et al. (2013), Cetina et al. (2018), and Peng and
Yuan (2020) are traditional methods with handcrafted features,
other methods are deep learning based methods, which show
better results than traditionalmethods. Compared to 2Dmethods
that take single slice as input, 2.5D methods takes multiple
slices as input. With more slices as input, the U-Net (5-slice
input) outperforms the U-Net (1-slice input) by 1.4% in DSC.
The 3D U-Net and methods in Cheng and Varshney (2017),
Xiao et al. (2018), and Yuan et al. (2021) directly segment 3D
volumes and generally show better results than 2D methods and
2.5D methods. The HIVE-Net shows the best results among
the 3D models. However, 3D models usually suffer from high
computational complexity.

From the Table 1, we can see that the proposed HED-Net
not only shows the best segmentation performance among all
the 2D models and 2.5D models, but also shows competitive
performance in comparison with 3D models. Especially, for
instance segmentation, our model outperforms the HIVE-Net by
0.7 and 1.1% in terms of AJI and PQ, respectively. For binary
segmentation, the performance of our method is only slightly
lower (≤0.2%) than the HIVE-Net. When taking single slice
as the input, our HED-Net (1-slice) outperforms most of the
compared methods except for Xiao et al. (2018) and HIVE-Net
(Yuan et al., 2021), and show similar performance as Casser
et al. (2020), who used a median filter along the z-dimension
(Z-Filtering) as post-processing to capture 3D information.

3.4.3. Segmentation Performance on Kasthuri++

Dataset
Table 2 demonstrates the quantitative comparison of
the performances of different methods for mitochondria
segmentation on the Kasthuri++ dataset. The proposed method
shows significant improvements over the strong baseline models,
i.e., 2D U-Net (5-slice) and 3D U-Net and obtains 96.1% in

TABLE 5 | The impact of the tradeoff parameter λ.

λ
HED-Net

DSC JAC AJI PQ

0.10 94.4 89.4 89.3 84.0

0.25 94.5 89.6 89.7 85.3

0.50 94.7 89.9 89.7 85.0

1.00 94.3 89.3 89.1 84.1

The results are the performance on the EPFL dataset.

Best results are highlighted in bold.

FIGURE 6 | Detection performance in F1 with different overlapping thresholds for matched instances. As the overlapping thresholds increase, the F1 of all methods

has decreased, but our method maintains the highest stability.
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DSC for binary segmentation, 91.6% in AJI, and 86.6 in PQ for
instance segmentation, outperforming the 3D U-Net by 1.8% in
DSC, 3.4% in JAC, 3.7% in AJI, and 5.1% in PQ. The proposed
model outperforms the method in Xiao et al. (2018) by 0.2% in
DSC, 0.4% in JAC, 0.6% in AJI, and 1.5% in PQ. The proposed
model shows competitive performance in comparison with the
HIVE-Net but is flexible to process both 2D and 3D data.

3.4.4. Detection Performance
The detection performance is also crucial for evaluating the
proposed method. To this end, we compare our method
with other methods in terms of F1-75, SPE, and SEN.
Table 3 summarizes the quantitative comparison results on
both the EPFL dataset and the Kasthuri++ dataset. Overall,
our method shows the best performance on both of the two
datasets and outperforms the 2D U-Net by 11.0 and 6.5%
in F1-75 on the EPFL dataset and the Kasthuri++ dataset,
respectively. Moreover, the proposed 2D model outperforms
the state-of-the-art HIVE-Net by 1.9 and 1.2% in F1-75 on
the EPFL dataset and the Kasthuri++ dataset, respectively.
Significantly, our method shows higher specificity, which
indicates that our model has strong ability to control false
detection. These results demonstrate the effectiveness of
our method.

In addition to F1-75, we compare our method with other
methods in terms of F1 values that use other overlapping
requirements. The comparison results are illustrated in Figure 6.
Our model shows superior performance over other methods,
especially in terms of F1-80 and F1-85, which are very strict

detection measures. Therefore, these results also indicate that the
segmentation by our proposedmodel canmatch the ground truth
segmentation better.

3.5. Impact of the Number of Input Slices
We first study the impact of using varying input slices on
segmentation performance, which is demonstrated in Table 4.
By comparing the results in four measures, we have three
conclusions. First, making use of multi-slice input can improve
the performance of the U-Net and our HED-Net. However, the
performance gain can be marginal when increasing the number
of input slices. Second, compared to the U-Net, the proposed
HED-Net obtains a smaller performance gain when using multi-
slice input. Third, 5-slice input is the best choice for our model.
Therefore, by default, we use five neighboring slices as input for
our model in the following experiments.

