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The suprachiasmatic nucleus (SCN) of the hypothalamus is the central circadian clock
of mammals. It is responsible for communicating temporal information to peripheral
oscillators via humoral and endocrine signaling, ultimately controlling overt rhythms
such as sleep-wake cycles, body temperature, and locomotor activity. Given the
heterogeneity and complexity of the SCN, its genesis is tightly regulated by countless
intrinsic and extrinsic factors. Here, we provide a brief overview of the development of
the SCN, with special emphasis on the murine system.
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INTRODUCTION

On this rhythmic planet, we are surrounded by countless environmental oscillations of varying
frequencies. The most notable of all rhythms is the 24 h day-night cycle, which results in predictable
changes in the availability of light, warmth, and sustenance. In order to thrive, organisms must be
able to anticipate and prepare for daily rhythmic events in the environment, rather than simply
reacting to them upon their detection. From bacteria to humans, organisms evolved circadian
clocks to keep track of time, enabling them to prepare for external challenges and opportunities
through temporal coordination of behavior and physiology.

In mammals, circadian rhythms are driven by a hierarchy of tissue-specific oscillators
throughout the body, orchestrated by a central circadian pacemaker, the hypothalamic
suprachiasmatic nuclei (SCN). Individual SCN neurons synthesize neuropeptides and
neurotransmitters to coordinate endogenous oscillations and entrainment at the tissue level
(Aton et al., 2005; Maywood et al., 2011; Mieda et al., 2015). The SCN is unique within the clock
hierarchy, as it is the only clock to respond to light directly (Morin and Allen, 2006). The SCN
(oscillator) receives and integrates time cues (input) from the environment, and communicates
temporal information to peripheral oscillators via humoral and endocrine signaling. Ultimately,
the SCN coordinates and controls overt rhythms (outputs) such as sleep-wake cycles, body
temperature, osmoregulation, hormone secretion, and gastrointestinal, hepatic, and cardiac
functions (Roenneberg and Merrow, 2016). As the biological clock coordinates nearly all
physiological processes, perturbation of the circadian system constitutes a risk factor for a myriad
of disorders, including obesity, diabetes, cardiovascular disease, cancer, and neurodegeneration
(Kurose et al., 2011; Uth and Sleigh, 2014; Broussard and Van Cauter, 2016; Melo et al.,
2016; Khaper et al., 2018; Musiek et al., 2018). Conversely, many pathological conditions (e.g.,
Alzheimer’s disease, cancer) contribute to circadian disruption, which further exacerbates them
(Lim et al., 2014). By expanding our knowledge and mechanistic understanding of the circadian
clock, we position ourselves to develop new strategies that leverage the circadian system to promote
better physical and mental health.
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TRANSCRIPTION-TRANSLATION
FEEDBACK LOOP/THE MOLECULAR
CLOCK

The molecular clock machinery relies on a series of transcription-
translation feedback loops (TTFLs) that generate rhythmic
expression of “clock genes” through a negative feedback
mechanism. In mammals, the positive limb of the core feedback
loop consists of the basic helix-loop-helix PAS transcription
factors, Circadian locomotor output cycles kaput (CLOCK) and
Brain and muscle ARNT-like protein 1 (BMAL1) (Figure 1).
During the subjective day, CLOCK and BMAL1 dimerize
and bind to the E-box elements in Period (Per1, Per2)
and Cryptochrome (Cry1, Cry2) promoters, inducing their
transcription (Shearman et al., 1997; Gekakis et al., 1998; Kume
et al., 1999; Bunger et al., 2000; Vitaterna et al., 2006). During the
subjective night, PER and CRY protein heterodimers translocate
from the cytoplasm to the nucleus, where they repress their
own gene transcription through inhibition of CLOCK:BMAL1
(Kume et al., 1999; Vitaterna et al., 1999; Zheng et al., 1999,
2001; Shearman et al., 2000). PER proteins are degraded during
the late subjective night, but CRY continues to accumulate in
the nucleus and maintains the repressive phase of the cycle (Ye
et al., 2014). In the early subjective day, the degradation of
CRY results in the derepression of CLOCK:BMAL1-mediated
transcription and thus a new round of E-box-dependent gene
expression (Gekakis et al., 1998; Kume et al., 1999). This core
clock circuitry is regulated by secondary feedback loops. For
example, the transcription of Bmal1 is positively and negatively
regulated by the nuclear orphan receptors, ROR (α, β, and γ) and
REV-ERB (α and β), respectively, which are themselves E-box-
containing genes and are therefore controlled by the primary
feedback loop (Preitner et al., 2002; Sato et al., 2004; Guillaumond
et al., 2005). Together, the primary and secondary TTFLs drive
the ∼24 h oscillation of the molecular clock, while additional
layers of regulation (described in the following sections) ensure
its stability and robustness.

