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Grasping is one of the most indispensable functions of humans. Decoding

reach-and-grasp actions from electroencephalograms (EEGs) is of great significance

for the realization of intuitive and natural neuroprosthesis control, and the recovery or

reconstruction of hand functions of patients with motor disorders. In this paper, we

investigated decoding five different reach-and-grasp movements closely related to daily

life using movement-related cortical potentials (MRCPs). In the experiment, nine healthy

subjects were asked to naturally execute five different reach-and-grasp movements

on the designed experimental platform, namely palmar, pinch, push, twist, and plug

grasp. A total of 480 trials per subject (80 trials per condition) were recorded. The

MRCPs amplitude from low-frequency (0.3–3Hz) EEG signals were used as decoding

features for further offline analysis. Average binary classification accuracy for grasping

vs. the no-movement condition peaked at 75.06 ± 6.8%. Peak average accuracy for

grasping vs. grasping conditions of 64.95 ± 7.4% could be reached. Grand average

peak accuracy of multiclassification for five grasping conditions reached 36.7 ± 6.8%

at 1.45 s after the movement onset. The analysis of MRCPs indicated that all the

grasping conditions are more pronounced than the no-movement condition, and there

are also significant differences between the grasping conditions. These findings clearly

proved the feasibility of decodingmultiple reach-and-grasp actions from noninvasive EEG

signals. This work is significant for the natural and intuitive BCI application, particularly

for neuroprosthesis control or developing an active human–machine interaction system,

such as rehabilitation robot.

Keywords: brain-computer interface, electroencephalogram, movement-related cortical potential, reach-and-

grasp decoding, neuroprosthesis

INTRODUCTION

For people with motor disorders, they have normal brain consciousness, but their muscles are
damaged, which makes it impossible to implement motion intention. Brain–computer interface
(BCI) has created a bridge to transform intentions of people into computer commands via
deliberate or evoked changes in brain activity (Wolpaw et al., 2002; Schalk et al., 2004; Abiri et al.,
2019). Many BCI systems combined with different kinds of applications have been designed for
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the disabled, such as upper limb prosthesis (Muller-Putz et al.,
2019), and other assistive devices (Wolpaw andMcFarland, 2004;
McFarland et al., 2010; Zhang et al., 2016).

Grasping is an essential skill for humans, which enables us
to interact with objects around us. Improving or replacing hand
function is the primary demand for tetraplegic persons. For this
target group, if surgical rehabilitation fails or is not feasible, there
are still some technical solutions that can replace or restore lost
hand and arm functions, such as exoskeletons (Prieur-Coloma
et al., 2020) or neuroprosthesis (Agashe et al., 2015). Rupp and
Gerner (2007) was the first to propose a functional electrical
stimulation (FES)-based neuroprosthesis. It rebuilds the function
of the muscles by stimulating it with weak periodic electrical
pulses and realizes grasping for the first time.

So far, the control strategy of intelligent prostheses,
exoskeleton robots, and rehabilitation robots based on
noninvasive EEG still relies on the classification of repetitive
movement imagination (Wolpaw and McFarland, 2004),
movement execution (Jochumsen et al., 2015), externally
steady-state evoked potential (SSVEP) (Diez et al., 2013),
and event-related potential (ERP) (He et al., 2016). From the
psychological point of view of the end user, these control
strategies are unnatural and will increase the mental workload
because the brain intentions of the users often mismatch the
movement of the external device. For instance, imagining
the movement of feet controls the opening of the upper-
limb neuroprosthesis. In addition, traditional BCI system
based on motor imagery has the disadvantage of dissatisfying
degrees of control, which cannot satisfy the requirements of
high-dimensional control applications.

To solve these problems, it is of great significance to study
how the EEG signals, generated by movement execution or
attempt movement execution, encode movement information.
Previous studies have shown that direction, trajectory, velocity,
and acceleration of continuous motor behavior can be decoded
from electrocorticographic (ECoG) (Hammer et al., 2013; Bundy
et al., 2016). In particular, Bansal et al. (2011) demonstrated that
discriminating information for different reach-and-grasp actions
and movement detection can be found from invasive ECoG
signals below 6Hz. However, these invasive BCI may suffer from
unpredictable risks, like possible postoperative complications
and infections. In contrast, many recent works have successfully
decoded motor intentions and motor parameters based on
noninvasive BCI, especially using movement-related cortical
potentials (MRCPs) (Niazi et al., 2011; Lew et al., 2014; López-
Larraz et al., 2014; Jochumsen et al., 2015, 2016; Pereira et al.,
2017; Iturrate et al., 2018; Zeng et al., 2019; Okorokova et al.,
2020).