3.6. Impact of the Tradeoff Parameter λ

We further investigate the impact of the hyper-parameter λ on
the segmentation performance of the proposed HED-Net. The
hyper-parameter λ trades off the importance of the two stages of
the HED-Net. Since the first stage of the HED-Net contains two
decoders and the second stage contains only one decoder, we set
λ as 0.5 by default to have equal importance on the two stages. In
this section, we further test the segmentation performance with
other choices of λ, i.e., 0.1, 0.25, and 1.0. The segmentation results
are summarized in Table 5. We can see that balanced importance
of the two stages with λ=0.5 results in a better performance.

TABLE 4 | The impact of using varying number of input slices on the segmentation performance.

Input slices
U-Net HED-Net

DSC JAC AJI PQ DSC JAC AJI PQ

1 91.5 84.4 83.0 75.5 94.2 89.1 89.1 84.0

3 92.5 86.2 85.9 77.2 94.5 89.6 89.5 84.9

5 92.9 86.8 86.6 78.7 94.7 89.9 89.7 85.0

7 93.0 86.9 86.6 79.0 94.5 89.7 89.6 84.9

By default, we use 5-neighboring slices as input. The compared methods are validated on the EPFL dataset.

Best results are highlighted in bold.

TABLE 6 | Ablation study of the proposed HED-Net on EPFL dataset.

Methods Architecture Convolutions Label decomposition DSC JAC AJI PQ

HED-Net

One stage 3×3 Conv. – 92.9 86.8 86.6 78.7

One stage Micro U-Net – 93.9 88.7 88.6 83.1

Two stages 3×3 Conv. – 93.5 87.8 87.6 79.1

Two stages Micro U-Net – 94.1 88.9 88.7 83.7

Two stages Micro U-Net Hard (α = 1.0) 94.4 89.5 89.5 84.5

Two stages Micro U-Net Soft (α = 0.9) 94.7 89.9 89.7 85.0

The complete HED-Net uses two-stage network architecture with micro U-Net as the basic building block and utilizes the soft label-decomposition strategy to achieve subcategory-

aware learning. All the methods in comparison use five slices as input.

Best results are highlighted in bold.
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3.7. Ablation Study
We conduct ablation studies to identify the effectiveness of the
introduced two-stage network architecture, the impact of using

micro U-Net as building blocks, and the superiority of the
proposed soft label-decomposition strategy. Table 6 illustrates
the performance of the proposed HED-Net under different

FIGURE 7 | Visual comparison of our model with its ablated versions on the EPFL dataset. (A) Ground truth, (B) 2D U-Net, (C) HED-Net w/o label-decompn, (D)

HED-Net.

FIGURE 8 | Visual comparison of predictions of the circle decoder and ellipse decoder in the first stage and the fusion decoder in the second stage. The results of the

HED-Net with no label-decomposition, hard label-decomposition, and soft label-decomposition are reported. (A) Circle decoder pred., (B) ellipse decoder pred., (C)

fusion decoder pred., (D) overlaid segmentation.

Frontiers in Neuroscience | www.frontiersin.org 10 June 2021 | Volume 15 | Article 687832

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Luo et al. HED-Net for Mitochondria Segmentation

TABLE 7 | The impact of choosing different thresholds T for the ovality p.

HED-Net
T = 1.3 T = 1.6 T = 2.1

DSC JAC AJI PQ DSC JAC AJI PQ DSC JAC AJI PQ

Hard (α = 1.0) 94.2 89.1 89.0 84.2 94.4 89.5 89.5 84.5 94.0 88.8 88.7 83.9

Soft (α = 0.9) 94.5 89.5 89.5 84.6 94.7 89.9 89.7 85.0 94.4 89.4 89.3 84.8

The first quartile (T = 1.3), median (T = 1.6), third quartile (T = 2.1) of the ovality distribution are tested. The HED-Net with both hard label-decomposition and soft label-decomposition

are evaluated on the EPFL dataset.

