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Background: Longitudinal brain MRI monitoring in neurodegeneration potentially
provides substantial insights into the temporal dynamics of the underlying biological
process, but is time- and cost-intensive and may be a burden to patients with
disabling neurological diseases. Thus, the conceptualization of follow-up time-intervals
in longitudinal MRI studies is an essential challenge and substantial for the results.
The objective of this work is to discuss the association of time-intervals and the
results of longitudinal trends in the frequently used design of one baseline and two
follow-up scans.

Methods: Different analytical approaches for calculating the linear trend of longitudinal
parameters were studied in simulations including their performance of dealing with
outliers; these simulations were based on the longitudinal striatum atrophy in MRI data
of Huntington’s disease patients, detected by atlas-based volumetry (ABV).

Results: For the design of one baseline and two follow-up visits, the simulations
with outliers revealed optimum results for identical time-intervals between baseline and
follow-up scans. However, identical time-intervals between the three acquisitions lead
to the paradox that, depending on the fit method, the first follow-up scan results do not
influence the final results of a linear trend analysis.

Conclusions: This theoretical study analyses how the design of longitudinal imaging
studies with one baseline and two follow-up visits influences the results. Suggestions
for the analysis of longitudinal trends are provided.

Keywords: magnetic resonance imaging, longitudinal study, time-interval, linear fit, regression analysis

INTRODUCTION

There is a constantly growing number of longitudinal neuroimaging studies in neurological and
particularly neurodegenerative diseases over the last 15 years. Longitudinal brain MRI studies in
neurology are time- and cost-intensive and may be a burden to patients with disabling diseases.
Thus, the schedule of longitudinal time-intervals is an essential aspect in the conceptualization
of longitudinal MRI studies and may be substantial for the validity of the results. Compared to
cross-sectional data, the longitudinal design can provide increased statistical power by reducing
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the confounding effect of between-subject variability (Thompson
et al., 2011). Furthermore, longitudinal studies provide unique
insights into the temporal dynamics of the underlying biological
process (Sabuncu et al., 2011; Jack et al., 2012); a serial assessment
can be the only way to unambiguously characterize the effect of
interest in a randomized experiment such as a pharmacological
clinical trial (Davis et al., 2005; Dickerson and Sperling, 2005).

In the domain of clinical neuroimaging, the design of
longitudinal studies with respect to the schedule of the follow-ups
is not widely discussed and in practice is subject to the limitations
imposed by participants as well as financial considerations of
the study. However, there are approaches to longitudinal study
design from study targets such as aging processes (Newman,
2010). As the strategic planning of a longitudinal study includes
dimensions such as the hypothesized true variance in change,
indicator reliability, the number and spacing of measurement
occasions, total study time, and sample size, the main search
goal is to select a research design that best addresses the guiding
questions and hypotheses of the planned study while heeding
applicable external conditions and constraints, including time,
money, feasibility, and ethical considerations. Brandmaier et al.
(2015) proposed the Longitudinal Interactive Front End Study
Planner (LIFESPAN) framework to generate a set of alternative
models with equal statistical power to detect hypothesized effects
and delineates trade-off relations among relevant parameters.

In longitudinal MRI studies of neurodegenerative diseases,
due to a balance between costs and timeline and the validity of
the results, a common concept is to plan with one baseline and
two follow-up studies with (almost) identical time intervals, i.e.,
bisectioning the observation time period. Examples for such a
study design can be found in amyotrophic lateral sclerosis (ALS)
(Cardenas-Blanco et al., 2016; Kassubek et al., 2018; Kalra et al.,
2020; Steinbach et al., 2021; Tahedl et al., 2021), in Huntington’s
disease (Tabrizi et al., 2009; Hobbs et al., 2015; Müller et al.,
2019). This study design usually allows for a linear fit to obtain
longitudinal trends of resulting parameters in the respective
imaging domain. Here, we theoretically investigated how the fit
methods of linear regression analysis and the choice of time
intervals influence the final results for longitudinal trends of a
given (arbitrary) parameter of interest. We expected the results of
this investigation to facilitate the scheduling of acquisition time
points for upcoming studies and to guide in calculating linear
trends for already ongoing studies with three measurement time
points and identical intervals.

METHODS

Several fit methods for calculating the linear trend of longitudinal
parameters were tested analytically and in simulations,
with special respect on their performance to deal with the
effect of outliers.

A linear trend analysis of N data points (ti; yi) follows:

y = It + b (1)

with inclination I and intercept b.

We specifically investigated the frequently used design of three
acquisition time points (see e.g., Cardenas-Blanco et al., 2016;
Tahedl et al., 2021), i.e., time point 1 at baseline and time points 2
and 3 at follow-up 1 and 2, respectively.

Models for Trend Analysis
Figure 1 schematically illustrates different trend analysis
approaches for the fit of three data points for identical time
intervals, i.e., bisectioning the observation time period. The data
point at t2 was offset by an arbitrary amount from the modeled
linear trend to simulate a disturbance (e.g., a measurement
affected by motion artifacts). Possible trend analysis approaches
are listed below, following (Rencher and Schaalje, 2007):

Average of Single Inclinations
The linear longitudinal trend of an arbitrary parameter can be
calculated from the arithmetic average of the single inclinations
between two time points (I12, I23, I13). For three time points (t1,
t2, t3), the mean inclination Tavg is calculated as

Tavg =
1
3

(I12 + I23 + I13)

=
1
3

[(
y1 − y2

t1 − t2

)
+

(
y2 − y3

t2 − t3

)
+

(
y1 − y3

t1 − t3

)]
(2)

As for any arithmetic average, the values to be averaged should be
normally distributed.

Median of Single Inclinations
In the case of non-normal distribution, however, the median
value can be used instead of the arithmetic average to estimate
the overall linear trend:

Tmedian = MEDIAN [I1; I2; I3]

= MEDIAN
[(

y1 − y2

t1 − t2

)
;

(
y2 − y3

t2 − t3

)
;

(
y1 − y3

t1 − t3

)]
(3)

Simple Linear Regression
An advanced approach to estimate the overall trend by fitting a
straight line using a least-squares approach is presented in Press
et al. (1992a). In this approach, the sum of squared differences di

2

of y-values to the regression line is minimized:

min
N∑

i=1

d2
i = min

N∑
i=1

(
yi −

(
Iti + b

))2 (4)

The general formula for calculating the overall trend then reads
as follows:

TlinReg =

∑N
i=1 uivi∑N
i=1 u2

i
=

W
U

(5)
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FIGURE 1 | Schematic illustration of different trend analysis approaches for the fit of three data points for identical time intervals (bisectioning the observation time).
The central data point was shifted to simulate a disturbance. 1g denotes the orthogonal distance to the regression line.

where ui and vi denote the differences to the mean in time and
the mean in y-values, respectively:

ui = ti − t̄; t̄ =
1
N

N∑
i=1

ti

vi = yi − ȳ; ȳ =
1
N

N∑
i=1

yi

The terms composed of ui and vi can be abbreviated to:

U =
N∑

i=1

u2
i V =

N∑
i=1

v2
i W =

N∑
i=1

uivi (6)

This prepares subsequent Eq. 8 in the orthogonal
regression approach.

For three time points, the trend TlinReg is calculated as:

TlinReg =
(t1 − t̄)(y1 − ȳ)+ (t2 − t̄)(y2 − ȳ)+ (t3 − t̄)(y3 − ȳ)

(t1 − t̄)2 + (t2 − t̄)2 + (t3 − t̄)2

(7)
If the measurement errors are normally distributed, then
this fitting function will give maximum likelihood parameter
estimations of the overall linear trend; if the errors are not
normally distributed, then the estimations are not maximum
likelihood, but may still be useful in a practical sense
(Press et al., 1992a).

Orthogonal Regression
In the orthogonal regression, the squared orthogonal differences
of data points to the fitted line are minimized; Eq. 4 changes to

min
N∑

i=1

d2
i = min

N∑
i=1

(
yi −

(
Iti + b

))2

1+ I2 (8)

and Eq. 5, thus, changes to

TorthoReg =
V − U +

√
(V − U)2

+ 4W2

2W
(9)

The difference to TlinReg is that this approach minimizes not only
the distances of yi but also the distances of ti to the regression line.

Weighted Linear Regression
If the variance and/or the quality of the measurements is not
equal, this knowledge can be incorporated into the regression
via least squares weighting. For each data point, the squared
difference (Eq. 4) is multiplied by a weighting factor fi prior to
minimization:

min
N∑

i=1

d2
i = min

N∑
i=1

fi
(
yi −

(
Iti + b

))2 (10)

In general, the respective weights are the reciprocal variance
of the measurements so that values with low variance are
given higher weights and values with higher variance are
given lower weights.