Recently, a great number of researches have proved that
noninvasive EEG signals can be used to decode reach-and-
grasp actions. Agashe et al. attempted to decode palmar and
lateral grasp from EEG signals. Results indicated that low-
frequency time-domain modulation contained discriminative
information and can decode grasp kinematics by EEG signals
(Agashe et al., 2015). Ofner et al. (2017) decoded six different
movements from low-frequency EEG signals, and the multiclass
classification performance of executed movements was 55%,

while the imagined movement was 27%. Obviously, decoding
different movements from the same limb is difficult by using EEG
signals. Iturrate et al. (2018) successfully decoded the grasping
types and revealed their distinct neural correlates. Studies in
healthy subjects showed that palmar, lateral, and pincer grasps
could be classified using MRCPs (Schwarz et al., 2017, 2020).
Furthermore, Schwarz et al. used the samemethod to successfully
discriminate the three grasping actions of bimanual (Schwarz
et al., 2019a).

The above works have some inspiration for our present
research. To the best of our knowledge, successfully decoding
five different reach-and-grasp movements using MCRPs from
noninvasive EEG has not been investigated. Although it is a
challenge, it is worth exploring to realize the natural control of
BCI application.

In this paper, we aim at decoding five different reach-and-
grasp movements closely related to everyday life. They are
palmar grasp, pinch grasp, push grasp, twist grasp, and plug
grasp. We attempt to study the neural correlation between
these five reach-and-grasp actions and decode them by using
low-frequency time-domain MRCPs. Assuming that MRCPs has
enough distinguishing information to decode them and achieve
acceptable decoding performance better than the chance level. An
experiment was designed, and our hypothesis was tested in nine
healthy volunteers.

MATERIALS AND METHODS

Subjects
Nine healthy subjects (five males, aged 22–25, right-handed)
were recruited from Southeast University to participate in the
experiment. Every subject had no known history of neurological
disease. Before the experiment, subjects were informed about
the experimental procedure and signed the informed consent
form. This study was approved by the Ethics Committee of
Southeast University.

Experimental Setup and Paradigm
Figure 1 depicted the experimental setup and the paradigm. The
subject sat on a comfortable chair. Their right hand was relaxed
on the push-button on the desk. The position of the push-button
is the starting point of the movement. As shown in Figure 1A,
five type devices were designed separately based on ergonomics
to facilitate reach-and-grasp actions by the subjects. Some mini-
nature force sensors were installed on devices and fix the devices
on pillars, and the pillars are evenly and equidistantly mounted
on a fan-shaped platform. A push-button was placed at the center
of the circle of the fan platform to ensure that the subject is
equidistant from each object.

During the experiment, five different reach-and-grasp
movements were executed by subjects, as shown in the upper
right corner of Figure 1A. These reach-and-grasp actions are
closely related to daily life and originate from the ipsilateral hand
movement area. Additionally, the no-movement condition was
recorded to distinguish it from the grasping condition. For the
no-movement condition, we instructed the subject to stay in the
starting position and avoid any body movement.
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FIGURE 1 | Experimental setup and paradigm for reach-and-grasp tasks. (A) An experimental platform for subjects to execute reach-and-grasp actions. The subjects

were seated in a comfortable chair. They performed reach-and-grasp actions according to the audio cue displayed by a loudspeaker. Top right: Five reach-and-grasp

actions, namely, palmar grasp, pinch grasp, push grasp, twist grasp, and plug grasp. (B) The electrodes shown in black were selected in this study. (C) The

experimental paradigm based on the audio cue. (D) The average force curve distribution of the pinch grasping for subject 3, and we calculated the reach and release

timepoint of different grasping actions in this way.

The experimental procedure was guided by auditory. Auditory
cues were displayed by the computer. The five different grasping
actions were mapped to target numbers “1” to “5,” respectively.
For the no-movement class, it was mapped to target “6.” Subjects
were asked to execute the right-hand grasping task naturally.
Figure 1C shows the experimental timing diagram for each trial.
Each trial lasts 10 s. At second 0, a beep sounded, and subjects
were instructed to put their right hands on the push-button and
keep relaxed. Afterward, at second 3, an auditory cue “Target
x” indicated the required movement task, and participants were
asked to concentrate on it. After 2 s, “Go” cued the subject
to execute corresponding reach-and-grasp movements in the
way they did in their daily life. In the grasping phase, subjects
should give force to the objects as indicated by the arrows in
Figure 1A. Since all pillars were fixed, subjects can only perform
finger movements rather than wrist movements. The whole
reach-and-grasp process, including reaching, grasping, and going

back to the starting position, lasts <5 s. For each trial, we had
a break for 3 s. Subjects were required to keep the jaw and face
muscles relaxed and avoid blinking or swallowing during the
experiment for the purpose of reducing artifacts.

In this way, we recorded eight sessions for each subject on
the same day. Each session recorded 60 trials (10 trials for each
task in random order). After each session, there is a break for
5∼10min. In total, 480 trials were recorded per subject (80 trials
per condition).

Data Acquisition
EEG was measured using a 64-channel active electrode cap
(BrainAmp, ActiCap, BrainProducts, Munich, Germany) with
international standard 10–20montage and a SynAmps2 amplifier
(Neuroscan Compumedics, USA). We selected 40 active
electrodes covering the frontal cortex and the parietal, as shown
in Figure 1B. The left mastoid was utilized as the reference and
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the Fpz channel was chosen as the ground. The impedance of
per electrode was kept below 5K ohm during EEG recording.
The EEG sampling frequency was set to 1,000Hz. A band-pass
filter from 0.05 to 100Hz filtered the EEG signals to attenuate
high-frequency band components. To reduce the power line
interference, a notch filter at 50Hz was applied.

A pressure button (rising edge pulse) was adopted to detect
the reach-and-grasp movement onset. To record the time point
of the reaching, grasping, and releasing hand movements, three
flange type force transducers attached to the palmar, plug-and-
push grasp devices, a torque transducer fixed to the twist grasp
devices, and a miniature I-shaped transducer fastened to the
pinch grasp devices were utilized. The analog signals outputted
by pressure button and transducers were acquired at 1,000Hz
by using a data acquisition (DAQ) card with USB interface.
C++ software was developed to synchronize the DAQ card and
EEG acquisition system, and present the auditory cues. Event
types of different reach-and-grasp actions were designed and sent
to the EEG acquisition system by parallel port communication
for marking.

Movement Onset Detection
During the experiments, subjects naturally executed reach-and-
grasp movements guided by auditory cues. Due to the reaction
time of subjects, it is unfair to acquire the movement onset
using the time point of the auditory cue “Go.” Furthermore,
time-locking the movement onset to the auditory cue may
produce related evoked potentials, which is inconsistent with our
research purpose. Therefore, the information from the pressure
button was used to identify the movement onset. The detection
procedure of movement onset for each subject was as follows: (1)
The time difference between the moment of leaving the button
and the “Go” cue is defined as the reaction time (RT) for subjects.
We computed the RT of each trial for each subject. (2) Trials with
RT > 2 s were found and discarded. (3) The mean and standard
deviation of the RT were calculated. We added the mean of RT
of each subject to the onset of the authority cue “Go” as the
virtual movement onset. For all subjects, totally 94 trials were
rejected in this step, including the trials that contained obvious
channel noise.

We also investigated the behavior of subjects in the process
of performing reach-and-grasp actions. In particular, the time
information could be extracted from data provided by the force
or torque transducer. As is indicated in Figure 1D, the reach
time, release time, and duration of each subject are calculated
based on this method. Then, the average duration for each
condition was determined.

Data Preprocessing
Rejection Strategies
In this research, we aimed to decode five different reach-and-
grasp movements using low-frequency EEG signals, among
which EEG was highly affected by ocular and muscular artifacts.
To reduce artifacts, particularly from eye artifacts, 33 channels
were selected (FP1, FP2, AF3, AF4, AF5, F5, and F6 were
excluded since those were highly correlated with ocular) for
further analysis. First, the trials with RT exceeding 2 s were

discarded. Next, a 40-Hz low-pass filter was utilized to decay
high-frequency components from the EEG signals. Finally,
statistical parameter method was adopted to reject contaminated
trial (Schwarz et al., 2017). Trials whose EEG amplitude
dissatisfied the amplitude threshold (amplitude exceeds ±200
µV) were removed. Meanwhile, we rejected these trials where
the EEG distribution did not meet the probability statistics
(abnormal joint probability or abnormal kurtosis, was >3
times the standard deviation). All the trials that would be
removed during signal preprocessing weremarked. Averagely, we
discarded about 12% of trials owing to artificial artifacts.

Signal Preprocessing
First, we removed the trials that were marked by rejection
strategies. Then, the EEGLAB toolbox was employed to
decompose EEG data by using independent component analysis
(ICA) to remove EOG artifacts (Delorme and Makeig, 2004).
Specifically, EEG signals was high-pass filtered at 1Hz, and
independent components (ICs) were calculated with the
extended infomax ICA implemented in EEGLAB. We then
removed the ICs contaminated with eye-related artifacts and
projected the remaining ICs back to the original space. Averagely,
we rejected 20 ICs per subject by visual inspection. For further
analysis, the common average reference (CAR) was implemented
to re-referenced EEG data to eliminate the global background
activity. Afterward, a zero-phase fourth-order Butterworth
bandpass filter from 0.3 to 3Hz was utilized to extract the low-
frequency time-domain components of EEG signals. Finally, the
EEG signals were downsampled to 100Hz. For offline analysis, we
epoched our trials 1.5 s before and 2.5 s after themovement onset.

Movement-Related Cortical Potential
TheMRCPs can distinguish the moving body part corresponding
to the change in the potential distribution on the scalp. In this
research, we were interested to find how theMRCPs generated by
movement execution encoded different reach-and-grasp actions.
The average value of MRCPs was computed for each channel.
Furthermore, the mean overall trials of all subjects and the
mean confidence interval (alpha = 0.05) for each condition
was calculated. As a representative, the MRCP distribution over
the motor cortex was demonstrated. In addition, we performed
sample-wise statistical testing based on the nonparametric
Wilcoxon rank sum test.

Feature Extraction and Classification
We are committed to decoding five reach-and-grasp
movements by using MRCPs. Hence, the potential amplitude of
preprocessing EEG signals was used as features. Features of a
single trial were composed of vectors from all electrode channels.
Based on the sliding time window, we achieved more features,
which is, hopefully, to improve classification performance.

Shrinkage regularized linear discriminant (sLDA) was selected
to decode hand-grasping actions (Blankertz et al., 2011).
Both binary and multiclass classification were carried out on
the preprocessed offline data. The time window [−1, 2.5] s
was defined as the time region of interest (tROI), with 0 s
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FIGURE 2 | The grand average of all trials of MRCPs for all conditions. Grand average (bold lines) and 95% confidence intervals (shaped areas) for all grasp conditions

and the no-movement condition of C1, Cz, and C2. Time = 0 s denotes the starting point of movement. Below the axis, we marked significantly different (p < 0.05)

timepoints resulting from the Wilcoxon rank sum test between every reach-and-grasp condition and no-movement condition.

corresponding to the movement onset. In this study, the single-
trial classification was performed on tROI. The time window size
for feature extraction is 500ms. Specifically, 10 EEG potential
amplitudes with the step of 50ms were chosen as features in this
window for each channel. A total of 330 amplitude values were
obtained per classification model. The window was slid at 50-
ms intervals on the defined tROI for training and testing sLDA
model. In this way, 70 individual sLDA classificationmodels were
trained and cross-validated within the tROI.

For binary classification, all possible combinations of two
conditions were evaluated. For the multiclass classification,
we attempted to decode all the grasping excluding the no-
movement condition (five conditions in total). The sLDA model
of multiclass using a one-vs.-one classification strategy was
applied, and five-fold cross-validation of 10 times was performed.
Moreover, the peak classification accuracies of subject specific
and grand average were reported.

RESULTS

Neurophysiological Analysis
Figure 2 demonstrates the grand average MRCPs for five
grasping conditions and the no-movement condition.Wemainly
show the grand-average MRCPs for channel FCz, C1, C2, and
Cz on the motor cortex. For the grasping conditions except
for the no-movement condition, a strong negative deflection
[Bereitschaftspotential, BP (Shibasaki and Hallett, 2006)] was

observed. It starts up to around 500ms before the movement
onset and reaches its maximum when the grasping starts. The
most significant differences are observed at FCz, Cz, and C1,
indicating the contralateral property of the brain. Generally,
MRCPs for all grasps conditions are more pronounced than
the no-movement condition, especially on FCz and Cz. It
is clearly recognizable from Figure 2 that MRCPs of no-
movement condition show a similar trend before movement
onset, compared with the grasping condition. By contrast, it
is completely different after movement execution. Moreover,
for all grasping conditions, significant differences with respect
to the no-movement condition have emerged 1.5 s before the
movement onset.

The underlying neural differences between grasp conditions
were also analyzed. Our study yields 10 binary grasping
combinations. Figure 3 illustrates the average MRCPs of all
subjects and confidence interval (alpha = 0.05) for each pair of
grasp conditions of channel C1, Cz, and C2. In all comparisons
between grasp conditions, significant differences can be observed
from 0.5 until 2.5 s, especially in the Cz channel. For these
combination groups (pinch vs. twist; pinch vs. plug; push vs.
twist), there is a similar MRCP morphology prior to movement
onset. In addition, these differences are the smallest in the push-
vs.-twist comparison. Interestingly, there is almost no difference
between push-and-plug combination from 0.5 to 2 s.

Figure 4 illustrates the topographic maps of grand-average
EEG amplitude over subjects, and the time covers 400ms before
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FIGURE 3 | The grand average of all trials of MRCPs for every pair of grasps. Grand average (bold lines) and 95% confidence intervals (shaped areas) for all grasp

conditions and the no-movement condition of C1, Cz, and C2. Time = 0 s denotes the starting point of movement. Below the axis, we marked significantly different (p

< 0.05) timepoints resulting from the Wilcoxon rank sum test for each grasp-vs.-grasp conditions.

and 200ms after the movement onset. It can be easily seen
that the brain region and the degree of activation of grasping
conditions are significantly different, compared with the no-
movement condition, while different grasping conditions have
similarities. Additionally, within the time of [−0.2, 0.2] s, the
five reach-and-grasp conditions activated roughly the same brain
regions, mainly distributed in the frontal and parietal cortices,
while the degrees of activation were different. Such findings
indicate that EEG responses induced by different reach-and-
grasp conditions are diverse, making it possible to classify
different reach-and-grasp movements of the same hand.

Binary Classification Performance
Single-trial classificationwas conducted on the preprocessed EEG
data. The one-vs.-one classification strategy was implemented
for all condition combinations, including grasping-vs.-grasping
conditions and grasping vs. the no-movement condition. For
binary classification approach, the 500-ms time window was
adopted as the feature extraction unit. By this means, the binary
classification of all trials was calculated on tROI.

Table 1 demonstrates the subject-specific peak classification
performance of grasping vs. the no-movement condition over
the tROI, and the occurrence time in comparison with the
movement onset. The average peak accuracy of 75.06% was
achieved for grasps vs. no-movement, and the subject of S3
got the highest average peak accuracies of 89.63%, while the
subject of S6 got the lowest of 68.68%. It is obvious that all the
peak accuracies for grasping vs. the no-movement combinations

are much higher than the chance level (61.4%, alpha = 0.05,
adjusted-Wald interval) (Combrisson and Jerbi, 2015) for all
subjects. In addition, there is a similarity in the time when the
average peak accuracy occurs for the combinations of grasps vs.
no-movement condition except pinch vs. no-movement.

Table 2 shows the grand average peak performance for
the grasping-vs.-grasping condition over the tROI, and the
occurrence time relative to the movement onset. It is clear
that all grand average peak accuracies for grasping-vs.-grasping
combinations are better than the chance level (53.9%, alpha =

0.05) for all subjects. It can be easily observed that the best
performance of grasp-vs.-grasp condition is palmar vs. plug,
and the classification accuracy reached 68.09% (10.1% standard
deviation). In contrast, the lowest is pinch vs. twist, with a
classification accuracy of 60.97% (4.6% standard deviation). This
is consistent with the similarity of hand movements between
pinch grasp and twist grasp in daily life.

Multiclass Classification Performance
In our research, we focused on distinguishing different reach-
and-grasp actions using MRCPs. The multiclass and binary
classification approaches were similar in feature extraction,
model training, and cross-validation. We also used the 500-
ms time window as the feature extraction unit and carried out
multiclass classification of all trials on tROI.