network settings. The last row is our complete model, which
uses two-stage network architecture with micro U-Net as the
basic building block and utilizes the soft label-decomposition
strategy to achieve subcategory-aware learning. As can be seen,
the models using one-stage architecture are overall poor than the
one using the two-stage architecture. Significantly, when using
standard 3×3 convolution as the basic building block, the two-
stage network outperforms the one-stage network by a large
margin for both binary segmentation and instance segmentation.
Moreover, the using of micro U-Net in the two-stage HED-Net
results in a performance gain of 0.6% in DSC, 1.1% in JAC,
1.1% in AJI, and 4.6% in PQ, which indicate its effectiveness.
Furthermore, with the soft label-decomposition, we obtain a
performance gain of 0.6% in DSC, 1.0% in JAC, 1.0% in AJI,
and 1.3% in PQ. Compared to the HED-Net using hard label-
decomposition, the HED-Net using soft label-decomposition
shows superior performance. A visual comparison of the
complete HED-Net with the HED-Net without using label-
decomposition and the U-Net are shown in Figure 7. The
results of our HED-Net shows much fewer false detections
and more accurate boundary delineations. Figure 8 provides
further visual comparison of predictions of the circle decoder
and ellipse decoder in the first stage and the fusion decoder
in the second stage. The segmentation results by the HED-
Net with no label-decomposition, hard label-decomposition, and
soft label-decomposition are illustrated. The results of the circle
decoder and ellipse decoder of the HED-Net are complementary.
Compared to the HED-Net with no label-decomposition and
with hard label-decomposition, the HED-Net with soft label-
decomposition shows reduced false positives and a stronger
ability to capture mitochondria of large ovality.

3.8. The Impact of the Ovality Threshold T
We have also investigated the impact of choosing different
ovality thresholds T for the HED-Net with hard and soft label-
decomposition. Given the ovality p distributions in Figure 2, we
choose the median of p, i.e., T = 1.6, as the default setting. In
this section, we test other choices of T, i.e., first quartile (T = 1.3)
and third quartile (T = 2.1). The results on the EPFL dataset are
reported in Table 7. We can see that, the median of the ovality
distribution is a better choice as the ovality threshold than the
first quartile and third quartile. The HED-Net with the soft label-
decomposition consistently outperforms the HED-Net with the
hard label-decomposition.

FIGURE 9 | The inference time (in second) of typical segmentation models for

165 images of 768 × 1,024. Our proposed HED-Net takes 25.7 s for

inference, while the HIVE-Net takes 133.5 s for inference.

3.9. The Inference Time
One of the crucial aspects of deploying a segmentation network is
the inference time. In this section, we compare the inference time
of our HED-Net with other 2D/2.5D/3D methods, i.e., 2D U-Net
(1-slice), 2D U-Net (5-slice), 3D U-Net, and HIVE-Net. More
specifically, we calculate the total inference time on the testing
stack of the EPFL data, which contains 165 consecutive images of
size 768× 1,024. While the 2D and 2.5D methods, i.e., 2D U-Net
(1-slice), 2D U-Net (5-slice), and our HED-Net, conduct slice-
by-slice segmentation, the 3D U-Net and HIVE-Net segment all
the images in one pass. The comparative results are illustrated
in Figure 9. It can be seen that our method takes a much
shorter inference time than the compared methods. Significantly,
our proposed HED-Net takes 25.7 s for the inference of all
the testing images, while the top-performing method HIVE-Net
takes 133.5 s for inference.

4. CONCLUSIONS

In this paper, we have proposed a hierarchical encoder-
decoder network for mitochondria segmentation from EM
images. To address the challenge of the varied shape of
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mitochondria and complex backgrounds, we followed an easy-
to-hard strategy. Specifically, we introduced a novel soft
label-decomposition strategy, which resulted in additional
subcategory-aware supervision for our model. The proposed
network utilized a three-level nested U-shape architecture to
capture rich contextual information and employed general
shape information in manual labels to reduce missed detection
and false detection. The proposed method has been evaluated
on two challenging benchmarks. Comparisons with strong
baseline models and top-performing 2D/3D methods showed
that our method showed state-of-the-art results. Significantly,
the proposed model showed superior results for instance
segmentation and detection tasks. Ablation studies further
demonstrated the effectiveness of the proposed model.

In future work, we will utilize the size attribute and symmetry
attribute of the targets as the side information further to explore
the global information in the manual label maps. Moreover, we
will employ more advanced image synthesis methods (Peng and
Wang, 2021) to reduce the amount of labeled data requested for
model training.
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