Fit Approach by Linear Mixed Effects Models
There are generally three potential sources of variability which
influence the correlation structure in longitudinal data, i.e., (1)
between-subject variation, (2) inherent within-subject biological
change, and (3) measurement error (Fitzmaurice et al., 2011).
Complex fit models for harmonizing longitudinal imaging data
based on empirical Bayesian methods (combining batches –
ComBat) (Beer et al., 2020), conditional growth models (Tahedl
et al., 2021) or mixed effect models (Cardenas-Blanco et al., 2016)
are used for analysis to take these influences into account. The
linear mixed effects model for longitudinal data (Bernal-Rusiel
et al., 2013) follows:

yi = xiβ+ tiui + ei (11)
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where yi is the vector of longitudinal measurements for subject
i, xi is the subject design matrix for the fixed effects (including
clinical group, etc.), β is a vector of unknown fixed effects
regression coefficients, ti is the design matrix for the random
effects (e.g., scan time), ui is a vector of random effects, and
ei is a vector of measurement errors, with constraints for the
expectations

E
(
yi
)
= xiβ

E (ui) = 0

E (ei) = 0 (12)

The linear mixed effects model has a randomly varying intercept
(β1 + u11) and slope (β2 + u21):

yij = (β1 + u11)+ (β2 + u21) tij + eij (13)

where yij is the j-th measurement from subject i. The model
of Eq. (13) allows each individual’s measurements to have a
unique linear mean trend. A major advantage of this approach
in detecting longitudinal group differences is that the subjects
in the study are not required to have a common set of
measurement time points (Bernal-Rusiel et al., 2013), i.e., time
points could differ or even be missing. As a source of variation
possibly influencing the longitudinal linear trend, between-
subject variation does not play a role in the approach of
the current study with three measurement time points from
only one subject. Assuming that aberrations because of, for
example, noisy measurements due to patient movements, have
a much larger share in the change of the linear trend than
inherent within-subject biological change, linear mixed effect
models would not develop their full power in answering the
question about the timing of only three measurements. In
the simplified approach of the current study where only one
data set (for one subject) with three timepoints was discussed,
Eq. 13 reduces to

yi = (β2 + u1) ti + (β1 + u2) (14)

i.e., from three equations only β1 and β2 can be determined.
Simplified linear mixed effects modeling was then realized
by the application of a downhill simplex fitting routine
(Press et al., 1992b).

yi = TfitApproachti + bfitApproach (15)

Simulations With Outliers and
Time-Interval Dependency
For the concept of three measurement time points (one
baseline and two follow-up scans) which is frequently used
for longitudinal MRI studies in neurodegenerative diseases, a
simulation with outliers/aberrations was performed, i.e., the
effect of an artificial additive offset value at time points t2 and
t3 was analyzed. The ensuing deviation of trend results compared
to the original value of the overall trend (without any additive
offset) was calculated.

In neurodegenerative diseases, at baseline (inclusion time)
most participants are motivated and in a comparatively good
physical condition. Thus, the time interval to follow-up is
usually planned depending on the clinical evaluation of the
disease progression, the estimation of the trend of a given
parameter under observation, and the corresponding power
calculations for the study. The reason for a second follow-
up is often the interest in long-term observations and/or the
intention to stabilize the trend results by another measurement;
the time limitation here is the total duration of the planned
study. However, during the course of the study, often the
physical condition and also the motivation of the patients are
worsening, leading to potentially reduced quality of scans at
second follow-up.

In order to use concrete realistic numeric values we performed
the data simulation based on the longitudinal striatum atrophy in
MRI data of patients with Huntington’s disease; the underlying
volumetric results were determined by atlas-based volumetry
(ABV) of structural MRI data (Müller et al., 2019). ABV is an
objective, investigator- independent technique with low intra-
scanner variability to determine the volumes of intracranial
compartments and cerebral substructures from the MRI data
of individual subjects (Huppertz et al., 2010). Nevertheless,
the results concerning time-interval planning and fit approach
can be directly transferred to any MRI-based parameter in
neurodegenerative diseases.

According to the results of the above-mentioned study in HD
patients (Müller et al., 2019), a study period of 15 months and a
monthly volume decrease of the striatum of 0.2% (in relation to
its size at baseline) were assumed for our simulation. Numerical
aberrations at time points t2 and t3 were simulated by a constant
offset value of +0.3% (in relation to the striatum size at baseline,
i.e., 8.3 cm3). The total study time (baseline to follow-up 2) was
kept constant at 15 months in our simulation, but the follow-up
1 time was varied from 0 to 15 months and the aforementioned
offset was applied.

(i) at t2 (follow-up 1) – simulating the situation of a high
quality measurement at t3 and a measurement at t2 of
limited quality.

(ii) at t3 (follow-up 2) – simulating the situation of a high
quality measurement at t2 and a measurement at t3 of
limited quality (corresponding to less patient motivation or
worse patient condition).

RESULTS

Analytical Calculation for Identical Time
Intervals
For identical time intervals, i.e., bisectioning the observation time
period yields

t1 − t2 = t2 − t3 = 1t =
1
2

(t1 − t3) (16)
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Average of Single Inclinations
For identical time intervals, Eq. 2 simplifies to

Tavg (1t) =
1
3

[
y1 − y2

1t
+

y2 − y3

1t
+

y1 − y3

21t

]
=

y1 − y3

21t
=

y1 − y3

t1 − t3
(17)

That means that identical time-intervals have the effect that data
points at t2 (follow-up 1) do not influence the overall trend.

Median of Single Inclinations
It is an intrinsic property for the median calculation Eq. 3 that the
median is also independent of (t2,y2).

Simple Linear Regression
For identical time intervals (t̄ = t2), Eq. 7 simplifies to

TlinReg =
(t1 − t2) y1 + (t3 − t2) y3

(t1 − t2)
2
+ (t3 − t2)

2 =
1t
(
y1 − y3

)
21t2 =

y1 − y3

t1 − t3
(18)

Thus, in all three cases (average or median of inclinations, simple
regression), identical time-intervals have the effect that data
points at t2 (follow-up 1) do not influence the overall trend for
either calculation method based on a linear model.

In general, the calculation of the slope for a linear regression
simplifies for identical time intervals to:

T =
y1 − y3

t1 − t3
(19)

Approaches Which Incorporate
Timepoint 2 in the Trend Calculation
The other two approaches, i.e., orthogonal regression and
weighted linear regression, theoretically take time point 2 (i.e.,
follow-up scan 1) into account when calculating the trend, but
each have their own limitations.

Orthogonal Regression
For the case of three acquisitions with two identical time
intervals, i.e., bisectioning the observation time period, the
orthogonal regression theoretically incorporates the data point
at t2 (follow-up scan 1). However, the variety between
orthogonal regression and simple linear regression depends on
the magnitude of the trend, i.e., the smaller the trend, the
smaller is the variety between orthogonal regression and simple
linear regression (both are equal for an inclination of 0). Given
that the orthogonal regression is based on a minimization of
t- and y-distances, however, a minimization of distances of
y-values is usually preferred for a scenario of defined t- and
measured y-values rather than a minimization of t-values (that
way supporting the conditions of longitudinal MRI studies where
the time points are exactly defined).

Weighted Linear Regression
The weighting of the different measurement points would,
depending on the specific weighting factors, lead to consideration
of the second time point, but would be a challenge, as the

weighting has to be based on an independent parameter, e.g., a
measurement quality control prior to the regression calculation.
However, the weighted linear regression approach could be an
option for specific conditions, e.g., when it is expected that the
first measurement (when the patients are usually in a better
condition compared to measurements at a later disease stage) will
be of better quality than subsequent measurements. In this case,
the weighting could be for example f1 = 1.5, and f2 = f3 = 0.75
for the three visits, i.e., data points. However, the weighting is
depending on the experimental design and needs a justification
by the rater (based on data quality, patient condition, etc.). The
justification of the weighting factors is a critical item. In order
to use weighted linear regression, longitudinal studies could be
planned in a way that the baseline results are stabilized by e.g.,
repeated scans at the baseline visit [in general, averaging within-
session scans will improve between-session reliability (Lau and
Goodyear, 2007)].

Simulation of a Scenario of a
Longitudinal Study in Neurodegenerative
Diseases
In the following, the scenario of section “Simulations With
Outliers and Time-Interval Dependency” was simulated, i.e., a
striatal atrophy in Huntington’s disease with a linear volume loss
of−0.2%/month:

(i) For the situation of a high quality measurement at t3 and
a measurement at t2 of reduced quality, a follow-up 1 interval
of 7.5 months (bisectioned observation period [t1; t3]) leads to
a minimum of deviation of trend results from original values for
Tavg as well as for TlinReg (as the artificial offset due to a low quality
measurement at t2 is less or not considered); Tmedian provides no
deviation at all for any time-position of t2 (Figure 2A). TorthReg ,
TlinReg , and TfitApproach reveal an almost equal course; TorthReg
and TlinReg are almost equal due to a comparatively low trend
value (in the limit of trend = 0, TorthReg and TlinReg would be
equal). It has to be noted that especially the results for orthogonal
regression TorthReg highly depend on the amplitude of the trend.
The position of the minimum of TweightReg is depending on the
weighting factors.

The results described above (i.e., with minimum deviations
when time point 2 is exactly in the middle of the observation
period) fits to the intuitive planning of identical time intervals
and results from the fact that for identical time intervals the
value of the first follow-up at time point 2 has no influence on
the resulting trend (see section “Approaches Which Incorporate
Timepoint 2 in the Trend Calculation”), even if aberrations
occur. Out of the three fit approaches Tavg , TlinReg , and Tmedian,
Tavg is most sensitive to disturbances (aberrations), especially
for non-equal time intervals. An alternative is to switch to a
non-parametric calculation by using Tmedian.

(ii) For the situation of a high quality measurement at t2
and a measurement at t3 of limited quality, similar deviations
independent of the fit approach are observed. Only for a small
interval between the two follow-up scans (t2 → t3), in Tavg
higher deviations could be observed (Figure 2B). TorthReg , TlinReg ,
and TfitApproach reveal an almost equal course and (together with
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FIGURE 2 | Simulated effects of a modified positioning of time point t2 (follow up 1) on calculations of striatal atrophy in Huntington patients. According to the
underlying real world study (Müller et al., 2019), the total observation period amounted to 15 months and a monthly volume decrease of the striatum of 0.2% (in
relation to its size at baseline) was assumed as original value of the overall linear trend. The position of time point t2 was varied between a position just behind
baseline up to almost 15 months, while the total study duration of 15 months was kept constant. Aberrational data values at time point t2 (results shown in subfigure
(A) and time point t3 (B) were simulated by an arbitrary artificial offset value of +0.3% (in relation to the striatum size at baseline, i.e., 8.3 cm3). The subfigures
demonstrate the ensuing deviations (in percent of the original linear trend results) for different fit approaches. (A) Simulated aberration at t2 (follow-up 1).
(B) Simulated aberration at t3 (follow-up 2).

Tweighted) reach a minimum deviation for (t2→ t3). Tmedian shows
intermediate deviations.

Statistically, timing of the middle visit reveals that the
deviation is minimized when follow-up 1 is shifted in time
toward the time point of follow-up 2 (Figure 2). However, such
a schedule might rather be realized for controls than for patients
given that long-term observation periods in neurodegenerative
diseases may be difficult due to a worsening of the physical and/or
mental condition of the included patients with the consequences
of decreased data quality and even dropouts.

DISCUSSION

In study design external conditions, and constraints, including
time, budget, and feasibility, should be taken into account

rather than searching for appropriate analysis tools with
data in hand. With appropriate time interval planning,
linear mixed effect models (Bernal-Rusiel et al., 2013) could
be applied for data analysis as well as the further linear
regression models (Rencher and Schaalje, 2007). The current
theoretical study has been set up to induce a framework
when longitudinal brain MRI studies in neurodegenerative
diseases are planned for the specific but frequent case of
one baseline and two follow-up scans. It is discussed which
is the optimum model to be used as regression line for
longitudinal trends. For the situation of one baseline and
two follow-up MRI scans, the simulation of outliers on
the one hand side reveals as optimal solution a simple
schedule of identical time-intervals between baseline and
follow-up scans which is the intuitive situation without any
previous simulations. On the other hand, identical time-intervals
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constitute the paradox that follow-up 1 scan data do not
influence the final trend results for either calculation method
based on a linear model. This calls for the question if these
follow-up 1 scans are indeed useful when the corresponding
outcome parameters do not (or only partially) influence the
trend results.

Thus, based on this theoretical framework, we provide a
proposal how the time intervals in a longitudinal MRI study in
neurodegenerative diseases could be conceptualized:

(1) We propose the time point for follow-up 1 to be shifted
in time toward the time point of follow-up 2, that
way considering that long-term observation periods in
neurodegenerative diseases may be difficult due to a
worsening of the physical and/or mental condition of the
included patients. By this choice, it would be assured
that follow-up 1 (t2) measurements influence the trend
results and potentially stabilize them, which is particularly
helpful if the last measurement [follow-up 2 (t3)] is of
limited quality.

(2) We propose to avoid bisectioning the total observation
period (baseline to follow-up 2) by follow-up 1. If
bisectioning is unavoidable, the rater should be aware that
the choice of the fit approach can significantly influence
the trend results. An additional aspect is that it could be
an alternative in the study schedule to skip the “median
scans” (i.e., the follow-up 1 measurement in case of three
visits) and to use the resources for a repeated follow-
up 2 measurement.

(3) As a general consideration, it is recommended to perform
a quality control of the imaging data prior to the fit
procedure. Depending on the scan quality, it might be
an option to discard single visit measurements (due to
limited data quality) and to perform the fit with only
two time points (instead of three time points) rather than
attempting to increase the results quality by variation of the
fit model. That way, it might be better to re-analyze a whole
study with a higher quality requirement (on the data) than
varying the fit approach at the analysis level.
Generally, it can be held that, in a given longitudinal MRI
study with an even number of scans, the situation cannot
occur that one scan does not influence the trend results
for any time-interval planning. If, on the other hand, a
study is planned with an odd number of scans and equal
time-intervals, the “median” scans mostly do not influence
the trend results.

(4) In neurodegenerative diseases, most participants are
motivated and in a comparatively good physical condition
at baseline. Thus, the time interval to follow-up is
usually scheduled depending on the clinical evaluation of
the disease progression and also the patients’ predicted
physical condition (among further constraints). During
the course of the study, the patients’ physical condition
and their ability to comply with the requirements of
neuroimaging are usually worsening, leading to missing
data and (more important) to potentially reduced quality

of scans at follow-up acquisitions. The latter effect leads
to a variability of noise across subjects especially between
controls and patients in longitudinal group comparisons
which could be addressed by the application of a mixed
effect model (if all recorded data passed quality control –
see item 3).

Although concepts for longitudinal trend analysis are
an issue of well-established research (Rencher and Schaalje,
2007), the technical complexity of modeling longitudinal
data remains a topic of discussion and is, at least in certain
aspects, incompletely understood and/or appreciated (Bernal-
Rusiel et al., 2013). The application of linear regression
methods in longitudinal neuroimaging studies has to be
thoroughly considered and in general, the applicability of
linear mixed effect models (Rencher and Schaalje, 2007)
should be an analysis option under consideration, especially
for the analysis of ex post facto data when the time intervals
were already fixed (and equal). However, when a study with
one baseline and two follow-up scans is conceptualized,
a bisectioning of the observation time should be avoided
in order to provide any analysis method the full power of
accuracy. Advanced models such as least absolute shrinkage
and selection operator (Lasso) (Tibshirani, 1996) which is
a regression analysis method that performs both variable
selection and regularization in order to enhance the prediction
accuracy are generally oversized for solving linear regression
of three data points. In addition to sophisticated models
for harmonizing longitudinal multi-scanner imaging data
(Beer et al., 2020), statistical analysis of longitudinal data
with linear mixed effect models (Bernal-Rusiel et al., 2013),
and normative estimates of longitudinal data (Fotenos
et al., 2005), the current theoretical study has been set
up to induce a framework when longitudinal brain MRI
studies in neurodegenerative diseases are planned for
the specific but frequent case of one baseline and two
follow-up scans.

The key message of this theoretical study is that for the
specific but frequent case of one baseline and two follow-up
scans by bisectioning the total observation period (baseline
to follow-up 2), follow-up 1 measurements do not influence
the trend results or only in a weakened form. That way, we
recommend to shift the follow-up 1 measurement toward the
end of the study so that a bisectioning of the total time
interval is avoided.
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