SCN STRUCTURE AND CONNECTIVITY

As it is currently understood, the SCN is responsible for
interpreting photic and non-photic signals that it receives
from afferent projections, and ultimately produces a coherent
temporal output to peripheral oscillators through humoral
and neuroendocrine mechanisms. Each individual SCN neuron
harbors the clock machinery and is able to maintain robust
molecular rhythms on a single-cell level. Through neuropeptide,
neurotransmitter, and synaptic signaling, SCN neurons form
an intricately connected oscillatory network with astounding
precision and resilience.

The SCN is a pair of nuclei located in the anterior
hypothalamus, situated directly dorsal to the optic chiasm
and lateral to the third ventricle. It is comprised of
approximately 20,000 heterogenous neurons that secrete
dozens of neuropeptides, neurotransmitters, and cytokines,
many of which can be at least partially co-expressed by certain

populations of SCN neurons (Figure 2; Abrahamson and Moore,
2001; Cheng et al., 2002; Antle and Silver, 2005; Todd et al.,
2020; Wen et al., 2020). The SCN is classically divided into
two subregions, a light-responsive ventrolateral “core” and
a rhythmic dorsomedial “shell,” based on the neurochemical
nature of cells in each area and its physiological function (Aton
et al., 2005). SCN core neurons are characterized by expression
of vasoactive intestinal peptide (VIP), gastrin releasing peptide
(GRP), calbindin, calretinin, neuromedin S (NMS), and
neurotensin (Abrahamson and Moore, 2001; Lee et al., 2015).
In contrast, SCN shell neurons express arginine vasopressin
(AVP), calbindin, NMS, angiotensin II, and met-enkephalin
(Abrahamson and Moore, 2001; Lee et al., 2015). All SCN
neurons synthesize γ-aminobutyric acid (GABA) as the main
neurotransmitter in addition to the neuropeptidergic signals
(Moore and Speh, 1993; Abrahamson and Moore, 2001).

In addition to neurons, astrocytes in the murine SCN
also contribute to circadian timekeeping. Astrocytes have been
shown to display daily rhythms in structural protein expression,
morphology, metabolic function, and clock gene expression
(Prolo et al., 2005; Becquet et al., 2008; Cheng et al., 2009;
Burkeen et al., 2011). Astrocyte-specific ablation of Bmal1
lengthens the period of clock gene oscillations and locomotor
behavior (Barca-Mayo et al., 2017; Tso et al., 2017). Furthermore,
excision of the short-period CK1ε tau mutation specifically from
SCN astrocytes lengthens molecular and behavioral rhythms
(Brancaccio et al., 2017; Tso et al., 2017). It has been shown
that SCN astrocytes control circadian period by regulating GABA
uptake and glutamatergic signaling (Barca-Mayo et al., 2017;
Brancaccio et al., 2017, 2019). Recently, Sominsky et al. (2021)
reported that microglia are another important component for
maintaining clock gene expression and behavioral rhythms.
By expressing the diphtheria toxin (DT) receptor specifically
in fractalkine receptor-positive cells (Cx3cr1+), 94% of SCN
microglia was acutely ablated in transgenic Wistar rats (Sominsky
et al., 2021). This resulted in pronounced disruption of behavioral
rhythms, circadian temperature profiles, and Per1 and BMAL1
expression (Sominsky et al., 2021).

As the master circadian clock, the SCN is intricately connected
with many regions of the brain to regulate the phase and
period of circadian rhythms. The SCN has three major afferent
connections: retinohypothalamic tract (RHT) projections from
the retina, geniculohypothalamic tract (GHT) projections from
the intergeniculate leaflet (IGL), and serotonergic projections
from the median raphe nucleus (MnR) in the brainstem (Meyer-
Bernstein and Morin, 1996; Mintz et al., 1997; Abrahamson
and Moore, 2001). Photic information received by intrinsically
photosensitive retinal ganglion cells (ipRGCs) is delivered to
the SCN through the RHT (Do and Yau, 2010). Although the
terminal fields of the RHT can be found in all parts of the
murine SCN, the core region has denser retinal innervation
compare to the SCN shell (Morin et al., 2006). IpRGC input is
essential for SCN light entrainment, which occurs through the
release of glutamate, aspartate, and the neuropeptide pituitary
adenylate cyclase-activating polypeptide (PACAP) (Chen et al.,
1999; Guido et al., 1999; Kawaguchi et al., 2003; Hannibal et al.,
2008). In contrast, the IGL innervates the SCN with neuropeptide
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FIGURE 1 | A simplified view of the mammalian molecular clock. In the positive limb of the primary feedback loop, CLOCK (yellow) and BMAL1 (green) form a
heterodimer and bind to the E-box elements in the promoter regions of Per and Cry, triggering their transcription. Following their translation, PER (purple) and CRY
(blue) proteins are phosphorylated (red, P) by various kinases including CK1δ/ε, GSK3β, and DYRK1A, which can regulate their turnover or nuclear entry. In the
negative limb, PER:CRY heterodimers translocate to the nucleus, where they inhibit CLOCK:BMAL1-mediated transcription, thereby repressing their own gene
expression. The transcription of Bmal1 is further regulated by a second feedback loop involving two E-box-regulated genes, Rev-Erb and Ror. REV-ERB (magenta)
inhibits the transcription of Bmal1 by competing with the transcriptional activator, ROR (orange), for binding of the ROR-element within the Bmal1 promoter.
Extracellular signals (e.g., neurotransmitters, neuropeptides) can activate signaling cascades resulting in the phosphorylation of CREB (turquoise), which mediates
Per transcription and resetting of the clock.

Y (NPY) and GABA terminals (Moore et al., 2002). As with
RHT terminals, NPY terminals are concentrated in the ventro-
central region of the SCN and are sparser in the dorsomedial
region (Morin et al., 2006). The IGL plays a significant role
in relaying photic and non-photic information to the SCN, as
either IGL lesions or NPY infusion into the SCN can alter
circadian rhythms (Albers and Ferris, 1984; Pickard et al., 1987).
The SCN also receives serotonergic projections from the MnR,
where the plexus appears to be densest along the medial and
ventral SCN border, grading to sparse innervation centrally and
dorsolaterally (Morin et al., 2006). Notably, all three major

SCN inputs significantly overlap in the core SCN, reflecting its
key role in integrating luminance information from the retina
and non-photic input from the midbrain arousal center during
entrainment. In addition to these three major afferents, ∼35
brain regions have been shown to project to the SCN: these
include other hypothalamic nuclei, the amygdalohippocampal
zone, and brainstem nuclei (Krout et al., 2002). However,
relatively few SCN afferent systems have been explored in terms
of their rhythm-related functions. On the other hand, SCN
efferents innervate ∼15 brain regions, likely carrying circadian
rhythm phase information to distal targets. Notably, the SCN
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FIGURE 2 | Schematic of the structure and organization of the SCN. The dorsomedial SCN (shell) expresses AVP and GABA, whereas the ventrolateral SCN (core)
synthesizes VIP, GRP, and GABA. The retinohypothalamic tract (RHT), intergeniculate leaflet (IGL), and median raphe nucleus (MnR) directly innervate the core. On the
other hand, inputs from the thalamus, various hypothalamic nuclei, and the forebrain are mainly received in the shell. Core and shell SCN neurons are synchronized
through various means of intercellular communication, and are thus capable of producing coherent outputs to peripheral clocks. 3V, third ventricle; OC, optic chiasm.

projects to many hypothalamic nuclei including the preoptic
area, the paraventricular nucleus, the subparaventricular zone,
the retrochiasmatic area, the dorsomedial and ventromedial
nuclei, and the premammillary area (Watts and Swanson,
1987; Abrahamson and Moore, 2001). These efferent projections
from the SCN have been implicated in circadian regulation of
body temperature, locomotor activity, sleep-wake cycles, and
feeding (Lu et al., 2001; Chou et al., 2003; Abrahamson and
Moore, 2006). Neuropeptides such as prokineticin 2 (PROK2)
have been shown to serve as functional outputs of the SCN,
communicating phase information to other brain regions (Cheng
et al., 2002). Mice deficient in either PROK2 or its cognate
receptor, prokineticin receptor 2 (PROKR2), have a pronounced
redistribution of locomotor activity from early night to late
night with significantly dampened amplitude (Li et al., 2006;
Prosser et al., 2007).

INTRA-SCN COMMUNICATION AND
SIGNALING

In vivo or in organotypic cultures, oscillations of SCN neurons
are synchronized and coherent, yet follow a consistent pattern
of distinct phases and amplitudes. Bioluminescence imaging of
SCN explants in vitro using Per1-LUC or PER2:LUC reporters
have shown that the shell region has much more pronounced
PER oscillations than the core (Yamaguchi et al., 2003).
Circadian cycling of PER expression begins in the dorsomedial
periventricular region of the shell, propagates ventrally and
laterally to the center of the shell after 4–8 h, and ends

in the ventral SCN after 12–15 h (Yamaguchi et al., 2003).
However, a minority of cells have been shown to remain ∼12 h
out-of-phase with the population mean, potentially allowing
multiple, variously phased output signals to be generated (Herzog
et al., 1997; Nakamura et al., 2001). This oscillation pattern is
preserved from cycle-to-cycle, as well as after pharmacological
manipulations that delay or stop the clock, suggesting that
SCN coupling is mediated by specific neural circuits instead
of a homogeneous coupling scheme (Liu et al., 1997). When
challenged by an abrupt phase shift (jet lag), the shell and core
SCN exhibit desynchronization and appear to be out-of-phase
initially (Nagano et al., 2003; Albus et al., 2005; Nakamura et al.,
2005). The phase of the ventral region, measured by either
clock gene expression or impulse activity of SCN neurons, shifts
rapidly, whereas the dorsal region requires more days to shift and
to align with the ventral SCN (Nagano et al., 2003). This finding is
consistent with the notion that the core SCN is the compartment
that receives photic cues and directs resynchronization of the
shell. When cultured at low density, individual SCN neurons can
still express robust rhythms autonomously for weeks, showing
that they do not require rhythmic input from other cells to
oscillate (Welsh et al., 1995). However, dispersed clock cells
in the same culture dish display rhythms with varying periods
and progressively distinct phase relationships. Dissociating SCN
cells thus removes the coupling forces that normally maintain
intercellular synchrony at the tissue level.

Three modes of intercellular communication have been
established to maintain network stability and coupling of the
SCN: chemical synapses, electrical synapses (gap junctions),
and paracrine signaling. The most common neurotransmitter
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in the SCN is GABA, which is present in all SCN neurons
(Moore and Speh, 1993). Although GABA usually elicits
spontaneous inhibitory post-synaptic potentials, it may be
excitatory in some instances (De Jeu and Pennartz, 2002; Albus
et al., 2005; Hee et al., 2008). GABA-mediated excitation is
most common at night in the dorsal region of the SCN, a
process mediated by Na+-K+-Cl− cotransporter 1 (NKCC1) and
K+-Cl− cotransporters (KCCs) (De Jeu and Pennartz, 2002; Hee
et al., 2008). In Syrian hamsters, blocking excitatory responses
of GABA by inhibiting NKCC1 has been shown to attenuate
light-induced phase delays during the early subjective night
(McNeill et al., 2018). In the SCN, many cellular responses of
GABA are driven by ionotropic GABAA and Gαi/o−coupled
GABAB receptors (Jiang et al., 1997b; Strecker et al., 1997; Liu
and Reppert, 2000; Gribkoff et al., 2003; Belenky et al., 2008).
GABAA receptor-mediated signaling causes phase shifts when
applied to dissociated SCN neurons, and daily pulses of GABA
synchronizes them (Liu and Reppert, 2000). In addition, GABA
signaling is essential for shell and core re-synchronization after
a jet lag treatment, as well as for modulating phase shifting
responses after a light pulse (Ralph and Menaker, 1985, 1986,
1989; Gillespie et al., 1997, 1999; Albus et al., 2005; Albers et al.,
2017). On the other hand, blocking both GABAA and GABAB
receptors does not affect oscillatory amplitude and synchrony of
neurons in SCN slices (Aton et al., 2006). Recently, Barca-Mayo
et al. (2017) showed that astrocyte-mediated GABA signaling
modulates clock gene expression of cortical neurons in vitro
(Barca-Mayo et al., 2017).

It is widely accepted that communication between neurons
is mediated primarily by Ca2+-dependent synaptic transmission.
However, when chemical synaptic transmission is blocked using
Ca2+-free medium, periodic and synchronized bursts of action
potentials in a large population of SCN neurons can still
be detected, indicating that mechanisms other than chemical
synaptic transmission may modulate SCN synchrony (Bouskila
and Dudek, 1993). It was also noted that metabolic rhythms
in the embryonic SCN precede chemical synaptogenesis in rats,
indicating that non-synaptic mechanisms may be important
in coordinating circadian rhythms (Reppert and Schwartz,
1984). Subsequently, gap junctions (electrical synapses) have
been identified in the SCN and found to mediate neuronal
coupling (Jiang et al., 1997a; Colwell, 2000; Long et al., 2005;
Rash et al., 2007; Wang et al., 2014). Gap junction channels
allow the passage of ions and other small molecules between
coupled cells and function to connect cells electrically and
metabolically. They are formed by two hemichannels, each
composed of 6 connexin proteins (Cheung et al., 2014). The
majority of neuronal gap junctions in the SCN are miniature
gap junctions that are composed of less than 50 connexons
comprised primarily of connexin-36 (Cx36) subunits (Rash
et al., 2007). Possibly due to the small number of large gap
junctions and the predominance of mini-gap junctions, there
is limited electrotonic coupling and coupling-mediated spike-
for-spike synchronization between SCN neurons (Rash et al.,
2007). Cx36 knockout mice have deficits in circadian behavior
and electrical coupling between SCN neurons; however, the
results are complicated by the global nature of the Cx36 ablation

(Long et al., 2005). Blocking gap junctions in SCN slices with
carbonoxolone also weakens synchrony of the SCN network
(Wang et al., 2014).

The SCN expresses a plethora of neuropeptides, many of
which are strongly implicated in SCN coupling. The core SCN
and the most prevalent neuropeptide intrinsic to this region—
VIP—are vital for maintaining coupling within the SCN. In
mice, VIP is released rhythmically from the core and acts
through the G-protein coupled, vasoactive intestinal peptide
receptor 2 (VPAC2, also known as VIPR2), which is expressed
in both the core and the shell SCN (Shinohara et al., 2000;
Dardente et al., 2004). Vip or Vpac2 knockout mice display weak
behavioral rhythms and often become arrhythmic after a few
days in constant darkness (Harmar et al., 2002; Colwell et al.,
2003; Aton et al., 2005). Organotypic SCN slices from these
mice show suppressed neuronal firing, low amplitude clock gene
rhythms, and desynchrony among cells (Cutler et al., 2003; Aton
et al., 2005; Brown et al., 2007; Hughes et al., 2008; Maywood
et al., 2011). VIP evokes phase shifts in locomotor activity, AVP
release, multiunit firing rate, and PER2:LUC rhythms in a phase-
and dose-dependent manner (Piggins et al., 1995; Watanabe
et al., 2000; Reed et al., 2001; An et al., 2011). Molecularly,
VIP-mediated phase shifting requires PKA, PLC, and MAPK
signaling pathways, which ultimately converge on the activation
of CRE-mediated transcription of clock genes (Nielsen et al.,
2002; Meyer-Spasche and Piggins, 2004). Furthermore, VIP has
been shown to modulate the strength of electrical synapses,
which in turn regulate intercellular coupling (Wang et al., 2014).
Intriguingly, studies have demonstrated that VIP can promote
network plasticity by destabilizing intercellular synchrony in
addition to its role as a synchronizing factor. For instance,
application of exogenous VIP at concentrations greater than
100 nM desynchronizes and broadens the phase distribution of
cells within the SCN, in particular during the nadir of PER2
expression (An et al., 2013). When microinjected into the SCN
during the early subjective day, a phase when VIP does not
induce phase shifts, VIP accelerates entrainment of locomotor
rhythms to an advanced LD cycle in a jet lag paradigm (An
et al., 2013). Although Vip−/− and Vpac2−/− mice have weak
behavioral rhythms in DD, their behavioral rhythmicity can be
restored by long-term exposure to constant light (An et al.,
2013; Hughes et al., 2015). Detailed analyses of Vpac2−/− mice
revealed that exposure to LL diminishes the intercellular signaling
deficit in these animals, resulting in both improved behavioral
rhythms and increased cellular synchrony (Hughes et al., 2015).
This is in stark contrast with the disruptive effect of LL on
neuronal function and physiological rhythms in animals with a
fully functional SCN, where the elevated level of VIP induced by
LL might destabilize the circadian pacemaker (Ohta et al., 2005;
An et al., 2011).

The core SCN also produces another type of neuropeptide
that participates in maintaining cellular synchrony, behavioral
rhythmicity, and entrainment—namely, GRP. In mice, GRP is
expressed rhythmically under a light-dark cycle and act through
the G-protein coupled receptor bombesin receptor 2 (BB2, also
known as GRPR) (McArthur et al., 2000; Karatsoreos et al.,
2006). Similar to VIP, application of exogenous GRP to the
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SCN produces phase shifts in a phase-dependent manner both
in vitro and in vivo (Piggins et al., 1995; McArthur et al., 2000;
Aida et al., 2002). This light-like response to GRP stimulation is
accompanied by the upregulation of Per1 and c-Fos expression
in the dorsal SCN (Aida et al., 2002). GRP can also act
as a secondary synchronizing neuropeptide when VIP-VPAC2
signaling is defective, since addition of GRP to Vpac2−/− SCN
explants can transiently restore network synchrony (Brown et al.,
2005; Maywood et al., 2011). Recent single cell RNAseq studies
have found that GRP-expressing neurons are a subpopulation
of VIP neurons: approximately one-quarter of VIP+ cells in the
SCN co-express GRP (Todd et al., 2020; Wen et al., 2020).

Neuropeptides expressed by the shell SCN have also
been shown to modulate circadian timekeeping. The most
prevalent neuropeptide expressed by the shell is AVP.
Avp is rhythmically expressed in mice, as its promoter
contains E-box motifs for CLOCK:BMAL1 transactivation
(Jin et al., 1999). When the AVP receptors V1a and V1b
are genetically ablated, mutant mice become resistant to
jetlag, re-entraining abruptly to shifts in the light-dark
cycles (Yamaguchi et al., 2013). Examination of clock gene
expression coupled with bioluminescence imaging of SCN
explants revealed that V1a−/−V1b−/− SCN neurons show
severely permutated phase order, and loss of intercellular
synchrony following phase resetting (Yamaguchi et al., 2013).
These results suggest that AVP-mediated interneuronal
communication provides buffering toward abrupt external
perturbations, and disruption of AVP-V1a/b signaling leads
to a weakened oscillator. A mouse model with Bmal1
deletion specifically in AVPergic neurons shows enhanced
re-entrainment and lengthened behavioral period, possibly
due to the combined attenuation of Avp, Prok2, and Rgs16
expression in the SCN shell of these conditional knockout
mice (Mieda et al., 2015). Deletion of CK1δ in AVP neurons
also results in lengthened behavioral period and altered
spatiotemporal pattern of PER2:LUC oscillations in SCN slices,
indicating that AVP neurons can regulate SCN pacemaking
(Mieda et al., 2016).

The majority of VIP+ and AVP+ neurons co-express the
neuropeptide neuromedin S (NMS) (Todd et al., 2020; Wen
et al., 2020). Although mice lacking NMS retain normal circadian
rhythms in vivo, blocking vesicular transmission from NMS+
neurons disrupted the network synchrony of the SCN (Lee
et al., 2015). Manipulating the expression of core clock genes,
such as Bmal1 and Per2, within NMS-expressing neurons
is sufficient to disrupt molecular oscillations and behavioral
rhythms (Lee et al., 2015). Conversely, overexpression of the
Clock119 transgene in NMS-expressing neurons can lengthen
circadian period in vivo, indicating that periodicity is dictated
by this subset of SCN neurons (Lee et al., 2015). Similar pace-
setting effects have been reported for DRD1a+ cells in the SCN,
which represent ∼60% of all SCN cells (Smyllie et al., 2016).
When floxed Ck1εTau alleles are excised from DRD1a+ neurons,
∼60% of the Drd1acre/+:Ck1εTau/Tau temporally chimeric mice
exhibited a free-running period that resembles wildtype animals
(Ck1εWT/WT), whereas ∼30% of the chimeric mice displayed a
short period similar to Ck1εTau/Tau animals (Smyllie et al., 2016).

The majority of chimeric SCN slices also displayed significantly
lengthened PER2:LUC period, suggesting that DRD1a+ cells
play a dominant role in period determination within the SCN
(Smyllie et al., 2016).

EMBRYONIC DEVELOPMENT OF THE
HYPOTHALAMUS

Hypothalamic histogenesis follows the same general pattern
as that observed in other neural tube-derived brain regions,
with dividing progenitors residing in the ventricular zone and
producing neuronal and glial precursors that migrate laterally
into the parenchyma (Bedont and Blackshaw, 2015; Xie and
Dorsky, 2017). It was originally thought that hypothalamic
development follows an outside−in pattern, where lateral
hypothalamic nuclei are generated first and displaced outward
by medial nuclei that are born later (Shimada and Nakamura,
1973; Altman and Bayer, 1978). However, more recent research
has found that in some hypothalamic regions, including the
arcuate nucleus and dorsolateral anterior hypothalamus, cells
occupying different medial-lateral locations are born during the
same interval (Markakis and Swanson, 1997; Padilla et al., 2010).

After neural plate formation following gastrulation, diffusible
morphogens generated by the mesodermal domains such as
the notochord and prechordal plate (PCP) begin patterning
the developing nervous system, including the presumptive
hypothalamus. These morphogenic cues modulate important
processes during hypothalamic induction and the establishment
of regional identity (Bedont and Blackshaw, 2015). Sonic
hedgehog (SHH) is a lipid−linked polypeptide signal that
is first released from the prechordal plate, is necessary for
induction of the hypothalamus, and drives Shh expression
in the ventral diencephalon (Shimamura and Rubenstein,
1997). Through a Glioma associated oncogene(GLI)-mediated
signaling cascade, PCP-derived SHH activates markers of
hypothalamic identity along the overlying ventral diencephalic
midline (Dale et al., 1997; Motoyama et al., 2003; Manning
et al., 2006). Studies have shown that SOX2 and SOX3 can
activate and maintain Shh transcription in the hypothalamic
neuroepithelium through direct binding to the long-range
Shh forebrain enhancer-2 (SBE2), whereas T-box transcription
factors 2 (TBX2) and TBX3 repress Shh in the caudal
hypothalamus by sequestering SOX2 away from the SBE2
(Zhao et al., 2012; Trowe et al., 2013). Sineoculis homeobox
homolog 3 (SIX3) likewise targets the SBE2 to directly
activate Shh transcription (Geng et al., 2008; Jeong et al.,
2008). Using the Nkx2.1-cre mouse line, selective deletion
of Shh from the basal plate domain of the developing
hypothalamus results in ablation of markers of tuberal and
anterior hypothalamic nuclei, along with thinning of the
telencephalic and hypothalamic neuroepithelium (Shimogori
et al., 2010). Shh deletion in the zona limitans interthalamica
(ZLI) leads to a complete loss of prethalamic markers such
as LIM homeobox 1 (Lhx1) and Gastrulation brain homeobox
2 (Gbx2) (Szabó et al., 2009a,b). Shh expression is also
dependent on Retina and anterior neural fold homeobox (Rax),
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as Rax−/− mouse embryos show a downregulation of Shh
expression in the dorsomedial portion of the hypothalamus along
with underdevelopment of the hypothalamic neuroepithelium
(Orquera et al., 2016).

In addition to SHH, modulators of Wingless/Int-1 (WNT)
signaling also regulate the patterning of the diencephalon
and hypothalamus (Bedont and Blackshaw, 2015). The
WNTs are a diverse family of secreted, palmitoleoylated
signaling glycoproteins well known for their role in regulating
anteroposterior patterning (Mikels and Nusse, 2006). WNTs
released by the posterior neurectoderm and somites promote
hindbrain fate, whereas the PCP and anterior neurectoderm
produce WNT inhibitors to antagonize WNT signaling. Wnt8b
is expressed in the mouse posterior hypothalamus beginning at
∼ E8.5, consistent with a role in patterning (Braun et al., 2003;
Shimogori et al., 2010; Martinez-Ferre et al., 2013). Wnt7a and
Wnt7b are expressed selectively in prethalamic and hypothalamic
GABAergic neuronal progenitors around E12.5, suggesting a
role in interneuron development; however, their function has
not been well characterized (Shimogori et al., 2010). When the
transcriptional repressor of WNT targets, Transcription factor
7-like 1 (Tcf7l1), is conditionally knocked out in the mouse
hypothalamus and pituitary, the developing hypothalamus
is posteriorized (Gaston-Massuet et al., 2016). In contrast,
loss-of-function of β-catenin (encoded by Ctnnb1) results in
the anteriorization of the hypothalamus as seen in Foxd1-Cre;
Ctnnb1lox/lox and Nkx2.1-Cre; Ctnnb1lox/lox mice (Newman
et al., 2018b). Loss of SIX3, a direct Wnt1 repressor, results
in rostral expansion of caudal diencephalic markers as well as
prosencephalon truncation (Lagutin et al., 2003). Lastly, Lhx2, a
potential upstream inhibitor of WNT signaling (Peukert et al.,
2011), has also been shown to play a role in the patterning of
the telencephalic-optic-hypothalamic field and to specify SCN
neurons at the expense of neuroendocrine fates (Roy et al., 2013).

EMBRYONIC DEVELOPMENT OF THE
SCN

SCN neurogenesis begins at ∼60% of gestation in rodents
(E12 for mice) (Figure 3A; Shimada and Nakamura, 1973;
Antle et al., 2005; Kabrita and Davis, 2008). By ∼70% of
gestation (E13.5), most ventrolateral neurons have already been
produced, while dorsomedial neurogenesis is still underway. The
final major burst of SCN neurogenesis (including a number
of ventrolateral neurons) occurs at ∼80% of gestation (E15).
Neurogenesis in the SCN along its rostral/caudal axis also shows
heterochronicity, with neurogenesis in the medial SCN peaking
at E12, in the caudal SCN peaking at E13.5, and in the rostral
SCN peaking at E14. After immature SCN neurons are generated,
they will continue to develop and ultimately express signature
neuropeptides such as VIP, GRP, and AVP. Consistent with the
regional differences in the peak timing of neurogenesis, cell
types that are concentrated in the core SCN (e.g., VIP, GRP, and
calbindin expressing cells) are mostly born early. In comparison,
AVP neurons of the shell SCN are generated consistently during
the period of neurogenesis that extends into later embryonic

ages, with those in the middle-posterior regions generated prior
to those situated in the anterior pole (Antle et al., 2005). It
has been suggested that SCN core and shell neurons derive
from distinct progenitor pools in the neuroepithelium (Altman
and Bayer, 1986), but the precise mechanisms that regulate
cell−type differences in the timing of SCN neurogenesis are not
well understood.

SCN development is modulated by morphogen signaling.
For instance, the WNT receptor frizzled 5 (Fzd5) is detected
at E10.5–13.5 in mitotic cells (VanDunk et al., 2011). Fzd5 is
later downregulated, coinciding with the induction of distal-
less homeobox 2 (Dlx2), which is a selector gene important for
GABAergic neuron development (Pla et al., 2018). In addition,
members of the fibroblast growth factor (Fgf ) family are known
to control the development of the hypothalamus and the SCN
(Tsai et al., 2011). Fgf8, one of the 22 Fgf ligands, is expressed
in the developing hypothalamus by E9.5 in developing mouse
embryos, with robust expression in regions surrounding the
optic chiasm (Fon Tacer et al., 2010). In homozygous Fgf8
hypomorphic mice (∼54% reduction of Fgf8 mRNA) at postnatal
day (P)0, SCN volume as well as the expression of AVP and VIP
are severely reduced, indicating that normal SCN development
relies heavily on Fgf8 signaling (Brooks et al., 2010; Tsai et al.,
2011; Miller et al., 2016). Furthermore, hypomorphism in the
cognate tyrosine kinase receptor of FGF8, Fgfr1, also causes
reduction in VIP expression but does not affect SCN volume.
The lesser dependence of SCN development on Fgfr1 suggests
possible compensation by other FGF receptors, as Fgfr1, 2,
and 3 are all expressed along the proliferative ventricular zone,
but Fgf8 is the only ligand expressed robustly in the ventral
diencephalon near the presumptive SCN (Wanaka et al., 1990;
Crossley and Martin, 1995; