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Objective: To characterize microstructural white matter changes related to relapsing-
remitting multiple sclerosis using advanced diffusion MRI modeling and tractography.
The association between imaging data and patient’s cognitive performance, fatigue
severity and depressive symptoms is also explored.

Methods: In this cross-sectional study, 24 relapsing-remitting multiple sclerosis patients
and 11 healthy controls were compared using high angular resolution diffusion imaging
(HARDI). The imaging method includes a multi-shell scheme, free water correction to
obtain tissue-specific measurements, probabilistic tracking algorithm robust to crossing
fibers and white matter lesions, automatic streamlines and bundle dissection and tract-
profiling with tractometry. The neuropsychological evaluation included the Symbol Digit
Modalities Test, Paced Auditory Serial Addition Test, Modified Fatigue Impact Scale and
Beck Depression Inventory-II.

Results: Bundle-wise analysis by tractometry revealed a difference between patients
and controls for 11 of the 14 preselected white matter bundles. In patients, free
water corrected fractional anisotropy was significantly reduced while radial and mean
diffusivities were increased, consistent with diffuse demyelination. The fornix and left
inferior fronto-occipital fasciculus exhibited a higher free water fraction. Eight bundles
showed an increase in total apparent fiber density and four bundles had a higher
number of fiber orientations, suggesting axonal swelling and increased organization
complexity, respectively. In the association study, depressive symptoms were associated
with diffusion abnormalities in the right superior longitudinal fasciculus.

Conclusion: Tissue-specific diffusion measures showed abnormalities along multiple
cerebral white matter bundles in patients with relapsing-remitting multiple sclerosis. The
proposed methodology combines free-water imaging, advanced bundle dissection and
tractometry, which is a novel approach to investigate cerebral pathology in multiple
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sclerosis. It opens a new window of use for HARDI-derived measures and free water
corrected diffusion measures. Advanced diffusion MRI provides a better insight into
cerebral white matter changes in relapsing-remitting multiple sclerosis, namely diffuse
demyelination, edema and increased fiber density and complexity.

Keywords: multiple sclerosis, high angular resolution imaging, free-water imaging, tractometry, cognition

INTRODUCTION

Multiple sclerosis (MS) is a neurodegenerative disease of the
central nervous system characterized by chronic inflammation,
demyelination, axonal degeneration, and gliosis (Compston
and Coles, 2008). In addition to various physical signs and
symptoms, affected individuals present variable degrees of
cognitive impairment, which has a prevalence ranging from 40
to 70% in MS patients (Amato et al., 2006; Chiaravalloti and
DeLuca, 2008; Langdon, 2011). Information processing speed,
episodic memory and executive functions are frequently affected
cognitive domains, even early in the disease (Rocca et al., 2015;
Johnen et al., 2017). Comorbid depression (Feinstein, 2011)
and fatigue (Chiaravalloti and DeLuca, 2008) are also highly
prevalent in patients with MS. Fatigue is one of the most disabling
symptoms and affects up to 80% of patients (Chaudhuri and
Behan, 2004). The underlying cause of MS-related fatigue is still
poorly understood but it is thought to have a central origin
(Filippi et al., 2002; DeLuca et al., 2008).

Although conventional MRI is currently the mainstay of
diagnosis and monitoring of disease activity in MS, it cannot
capture the extent of MS-related cerebral damage. MRI-
pathology correlation studies have shown abnormalities outside
the typical MS lesions, extending in the “normal-appearing white
matter” (NAWM) (Moore and Laule, 2012). Various pathological
findings were discovered in the NAWM of MS patients, including
diffuse inflammation and gliosis, demyelination, microglial
activation (Allen et al., 2001; Kutzelnigg et al., 2005) and evidence
of blood-brain barrier breakdown (Plumb et al., 2002). More
advanced MRI approaches are needed to better investigate those
changes in the NAWM. Moreover, the correlation between
disability progression and white matter (WM) lesion burden is
modest. This “clinico-radiological paradox” suggests the need for
more advanced imaging techniques to monitor disease activity
(Barkhof, 2002) and to better explain physical disability and
cognitive impairment associated with MS, particularly in the
early phase of the disease. The validation of diagnostic and
prognostic biomarkers is also crucial for the development of new
neuroprotective and repair treatments.

Diffusion MRI is increasingly used to investigate cerebral
WM microstructural changes in MS and most of the previous
studies used diffusion tensor imaging (DTI) derived measures.
In relapsing-remitting multiple sclerosis (RRMS) patients, DTI
studies showed a decreased fractional anisotropy (FA) and
increased medial (MD), axial (AD) and radial (RD) diffusivities.
These microstructural changes were correlated with increased
disability and decreased neurocognitive performance (Zhang
et al., 2016; Riccitelli et al., 2019; Tóth et al., 2019). Even if
diffusion MRI has evolved in the past few years, DTI measures

lack specificity to the different sub-components of the WM
(Beaulieu, 2002). In fact, the various pathological processes
occurring in MS cannot be differentiated since they have similar
impact on the DTI tensor (Wang et al., 2011).

The goals of the present work are to first investigate cerebral
WM changes in RRMS patients using modern technology in
multi-shell diffusion MRI and second to explore the association
between specific WM bundles abnormalities and the level of
cognitive impairment, fatigue and depressive symptoms. The
chosen methodology aims to overcome different well-known bias
of the standard DTI method in an effort to be more specific
to the underlying microstructure. The major components of
the imaging protocol are fourfold: (i) advanced local modeling
including fiber orientation distribution function (fODF) and
free-water imaging, (ii) state-of-the-art probabilistic tractography
using lesion-corrected WM mask, (iii) advanced WM bundling
and (iv) cutting-edge bundle-wise statistics with tractometry.
The combination of those technological elements and their
application to RRMS patients is innovative, particularly the use
of free-water imaging and tractometry.