Figure 5 demonstrates the performance of single-trial
multiclass decoding of all grasping movements. The multiclass
performance of each subject was evaluated on tROI. As shown

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 684547

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xu et al. Decoding Reach-and-Grasp Movements Using EEG

FIGURE 4 | The topographic maps of grand average electroencephalogram (EEG) amplitude over subjects and sessions for all conditions, with time of [−0.4, 0.2] s.

in Figure 5A, the average of the multiclass performance of all
the subjects was computed. The grand average peak accuracy of
36.7% (6.8% standard deviation) is achieved at about 1.45 s. It is
better than the chance level (24.2%, alpha = 0.05). Surprisingly,
the multiclass classification model superior to the level of
chance appeared at 0.5 s before the movement onset. From the
results of subject specific, it is obvious that all subjects reached
the best classification performance within 1–2 s. Figure 5B

illustrates the confusion matrix for all subjects at the time
point of peak accuracy. It can be intuitively observed that
true positive rates (TPRs) for the grasping conditions range
from 26 to 39.23%. The smallest TPR is 26.00% for push
grasp, while the highest is 39.23% for palmar grasp. Figure 5C
presents confusion matrixes of two subjects who achieve the

highest and lowest performance in Figure 5A at the time
point of peak accuracy. The TPRs of S5 are higher than that
of S6 under almost all grasping conditions. Especially, under
palmar and plug grasping conditions, the TPRs of S5 can
reach 55.23 and 53.06%, which is higher than S6 with 22 and
16%, respectively.

Table 3 depicts the subject-specific classification results. The
classification accuracy of subject 3 gets the highest peak accuracy
of 50.72%. Meanwhile, all the subject-specific performances
are better than the chance level (29.1%, alpha = 0.05).
The average subject-specific peak accuracy of 38.86% (6.8%
standard deviation) was achieved. This result is higher than the
grand-average peak performance, owing to the time of peak
performance varying from subject to subject. In addition, the
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TABLE 1 | Subject-specific peak accuracies for grasp vs. no-movement combinations and time of occurrence (s) with respect to the movement onset.

Grasps vs. no-movement

Subjects Palmar vs. no-movement Pinch vs. no-movement Push vs. no-movement Twist vs. no-movement Plug vs. no-movement

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

S1 68.91 1.80 77.22 0.30 70.76 0.25 74.96 0.45 69.65 0.35

S2 66.47 0.40 68.39 −0.05 68.38 0.50 73.89 0.50 71.31 0.35

S3 92.59 1.20 88.89 −0.10 88.89 1.20 85.19 1.20 92.59 1.95

S4 71.00 0.90 75.55 0.55 68.27 1.00 73.18 1.25 76.82 0.40

S5 75.07 2.55 74.29 0.45 65.43 0.55 72.79 2.10 75.21 1.80

S6 67.90 0.05 73.02 0.50 63.28 1.15 72.41 1.85 66.78 0.35

S7 78.25 1.85 73.77 0.10 71.77 1.65 79.87 1.35 71.68 1.40

S8 78.28 0.00 75.98 0.15 75.23 0.05 69.19 −0.15 73.97 0.60

S9 78.57 0.60 78.64 0.10 80.50 1.05 85.43 0.30 77.64 0.60

Mean 75.23 ± 8.0 1.04 ± 0.9 76.19 ± 5.6 0.22 ± 0.22 72.50 ± 8.0 0.82 ± 0.51 76.32 ± 5.8 0.98 ± 0.75 75.07 ± 7.4 0.87 ± 0.66

TABLE 2 | Grand average peak performance for each reach-and-grasp

combinations and time of occurrence (s) with respect to the movement onset.

Task combination Peak accuracy (%) STD (%) Time (s)

Palmar vs. pinch 65.13 8.3 1.30

Palmar vs. push 61.55 6.2 2.00

Palmar vs. twist 66.53 9.5 1.10

Palmar vs. plug 68.09 10.1 1.25

Pinch vs. push 63.63 7.3 1.45

Pinch vs. twist 60.97 4.6 1.00

Pinch vs. plug 66.95 7.3 0.85

Push vs. twist 65.54 6.1 1.50

Push vs. plug 63.44 6.7 1.00

Twist vs. plug 67.71 8.1 1.65

Mean 64.95 7.4 1.31

average time is 1.55 s, which is slightly later than the time of 1.45 s
for grand average peak accuracy.