MATERIALS AND METHODS

Participants
We recruited 24 patients with RRMS (women/men = 20/4; mean
age = 29, range = 22–35 years; mean disease duration = 4.3,
range = 0.4–12 years) from the Neurology Clinic of the Centre
hospitalier universitaire de Sherbrooke in Sherbrooke, Canada.
Recruitment took place from September 2016 to March 2017 after
obtaining approval of the institutional ethical committee (Comité
d’éthique de la recherche du CIUSSS de l’Estrie—CHUS). Written
informed consent was obtained according to the Declaration of
Helsinki. To be included in the study, patients had to fit the
following criteria: (1) diagnosis of RRMS from a neurologist after
the age of 18 years (adult form of MS) with no sign of progression
to secondary progressive MS at the time of recruitment (Polman
et al., 2011); (2) no major vision or speech deficits; (3) no
other known neurological disease; (4) no contraindication to
MRI. Eleven subjects from the first time point of the Penthera
3T dataset (available on Zenodo: 1) were used for imaging
comparison as a healthy control group (women/men = 3/8; mean
age = 26, age range = 24–30 years). They were subjected to
the same imaging protocol carried out on the same scanner
as the RRMS group.

1https://zenodo.org/record/2602049#.XXeZf5NKjy8
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Clinical Assessment
The same day as the MRI study, all patients underwent
a neurological examination with rating using the Expanded
Disability Status Scale (EDSS) to assess overall disability (Kurtzke,
1983). Paced Auditory Serial Addition Test, version 3 s (PASAT-
3) was used to assess divided attention and working memory
functions (Gronwall, 1977). The oral version of the Symbol-
Digit Modalities Test (SDMT) (Smith, 1982) was used to assess
information processing speed, visual working memory and
sustained attention (Benedict et al., 2017). All patients were
naive to those tests. To assess fatigue severity, a translated and
adapted version of the Fatigue Impact Scale for French-speaking
patients was completed (Échelle modifiée d’impact de la fatique en
sclérose en plaques or EMIF-SEP) (Debouverie et al., 2009). To
assess the severity of depressive symptoms, the Beck Depression
Inventory-Second Edition (BDI-II) (Beck et al., 1996) was chosen.

MRI Data Acquisition
Cerebral MRI was carried out on a 3T Philips Ingenia system.
The average acquisition time was 30 min. T1-weighted, diffusion-
weighted imaging and T2-fluid attenuation inversion recovery
(T2-FLAIR) scans were used. T1-weighted (voxel resolution
1 mm × 1 mm × 1 mm), T2-FLAIR (voxel resolution
1 mm × 1 mm × 1 mm) and multi-shell diffusion-weighted
imaging (8 b = 0 mm2/s, 8 b = 300 mm2/s, 32 b = 1,000 mm2/s,
60 b = 2,000 mm2/s for a total of 108 total diffusion volume; voxel
resolution of 2 mm× 2 mm × 2 mm; TE/TR 95 ms/5,615 ms)
were acquired for all participants. A reverse encoding b0 was
acquired for distortion correction (Andersson et al., 2003).

MRI Processing Pipeline
The processing pipeline is summarized in Figure 1. Diffusion-
weighted images were processed using the TractoFlow pipeline
(Di Tommaso et al., 2017; Kurtzer et al., 2017; Theaud et al.,
2020), which is fully automated and has been proved to be
highly reproducible in time and in immediate test-test (Theaud
et al., 2020). It is publicly available in order to promote efficient,
robust and reproducible diffusion tractography processing for
open science. Free water corrected diffusion MRI measures (FAt,
MDt and RDt, where “t” is for “tissue”) were computed from
the b = 300 mm2/s and b = 1,000 mm2/s shells as well as
the free water fraction (Pasternak et al., 2009). The free water
elimination is not part of the TractoFlow pipeline and needs to
be done separately. High angular resolution diffusion imaging
(HARDI) was used to extract the principal directions of the
fODF in order to make tractography more robust to crossing
fibers. The fODF were estimated using constrained spherical
deconvolution (Descoteaux et al., 2007; Tournier et al., 2007)
from the b = 1,000 mm2/s and b = 2,000 mm2/s. HARDI-derived
measures, total apparent fiber density (AFDtot) and number of
fiber orientation (NuFO), were then extracted from the fODF.

To ensure an adequate delineation of the WM lesions,
both manual and automatic segmentation approaches were
necessary. Manual delineation was performed using the T2-
FLAIR and T1-weighted images. The automatic delineation
was performed on the same images using a machine-learning

based 3D U-net (Ronneberger et al., 2015). The manual and
automatic segmentations were fused and voxels in either of the
segmentations were considered as being part of the WM tissue.
They were then added to the WM mask from the FSL fast tool
(Woolrich et al., 2009) generated with the T1-weighted images, in
order to allow tractography to track through lesions (Figure 2).
Probabilistic tractography (Descoteaux et al., 2009; Tournier
et al., 2012) was subsequently computed at 10 seeds per voxel in
the lesion-corrected WM mask to achieve sufficient density and
spatial coverage. The lesion-corrected WM mask was also used to
estimate the fODF. A relative fODF amplitude threshold of 0.1
was set as a stopping criterion.

A multi-atlas and multi-parameter version of RecoBundles
(Garyfallidis et al., 2018) was used to extract the preselected
WM bundles. All previous tools were provided in the Dipy
library (Garyfallidis et al., 2014). RecoBundles is an algorithm
that recognizes bundles using a similarity metric between a
subject’s streamline and a template or atlas. The utilized version
(RecobundlesX) is an extension where the algorithm is executed
multiple times, with variation in parameters, followed by label
fusion. This tool is based on shape similarity to a template built
from delineation rules inspired by anatomical priors from Catani
and Thiebaut de Schotten, 2008. The template is available at: 2.
A bundle-specific tractography approach was used for the fornix
to reconstruct this “hard-to-track” pathway for both groups
(Rheault et al., 2018, 2019). The manual segmentation of the
fornix is based on a template of streamlines and anatomical
priors that represent the shape, position and the endpoints of this
bundle (Figure 3). Below the ventricles, tracking was allowed in
the gray matter to maximize the chance of fully reconstructing
the fornix despite the partial volume effect.