Behavioral Analysis
In this paper, we recorded the data of force transducers during
the reach-and-grasp movements to obtain the moment of grasp
and release. The time when the subject started grasping was
calculated, and the results were between 0.98 and 1.18 s after
movement onset. Figure 6 shows the duration of each grasping
condition for all subjects. The red dots on the boxplots are
subject-specific average duration. As can be seen from Figure 6,
the duration of the same movement was different between
subjects, but the significant difference between the duration of
different movements per subject was not observed. By using
one-way repeated ANOVA, significant differences of duration
were examined. Mauchly’s test indicated that the assumption of
sphericity was not violated. The reach-and-grasp duration F (4,
32= 8.31, p > 0.05) had no significant effect.

DISCUSSION

In this study, we found that five different reach-and-grasp
movements of the right hand could be successfully decoded using
noninvasive EEG signals. The underlying neural correlation for
all grasping and the no-movement condition was revealed. First,
for binary classification, average performance for grasping vs.
the no-movement peaked at 75.06 ± 6.8%. Second, for grasping-
vs.-grasping conditions, a peak average performance of 64.95 ±

7.4% could be reached. Finally, for multiclass classification, five
reach-and-grasp actions were successfully decoded and grand-
average peak performance reached 36.7 ± 6.6%. Better-than-
chance classification accuracies were achieved for both binary
classification and multiclass classification approach. Our findings
provide the possibility and potential for intuitive and natural
neuroprosthesis control and also contribute to future research on
decoding hand movement information.

Movement-Related Cortical Potentials
Results of the MRCPs shows that a typical negative peak around
movement onset, which is in accordance with the previous
studies (Schwarz et al., 2017, 2019b). A negative shift occurs
about 500ms prior to the movement onset and reaches the
maximum at movement onset, which associates with the BP.
The distribution of MRCPs is most noticeable in the central
motor cortex for FCz and Cz, and C1 (contralateral side) is more
noticeable than on C2 (ipsilateral side). At around 0.2–0.5 s, all
grasping conditions demonstrate a weak second positive rebound
except push-and-plug grasp conditions in which there is a large
second positive rebound at about 1.2 s.

All grasping conditions achieved significant differences over
the whole tROI. For the grand-average MRCPs of grasp-vs.-
grasp conditions, there is almost no difference between these
pairs (push vs. plug; push vs. twist), and thus, the classification
accuracy was low. A reasonable explanation is that similarity
between these action pairs is higher than other actions. By
contrast, it can be observed that significant differences have
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FIGURE 5 | Multiclassification performance over all subjects. (A) The grand average classification accuracies including its confidence interval (alpha = 0.05) and

subject-specific classification results. (B) Grand average row-wise normalized confusion matrix at grand average peak performance. (C) Subject-specific row-wise

normalized confusion matrix at grand average peak performance, corresponding to the subjects who achieved the highest and lowest performance in (A).

TABLE 3 | Multiclassification performance, subject-specific peak accuracies over all subjects, and time of occurrence (s) with respect to the movement onset.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean

Peak accuracy (%) 33.47 33.99 50.72 34.77 42.49 32.73 37.16 35.85 48.56 38.86 ± 6.8

Time (s) 1.65 1.55 1.25 1.6 1.95 2.25 1.2 1.35 1.15 1.55 ± 0.37

emerged from 0 to 2.5 s within the remaining reach-and-
grasp combinations.

Single-Trial Classification
For the binary classification, all possible condition combinations
were studied. First, the results for grasping vs. the no-movement
conditions were computed, and classification results with average
peak accuracies over 75.06% were obtained. Peak accuracies
reached within 0.5–1.5 s, while pinching vs. no-movement was
at 0.2 s. The significance level of classification level reached
before movement onset within movement vs. no-movement
conditions. We found that movement intention can be detected
in advance for all subjects. This is particularly important for BCI
control because it can realize the natural transformation from
the idle to control. Second, for all movement vs. movement task
combination, classification performance was better than chance
level. The best performance of the task combination is about
10% better than the lowest. Therefore, for future applications,
a subset of classes that can work best for BCI users should
be selected.

Consistent with the study of Agashe et al. (2015), we also
ignored the no-movement condition for multiclassification. A
peak accuracy of 36.7%was reached at 1.5 s behind themovement
onset. For the multiclass scenario, better-than-chance decoding
accuracy could be achieved 500ms prior to the movement
onset. This means that detecting movement intention of multiple
grasping is feasible, which is fundamental for achieving natural
and asynchronous BCI control. By analyzing the multiclass-
based confusion matrices, we found that grasping-vs.-grasping
conditions contributed unevenly to the overall performance. The
TPR of pinch grasp is lowest, indicating that it is not sufficiently
distinguishable from the other grasping conditions, which is
consistent with the binary classification results.

The time for peak accuracy of binary and multiclass
classification for all reach-and-grasp conditions was similar. The
binary classification was at 1.31 s, while multiclass classification
was at 1.45 s, which indicated that peak accuracy occurs during
the grasping itself and is in accordance with the previous studies
(Schwarz et al., 2017). Unfortunately, due to differences in the
experimental setup and paradigm, it is difficult to compare
directly other similar studies.
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FIGURE 6 | The duration of each hand movement for all subjects. The red

dots on the boxplots are subject-specific average duration.

Limitations and Future Work
Our findings make an important contribution to the field
of controlling neuroprosthesis naturally and intuitively and
improving the dimensionality of the BCI control system.
However, our study still has limitations.

First of all, we use an audio-based protocol, and it will
elicit the corresponding EEG, which might mask the MRCPs.
The previous study showed that there was less pronounced
negativity in MRCP in the movement preparation phase for cued
movements compared with self-paced movement (Savić et al.,
2014). In addition, Scheel et al. found that the negative peak of
MRCP was significantly higher during movement execution in
the auditory paradigm than in visual paradigm (Scheel et al.,
2015). In the future, we will conduct in-depth research on the
impact of audio or visual cues on MRCPs.

Next, we cannot completely rule out the influence of direction
on the decoding before grasping phase, since the position of five
devices in our experiment setup was fixed. The study of Kim et al.
showed that direction and distance had the most contribution to
the movement, while there was no significant difference observed
for position (Kim et al., 2019). In our experiment, five devices
were arranged in a fan shape to ensure equal distance. In the
follow-up study, we will improve our experiment paradigm by
rearranging the devices in clockwise order after each session.

Besides, we did not consider the influence of object proprieties
for interpreting EEG activity. In the latest studies, Sburlea
et al. (2021) found that the information about grasp types
and object properties encoded in MRCP was not represented
in isolation through channels in one brain region; instead,
channels covering different brain regions processed both types
of information at several stages of movement. In our study, the
multiclass classification accuracy reached chance level starting
in the planning phase, which was in line with their results.

However, our study did not keep object proprieties (shape and
size) consistent. Therefore, the influence of object proprieties for
interpreting EEG activity will be considered in our future work.

In addition, we did not perform our study on the spinal cord
injured (SCI) subjects. In general, there are differences in cortical
activation between healthy subjects and patients who have neural
lesions (e.g., stroke). For future works, it urgently needs to verify
our findings on SCI subjects, although it is challenging. In detail,
we desire to confirm whether the decoding performance of the
motor imagery and SCI group is closer to the performance
reported in our work.

Last, the presented analysis is focused mostly on the
amplitude of the signal; more sophisticated analysis may yield
higher decoding accuracy and satisfy the requirements of
BCI applications. Previous studies have shown that wavelet
transform time-frequency image and EEG source imaging can
achieve excellent performance in motor imagery classification
(Xu et al., 2019; Hou et al., 2020). Besides, Schwarz et al.
combines the MRCP amplitude and the features based on
SMR modulations, and the decoding accuracy is 10% higher
than using the simple time-domain features (Schwarz et al.,
2019b), which gives us inspiration to combine frequency and
time-domain features in the further study. Additionally, deep
learning architectures are widely used in EEG signal analysis to
boost classification accuracy, especially in MI tasks (Lawhern
et al., 2018; Craik et al., 2019). Further studies are possible
to combine hybrid features and deep learning algorithms to
boost accuracy and evaluate the decoding performance for a
larger population.

CONCLUSION

In this paper, we have demonstrated the feasibility of decoding
five executed reach-and-grasp actions from the same hand by
using MRCPs. The neurophysiological analysis has revealed that
MRCPs for all grasp conditions are more pronounced than the
no-movement condition, and MRCPs between grasp conditions
show significant differences. Moreover, single-trial classification
accuracies for binary and multiclass are significantly better
than the chance level. These findings are of great importance
for the natural and intuitive control of BCI, particularly for
neuroprosthesis or rehabilitation robots.
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