Once the bundle extraction was completed, visual quality
assessment was made for each bundle in every subject to
ensure the validity of the segmentation. The bundle volume
was calculated for the whole bundle. The total lesion load was
defined as the total volume of tissue included within the global
lesion mask after manual and automatic segmentations. The
lesion volume was also calculated for the 14 individual bundles.
Subsequently, tractometry (Cousineau et al., 2017) of each
bundle was performed using the previously computed diffusion
measures and free water fraction. This method was chosen since,
depending on the underlying WM fibers organization, the MRI-
derived measures may vary along the studied bundles (Yeatman
et al., 2012). Tractometry provides a higher sensitivity to the
pathways’ microstructure by mapping a set of measures over the
WM bundles. Finally, each bundle was separated along its length
into five segments to provide further insight.

Selection of the White Matter Bundles of
Interest
According to the current knowledge regarding the function of
the different WM fascicles of the human brain, corpus callosum
(CC), cingulum, fornix, inferior fronto-occipital fasciculus
(IFOF), superior longitudinal fasciculus (SLF), uncinate
fasciculus (UF) and inferior longitudinal fasciculus (ILF) were

2https://zenodo.org/record/4104300#.YNoP1XVKiiM
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FIGURE 1 | MRI processing pipeline. (A) Inputs diffusion-weighted images are processed by the TractoFlow pipeline. (B) Local modeling of the diffusion bi-tensor
with tissue and free-water compartments. The fODF are estimated using constrained spherical deconvolution. (C) Diffusion MRI-derived measures and free-water
fraction are computed. (D) Raw T1-weighted and T2-FLAIR images. (E) Manual and automatic lesions segmentations are performed in order to allow tracking
through lesions. (F) Probabilistic tractography is computed in the lesion-corrected white matter mask. (G) Extraction of the preselected white matter bundles by
RecoBundles. (H) Tractometry of each bundle using the previously computed diffusion measures and free-water fraction.

selected as bundles of interest (Figure 4). Because of its role
primarily in motor and sensitive functions, it was decided to
exclude the body of the CC. Thus, the anterior and posterior CC
were studied separately. The selection of a restricted number of
WM bundles was also made to minimize the number of statistical
tests and avoid false positive results.

Statistical Analysis
All statistical tests were performed with IBM SPSS Statistics 25
(SPSS Inc., Chicago, Illinois). The preselected WM bundles were
studied separately. First, for each diffusion MRI measure (FAt,
RDt, MDt, free water fraction, AFDtot , NuFO), the difference
between RRMS patients and healthy controls was investigated
with the appropriate parametric (independent samples T-test)
and non-parametric (Mann–Whitney test) tests. The condition
of a normal distribution was verified using Shapiro–Wilk test and
visual assessment of the Q-Q plot. A unilateral p value < 0.01
was set for statistical significance after Bonferroni adjustment,
considering each WM bundle separately. For more in-depth
exploration, each bundle was then divided into five sections and
the difference between the two groups was assessed for each of the
bundle’s subsections. The purpose of this analysis was to verify
that the observed changes were well distributed along the bundle
since fanning of the fibers at the extremities of a bundle can bias
diffusion measures.

When a significant difference between the two groups was
found in the bundle as a whole, the association between
neuropsychological testing results (SDMT, PASAT-3, EMIF-SEP,
and BDI-II) and diffusion MRI measures was assessed with the
Spearman’s rank correlation coefficient (rs) for RRMS patients.
A p value of < 0.05 was determined to be statistically significant

for the correlation analysis. Finally, the association between the
neuropsychological assessment and the lesion load (global and for
each bundle individually) was investigated.

RESULTS

Clinical Assessment
Among the recruited RRMS patients, 12 patients were taking
first line medication [Interferon beta-1a (2), Teriflunomide
(5), Dimethyl fumarate (5)] and 11 were taking second line
medication [Fingolimod (5), Natalizumab (5), Alemtuzumab
(1)]. Only one patient was not taking any medication to treat
MS. The median EDSS score was 1.5, with a range of 0 to 3.
The SDMT mean score was 62.13 ± 8.13 and the PASAT-3
mean score was 49.00 ± 8.40. The mean score at the EMIF-SEP
questionnaire was 83.96 ± 30.08. Every patient had a certain
degree of fatigue, with 50% having a low level, 29% a moderate
level and 21% a high level of fatigue. At the BDI-II questionnaire,
the mean score was 11.13 ± 10.85 with 67% of patients having a
normal score while 21% had a score indicating mild depression.
We identified three cases (12%) with scores consistent with a
diagnosis of severe depression and they were referred to the
appropriate health professionals.

MRI Findings
In the RRMS group, the average whole brain lesion volume
was 9.09 ± 7.08 mL. Table 1 shows the lesion volume of the
14 selected WM bundles. A positive association was established
between the free water fraction and the proportion of lesioned
tissue of the anterior CC (rs = 0.523, p = 0.009), posterior CC
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FIGURE 2 | Tracking through white matter lesions. Manual and automatic segmentations are fused to produce the “lesion mask” (in yellow), covering all white matter
lesions visible on the T2-FLAIR and T1-weighted (A) MRI images. Probabilistic tractography based on fODF peaks (C) is then executed and tracking is allowed
through lesions, as shown on the FA map (B). Without this correction, no track would be generated inside the yellow mask.

FIGURE 3 | Fornix bundle-specific segmentation. Adapted from Rheault et al., 2018. Axial view (A) and sagittal view (B) of the regions of interest used for the
manual segmentation of the fornix. Mamillary bodies in purple (inclusion, 1), body of the fornix in yellow (inclusion, 2), both thalami in red (exclusion, 3) and both
hippocampi in green (inclusion, 4). In thumbnail, the general morphology of the segmented fornix is presented.

(rs = 0.578, p = 0.003) bilateral IFOF (rs = 0.584, p = 0.003 for
the right side and rs = 0.694, p < 0.001 for the left side), ILF
(rs = 0.774, p < 0.001 for the right side and rs = 0.775, p < 0.001
for the left side) and SLF (rs = 0.753, p < 0.001 for the right side
and rs = 0.705, p < 0.001 for the left side).

As shown in Table 2, differences in free water corrected
measures (FAt, RDt, MDt) were established between RRMS
patients and the control group for all the selected WM bundles
except both sides of the fornix and left cingulum. Values of FAt
were reduced in the RRMS group, while RDt and MDt were
increased. The fornix and left IFOF showed a significant increase
in free water fraction. For the other bundles, the values were
constantly higher in the RRMS group, but the difference did not

reach statistical significance. AFDtot was significantly increased
in the anterior CC, left cingulum, left IFOF, right and left ILF, left
SLF and right and left UF of the recruited patients. NuFO was
also increased in the anterior CC, right and left IFOF and left
UF of the RRMS group. The subsequent analysis demonstrated
that the observed differences were well distributed along the five
subsections of each bundle (data not shown).

Correlation Between Imaging and
Clinical Data
The free water corrected diffusion MRI measures along the
right SLF showed an association with the BDI-II questionnaire
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FIGURE 4 | Selected white matter bundles of interest. White matter bundles obtained from the tractogram of a RRMS patient (female, 23 years old, disease duration
of 5 years, EDSS 1.5, treated with Natalizumab). Extraction with RecoBundles, which uses bundle models as shape priors for detecting similar tracks and bundles in
tractograms. Tracks segmented from the participant’s data were visually assessed to ensure quality of the bundle extraction. (A) Anterior corpus callosum (rostrum,
genu); (B) Posterior corpus callosum (isthmus, splenium, tapetum); (C) Fornix; (D) Cingulum; (E) Inferior fronto-occipital fasciculus; (F) Inferior longitudinal fasciculus;
(G) Superior longitudinal fasciculus; (H) Uncinate fasciculus.

TABLE 1 | Lesion volume per bundle in relapsing-remitting multiple
sclerosis patients.

WM Bundles T2 lesion
volume
(Mean ± SD;
mL)

Proportion of
lesioned tissue per
bundle (Mean ± SD)

Association between
T2 lesion volume and
free water fraction

Anterior CC 4.01 ± 2.94 0.026 ± 0.019 rs = 0.523/p = 0.009*

Posterior CC 5.95 ± 4.41 0.040 ± 0.030 rs = 0.578/p = 0.003*

Right cingulum 0.64 ± 0.61 0.034 ± 0.031 rs = −0.009/p = 0.968

Left cingulum 0.67 ± 0.69 0.030 ± 0.028 rs = 0.348/p = 0.096

Right fornix 0.24 ± 0.30 0.025 ± 0.033 rs = 0.331/p = 0.114

Left fornix 0.20 ± 0.20 0.022 ± 0.022 rs = 0.359/p = 0.085

Right IFOF 3.15 ± 2.01 0.043 ± 0.029 rs = 0.584/p = 0.003*

Left IFOF 2.67 ± 1.74 0.035 ± 0.022 rs = 0.694/p < 0.001*

Right ILF 2.85 ± 2.29 0.038 ± 0.031 rs = 0.774/p < 0.001*

Left ILF 2.25 ± 1.61 0.031 ± 0.022 rs = 0.775/p < 0.001*

Right SLF 2.63 ± 2.75 0.031 ± 0.033 rs = 0.753/p < 0.001*

Left SLF 2.16 ± 1.88 0.025 ± 0.023 rs = 0.705/p < 0.001*

Right UF 0.77 ± 0.50 0.023 ± 0.015 rs = 0.487/p = 0.016

Left UF 0.70 ± 0.42 0.024 ± 0.013 rs = 0.286/p = 0.175

CC, corpus callosum; IFOF, inferior fronto-occipital fasciculus; ILF, inferior
longitudinal fasciculus; rs, Spearman’s rank correlation coefficient; SD, standard
deviation; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus;
WM, white matter.
* statistically significant difference (p < 0.01).

results. A decrease in FAt (rs = −0.476, p = 0.019), an
increase in RDt (rs = 0.476, p = 0.019) and an increase in
MDt (rs = 0.468, p = 0.021) were associated with a higher
level of depressive symptoms. Free water fraction and HARDI-
derived measures (AFDtot , NuFO) were not associated with the

clinical results. Furthermore, no correlation was found between
the neurocognitive testing results and the global brain lesion
load. When the WM bundles were studied individually, their
respective proportion of lesioned tissue was also not associated
with the clinical data.

DISCUSSION

The purpose of the present study was to use advanced diffusion
MRI modeling and tractography to characterize RRMS-related
WM changes. To our knowledge, this study is the first to
examine cerebral WM changes using advanced local modeling
including fODF and free water correction in the context of
MS. Also, it is the first study to use tractometry to investigate
the association between diffusion MRI-derived measures and
neuropsychological symptoms of MS. At every step, from MRI
data acquisition to statistical analysis, choices were made in
an effort to obtain measures that are more specific to the
pathological processes occurring in MS.

Advantages of Modern Technology in
Diffusion MRI
To begin with, it has been shown that multi-shell diffusion
MRI provides a better estimation of the free water corrected
measures and free water fraction than single-shell data (Pasternak
et al., 2012). Multi-shell acquisitions were also shown to improve
the angular resolution of orientation distribution functions
(Jeurissen et al., 2014). Moreover, HARDI was developed to
provide new anisotropy measures (Tournier et al., 2011) and
to solve the crossing fiber problem using multiple angular
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TABLE 2 | Differences in diffusion MRI measures between multiple sclerosis patients and healthy controls.

Bundle Groups FAt
(Mean ± SD)

RDt
(Mean ± SD)

MDt
(Mean ± SD)

Free water
fraction

(Mean ± SD)

AFDtot

(Mean ± SD)
NuFO

(Mean ± SD)

Anterior CC RRMS 0.640 ± 0.017* 46 × 10−5
± 2.2 × 10−5* 81 × 10−5

± 1.5 × 10−5* 0.056 ± 0.017 0.307 ± 0.019* 1.152 ± 0.131*

HC 0.665 ± 0.023 43 × 10−5
± 2.8 × 10−5 78 × 10−5

± 1.9 × 10−5 0.049 ± 0.007 0.289 ± 0.011 1.044 ± 0.061

Posterior CC RRMS 0.685 ± 0.017* 40 × 10−5
± 2.1 × 10−5* 77 × 10−5

± 1.4 × 10−5* 0.070 ± 0.017 0.341 ± 0.015 1.246 ± 0.090

HC 0.703 ± 0.014 38 × 10−5
± 1.7 × 10−5 75 × 10−5

± 1.2 × 10−5 0.055 ± 0.010 0.327 ± 0.011 1.206 ± 0.076

Right cingulum RRMS 0.637 ± 0.025* 46 × 10−5
± 3.1 × 10−5* 81 × 10−5

± 2.0 × 10−5* 0.028 ± 0.006 0.299 ± 0.014 1.204 ± 0.136

HC 0.679 ± 0.017 41 × 10−5
± 2.1 × 10−5 77 × 10−5

± 1.4 × 10−5 0.023 ± 0.007 0.292 ± 0.008 1.450 ± 0.069

Left cingulum RRMS 0.667 ± 0.022 43 × 10−5
± 2.7 × 10−5 78 × 10−5

± 1.8 × 10−5 0.041 ± 0.009 0.298 ± 0.014* 1.183 ± 0.117

HC 0.684 ± 0.019 40 × 10−5
± 2.4 × 10−5 77 × 10−5

± 1.6 × 10−5 0.032 ± 0.009 0.284 ± 0.010 1.111 ± 0.076

Right fornix RRMS 0.709 ± 0.020 35 × 10−5
± 2.7 × 10−5 73 × 10−5

± 2.0 × 10−5 0.482 ± 0.066* 0.272 ± 0.026 1.067 ± 0.101

HC 0.705 ± 0.018 36 × 10−5
± 2.6 × 10−5 74 × 10−5

± 1.9 × 10−5 0.415 ± 0.046 0.274 ± 0.014 1.014 ± 0.104

Left fornix RRMS 0.698 ± 0.027 37 × 10−5
± 4.0 × 10−5 74 × 10−5

± 3.0 × 10−5 0.465 ± 0.091* 0.264 ± 0.028 1.019 ± 0.099

HC 0.696 ± 0.020 38 × 10−5
± 2.6 × 10−5 75 × 10−5

± 1.8 × 10−5 0.384 ± 0.034 0.269 ± 0.012 0.982 ± 0.104

Right IFOF RRMS 0.608 ± 0.021* 50 × 10−5
± 2.5 × 10−5* 83 × 10−5

± 1.7 × 10−5* 0.065 ± 0.018 0.309 ± 0.011 1.176 ± 0.112*

HC 0.642 ± 0.017 45 × 10−5
± 2.1 × 10−5 80 × 10−5

± 1.4 × 10−5 0.052 ± 0.011 0.297 ± 0.016 1.094 ± 0.059

Left IFOF RRMS 0.606 ± 0.020* 50 × 10−5
± 2.5 × 10−5* 83 × 10−5

± 1.7 × 10−5* 0.059 ± 0.011* 0.307 ± 0.013* 1.178 ± 0.113*

HC 0.645 ± 0.021 45 × 10−5
± 2.5 × 10−5 80 × 10−5

± 1.7 × 10−5 0.048 ± 0.010 0.291 ± 0.014 1.075 ± 0.060

Right ILF RRMS 0.599 ± 0.019* 51 × 10−5
± 2.4 × 10−5* 84 × 10−5

± 1.6 × 10−5* 0.061 ± 0.019 0.305 ± 0.011* 1.205 ± 0.134

HC 0.630 ± 0.018 47 × 10−5
± 2.3 × 10−5 81 × 10−5

± 1.5 × 10−5 0.049 ± 0.010 0.291 ± 0.015 1.090 ± 0.084

Left ILF RRMS 0.597 ± 0.018* 51 × 10−5
± 2.3 × 10−5* 84 × 10−5

± 1.5 × 10−5* 0.059 ± 0.014 0.305 ± 0.011* 1.211 ± 0.147

HC 0.630 ± 0.019 47 × 10−5
± 2.4 × 10−5 81 × 10−5

± 1.6 × 10−5 0.047 ± 0.010 0.287 ± 0.016 1.085 ± 0.087

Right SLF RRMS 0.607 ± 0.024* 50 × 10−5
± 2.9 × 10−5* 83 × 10−5

± 1.9 × 10−5* 0.010 ± 0.005 0.323 ± 0.014 1.433 ± 0.173

HC 0.637 ± 0.023 46 × 10−5
± 2.8 × 10−5 81 × 10−5

± 1.9 × 10−5 0.008 ± 0.003 0.313 ± 0.012 1.356 ± 0.111

Left SLF RRMS 0.597 ± 0.021* 51 × 10−5
± 2.6 × 10−5* 84 × 10−5

± 1.7 × 10−5* 0.011 ± 0.006 0.331 ± 0.015* 1.471 ± 0.167

HC 0.620 ± 0.015 48 × 10−5
± 1.9 × 10−5 82 × 10−5

± 1.3 × 10−5 0.008 ± 0.003 0.316 ± 0.012 1.378 ± 0.134

Right UF RRMS 0.554 ± 0.023* 56 × 10−5
± 2.9 × 10−5* 88 × 10−5

± 1.9 × 10−5* 0.030 ± 0.017 0.287 ± 0.010* 1.090 ± 0.166

HC 0.580 ± 0.028 53 × 10−5
± 3.5 × 10−5 85 × 10−5

± 2.3 × 10−5 0.023 ± 0.007 0.273 ± 0.016 0.949 ± 0.111

Left UF RRMS 0.543 ± 0.020* 58 × 10−5
± 2.5 × 10−5* 89 × 10−5

± 1.7 × 10−5* 0.029 ± 0.018 0.286 ± 0.014* 1.107 ± 0.176*

HC 0.569 ± 0.024 54 × 10−5
± 2.9 × 10−5 86 × 10−5

± 2.0 × 10−5 0.019 ± 0.006 0.271 ± 0.012 0.954 ± 0.095

AFDtot, total apparent fiber density; CC, corpus callosum; FAt, tissue fractional anisotropy; HC, healthy controls; IFOF, inferior fronto-occipital fasciculus; ILF, inferior
longitudinal fasciculus; MDt (mm/s2), tissue mean diffusivity; NuFO, number of fiber orientation; RDt (mm/s2), tissue radial diffusivity; RRMS, relapsing-remitting multiple
sclerosis; SD, standard deviation; SLF, superior longitudinal fasciculus; UF, uncinated fasciculus.
*statistically significant difference (p < 0.01).

measurements to recover crossing configurations. This is crucial
since the most important limitation of the DTI methodology is
that, at every voxel, it can only model a single-fiber population.
This represents a problem when imaging voxels contain multiple
fiber populations like crossing, fanning and highly curving fibers.
It has been estimated that between 66% and 90% of WM voxels
contain crossing fibers (Jeurissen et al., 2013). This problem also
leads to bias in DTI measures since several biological tissue
abnormalities may lead to the same change in FA value or
diffusivities, including myelin damage, axonal loss and crossing
fibers deterioration (Alexander et al., 2007). HARDI enables
the extraction of the principal directions of the fODF and this
information makes tractography more robust.

With multi-shell diffusion MRI data, different techniques
can generate biomarkers that are more specific than DTI to
microstructural alterations in cerebral WM. Among those
advanced diffusion MRI techniques, neurite orientation
dispersion and density imaging (NODDI) is reported to be
more sensitive for detection of MS lesions than conventional

DTI (Zhang et al., 2012). NODDI separates the signal arising
from three different tissue compartments (intraneurite water,
extraneurite water and cerebrospinal fluid) to estimate neurite
density and neurite orientation dispersion. These factors
contribute to FA and analyzing them separately is an advantage.
A recent study has shown a decrease in neurite density index
in cerebral NAWM and spinal cord WM of RRMS patients
(Collorone et al., 2020). This multi-compartment model requires
acquisition time similar to our methodology (Zhang et al., 2012).
It is important to note that NODDI is not robust to crossing
fibers and one would still need to use constrained spherical
deconvolution or another technique robust to crossing fibers
to perform tractography. It was also shown that NODDI fails
to consistently extract discrete measures of the numbers and
orientations of fODF peaks (Schilling et al., 2018). DIstribution
of 3D Anisotropic MicrOstructural eNvironments in Diffusion-
compartment (DIAMOND) imaging (Scherrer et al., 2016)
could also have been used to solve fiber crossings. This is a
hybrid model accounting for several discrete compartments

Frontiers in Neuroscience | www.frontiersin.org 7 August 2021 | Volume 15 | Article 665017

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-665017 August 10, 2021 Time: 11:20 # 8

Beaudoin et al. Modern Diffusion MRI in Multiple Sclerosis

free isotropic attributed to CSF, restricted isotropic attributed to
water in glial cells and water in and around WM bundles.

When an image voxel contains both brain tissue and free
water such as edema, the DTI measures no longer represent
the underlying tissue properties, and the observed changes can
be caused by partial volume effect. To address this issue, free
water elimination and mapping from diffusion MRI has been
proposed (Pasternak et al., 2009). Free water elimination fits,
for a single voxel, a bi-tensor model including a tissue part
and a free water part. The assessment of extracellular water is
important as it can bias diffusion measures by decreasing FA
and increasing MD. It has been demonstrated that free water
corrected measures have a higher sensitivity than conventional
diffusion MRI measures and thus are considered to provide more
tissue-specific measurements (Albi et al., 2017).

It is known that WM lesions can affect the tractography
algorithm, track reconstruction and track-dissection (Lipp et al.,
2020). Strategies must be employed to avoid premature track
termination, as both FA threshold and T1-based segmentations
would result in “holes” were tracking would not be possible. In
the present study, the strategy was to fill the tracking mask with
the use of a lesion-corrected WM segmentation mask combined
with probabilistic tractography based on fODF amplitudes. If the
diffusion MRI acquisition suggested a strong and coherent fODF
peak, tracking used it even if it was inside a WM lesion. This
method allows the reconstruction of tracks outside and inside MS
lesions and thus increases anatomical accuracy.

Another important pitfall to consider is the high probability
of false-positive tracks and bundles (Maier-Hein et al., 2017). To
reduce the risk of false positive results, a restricted number of
WM bundles were studied instead of doing a whole brain analysis.
We selected WM fascicles that, when damaged, are associated
with cognitive dysfunction according to the literature. To extract
the WM bundles, the virtual dissection tool RecoBundles was
chosen over manual segmentation because the latter has the
disadvantage to be time consuming and can be bias by intra-rater
and inter-rater variability (Rheault et al., 2020). RecoBundles is
an advanced bundling tool proved robust to pathological brains
(Garyfallidis et al., 2018). Visual inspection confirmed that the
WM bundles reconstruction was successful and anatomically
accurate for every participant despite the presence of WM lesions.

The fornix is an exception to this segmentation method
since its anatomy makes it particularly difficult to reconstruct.
The fornix is a very small and highly curving bundle in close
proximity to the lateral ventricles. The partial volume effect with
the cerebrospinal fluid is a major problem, as demonstrated in
a recent DTI study in which only 36% of the participants had
the full extent of the fornix recovered (Valdés Cabrera et al.,
2020). According to the authors, the tractography transections
were due to partial volume with cerebrospinal fluid lowering
FA below the threshold for tractography (0.2) in the crus as it
passes through the lateral ventricles. To overcome this limitation,
a bundle-specific tractography approach was performed, using a
template that better represent the shape and position of the fornix
(Rheault et al., 2019). Both sides of the fornix were reconstructed
for all participants, even in the patients with a higher lesion load.
Free water corrected measures seem to be differentially affected

in the fornix, showing no differences between RRMS patients and
healthy controls. In the RRMS group, the free water fraction was
significantly increased in this bundle and it might be caused by
cerebrospinal fluid contamination.

Finally, tractometry was achieved by projecting the previously
computed free water corrected measures and HARDI-derived
measures on the segmented WM bundles. Most of previously
published studies are based on voxel-wise analysis. This approach
assumes that subjects in the same group have a similar brain
configuration. If a difference is observed between a group of
healthy subjects and a group of subjects with a neurological
disease, it will be concluded that this difference is caused
by the disease. However, virtually segmented WM bundles
can be affected by noise and distortion to some level, which
can bias the results. By producing streamlines-based statistics,
tractometry was shown to have satisfactory reproducibility
in both healthy subjects and individuals with Parkinson’s
disease (Cousineau et al., 2017). A recent study utilized tract-
specific MRI measures to investigate the relationship between
neuropathology and cognition in MS (Winter et al., 2021). In
this study, 40 patients with long-lasting MS were recruited.
They had relatively low levels of disability and had never
received disease modifying treatments. The imaging protocol
included HARDI with multi-shell acquisition. The selected
imaging measures included FA, MD, RD, AFD, NuFO, and
rotationally invariant spherical harmonics (Mirzaalian et al.,
2016). They also included white matter measures including
T2 lesion load, whole brain tractogram load and bundle load.
Finally, a lesion-specific approach to the tractometry framework
(called lesionometry) was used to obtain measures specific to the
streamlines traversing a lesion. Various cognitive measures were
correlated to these imaging measures revealing that tract-specific
measures outperformed the global cerebral lesion load and the
tractogram load measures. This study has some similarities with
our work regarding imaging methodology. One of the main
differences is the use of free-water imaging. Lesionometry, as
presented by Winter et al., is a new application of tractometry and
it seems promising for MS neuropathology evaluation. In future
work, a combination of both methodologies could be useful to
better investigate the correlation between WM abnormalities and
MS symptomatology.

Application to Relapsing-Remitting
Multiple Sclerosis
The pathological hallmark of RRMS is focal demyelinating
lesions, but the damage has been proven to extend in the
normal-appearing WM early in the disease course (De Santis
et al., 2019). Using modern methodology including free-
water imaging and tractometry, diffusion MRI-derived measures
revealed a significant difference between RRMS patients and
healthy controls for 11 of the 14 selected WM bundles,
highlighting a diffuse pathological process. Significant decrease
of FAt and increase of RDt and MDt were observed, suggestive
of demyelination. It confirms prior work using standard DTI
measures (De Santis et al., 2019; Lipp et al., 2019) and it’s in line
with the current knowledge of RRMS pathology (Kutzelnigg et al.,
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2005). Moreover, the observed changes were well distributed
along the bundles, increasing our confidence in the validity of the
results. It’s important to mention that MS pathology is associated
with inflammatory cells infiltration, including macrophages and
lymphocytes. Astrocytes are also implicated in the formation
and evolution of MS lesions (Ponath et al., 2018). The presence
of astrocytic and microglial infiltration was associated with
greater hindered diffusion in the extra-neurite space (Yi et al.,
2019). The use of multi-compartment models in diffusion MRI,
including a “glial cells compartment,” is promising to assess
neuroinflammation association with microglial activation.

Values of free water fraction in the RRMS group were
persistently higher across all studied bundles. The absence of
significant difference in the bundles other than fornix and left
IFOF may be explained by a lack of statistical power since the
sample size was small. In addition, the majority of patients
were under an immunomodulatory treatment at the time of the
study and their anti-inflammatory effect may have limited the
free water fraction increase. Interestingly, the lesion volume of
most WM bundles was strongly associated with their respective
free water fraction, showing the important contribution of
the lesioned tissue in the estimated volume of free water. In
addition, it has been shown that perivascular spaces are enlarged
in MS (Granberg et al., 2020) and perivascular space fluid
contributes to DTI changes in cerebral WM (Sepehrband et al.,
2019). Water in perivascular space could therefore impact free
water fraction values in MS. In a neurodegenerative disease
like MS, this new parameter could be a useful indicator of
inflammation and edema.

HARDI-derived measures also provided valuable information
about WM microstructure. AFDtot is a measure proportional
to the underlying fiber density (Raffelt et al., 2012), and it
was increased in the RRMS group. That finding is consistent
with previous studies and may reflect axonal swelling caused
by inflammation. A diffusion MRI study found that RRMS
was associated with a widespread increase in axonal diameter
(De Santis et al., 2019). Another recent study detected blister-
like swellings of the axon-myelin unit in MS normal-appearing
WM (Luchicchi et al., 2021). Microstructural axonal changes
have also been observed in other neurodegenerative diseases.
In a DTI study using a mouse model of Huntington’s
disease, histological analysis of the corpus callosum showed
axonal reorganization and increased tortuosity, myelin content
reduction and astrogliosis (Gatto et al., 2019). Moreover, a
diffusion MRI study investigated tract-specific differences at a
within-voxel level (fixel-based analysis) in Alzheimer’s disease
patients. It revealed reductions in apparent fiber density and
bundle cross-section within specific white matter structures,
suggesting substantial axonal loss associated with this disease
(Mito et al., 2018). The fact that AFDtot was not reduced in
RRMS patients could be an indicator that axonal loss was not
significant at this stage of the disease. On the other hand, NuFO
was increased in some WM bundles in RRMS patients. NuFO
represents the number of local peaks of the fiber orientation
distribution in each voxel. This measure provides information
about the complexity of the underlying WM organization. It
has been proven to be highly consistent across individuals and

thus could be a sensitive marker of disease-related changes
(Dell’Acqua et al., 2013). This finding could be the result
of compensatory neuroplasticity and neuronal reorganization
mechanisms associated with RRMS (Fleischer et al., 2019).

Association Between Clinical Data and
Advanced Diffusion MRI Measures
A bundle-wise approach with tractometry was chosen to
investigate the role of specific WM bundles in cognitive
dysfunction, fatigue and depression associated with RRMS. The
only association found was that a higher level of depressive
symptoms was related to diffusion abnormalities along the
right SLF. However, the role of this fasciculus is not clear
in the setting of mood disorders. The association study was
probably limited by the small sample size, causing a lack of
statistical power. In addition, the recruited patients were found
to have a relatively low level of impairment. They performed
quite well during the cognitive testing and the chosen tests
may be not sensitive enough in a young population of RRMS
patients. Further studies with more subjects and a more thorough
neurocognitive evaluation are necessary. Moreover, the brain can
adapt to changes in its environment, for example when subjected
to chronic inflammation. Cortical network reorganization and
neuroplasticity could therefore explain the lack of association
between neurocognitive deficits and diffusion MRI changes at the
early stage of the disease (Fleischer et al., 2019).

The role of myelin damage in MS-related cognitive
dysfunction has been demonstrated by other imaging techniques,
like myelin water imaging (Abel et al., 2020), but there’s
increasing evidence that gray matter damage plays a major role.
Studies using DTI and conventional MRI measures showed that
gray matter atrophy of various cortical and subcortical regions
was associated with a reduction in PASAT performance (Uher
et al., 2014; Riccitelli et al., 2019). Other imaging methods can
also provide useful information regarding gray matter integrity
and reorganization in MS. Cortical lesions can be assessed by
ultra-high field imaging (Kilsdonk et al., 2016) and by double
inversion recovery sequences (Seewann et al., 2012). Global
and regional cortical atrophy can be captured by algorithms
like SIENA (Smith et al., 2001) and FreeSurfer (Fischl, 2012).
However, in patients with RRMS early in the disease course,
morphometric measures might not be sensitive enough. Indeed,
a longitudinal cortical network analysis revealed an increase in
local and modular connections over a 12-month period in RRMS
patients, in the absence of measurable cortical atrophy (Fleischer
et al., 2019). Finally, MS patients exhibit cerebral functional
connectivity abnormalities, including altered connectivity in
deep-gray matter regions (Tahedl et al., 2018). Multi-modality
imaging approaches would improve our understanding of this
disease and its impact on cognition.

Global lesion load and lesion volume per bundle were not
associated with the neuropsychological evaluation results. This
might be explained by the location of the cerebral WM lesions in
the brain of the studied patients. In MS, the importance of lesion
location has been demonstrated (Kincses et al., 2011). Certain
lesions are said to be “silent” because they are not associated
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with clinical signs or symptoms. Symptomatic lesions are usually
located in eloquent WM areas and thus have a higher yield to
cause neurological and functional impairment. In addition, T2
lesion load evaluation underestimates the damage to the NAWM
and to the cortical and subcortical gray matter (Barkhof, 2002).

Study Limitations
The primary limitation of the study is the small and heterogenous
sample size, which limits results’ generalizability. Even if it
reflects the reality in clinical practice, treatment heterogeneity
is a limitation since disease-modifying therapies don’t have the
same effectiveness in treating neuroinflammation. In a future
study with a larger sample size, it would be interesting to divide
patients into subgroups according to their treatment regimen
(no treatment, first-line treatments and second-line treatments)
to compare those more homogeneous samples with advanced
diffusion MRI. In addition, the RRMS group is skewed toward
females while the healthy control group comprise more men.
This imbalance between the groups is firstly due to recruitment
difficulties, mainly for men in our center. Also, the healthy
control group was part of a pre-existing dataset (Penthera 3T)
which mostly comprised men. Due to limited resources at the
time of the study, the use of that cohort was more cost-effective.
In future studies, it would be recommended that subjects be
matched for age and sex.

Another limitation is the absence of comparison of diffusion
MRI-derived measures inside the lesions and in the NAWM. It is
thus impossible to determine if the increase in free water fraction
for example is driven by the presence of focal lesions only. In
future work, the use of intralesional measures and lesionometry
(Winter et al., 2021) would be helpful to better characterize
diffusion MRI abnormalities caused specifically by MS focal
lesions. It would also be interesting to separate gadolinium-
enhancing lesions (considered as “active lesions”) from non-
enhancing lesions.

With regard to MRI data processing, fODF reconstruction
may be affected by the free water part of the signal since free-
water modeling is done separately from the fODF modeling.
Therefore, AFDtot and NuFO values may still be influenced by
tissue changes that contribute to the observed increase in free
water fraction. To limit this contamination, only higher b-values
(b = 1,000 and b = 2,000) were used in the fitting and fODF
reconstruction. How is constrained spherical deconvolution
fODF reconstruction affected by free water is to the best of
our knowledge still an open question. It could be argued that
constrained spherical deconvolution and using higher b-values
results in removing most of the isotropic diffusion part of
the signal, but this has never been thoroughly studied. In
future studies, joint modeling could be utilized to obtain
AFDtot and NuFO measures that are independent of free
water contamination.

CONCLUSION

We used a novel methodology to characterize cerebral WM in
young patients with RRMS. The association between cognitive

dysfunction, fatigue and depression and free water corrected
diffusion measures and HARDI-derived measures was also
studied for the first time. At the era of “disease modifying
therapies,” it is crucial to develop more specific measures to
disentangle WM microstructural changes caused by this disease
and its treatment. To be able to probe the WM changes with
advanced diffusion MRI, in combination with myelin-specific
MRI contrasts such as myelin water imaging or inhomogeneous
magnetization transfer, would be a great advantage for clinical
research and this is part of future work.
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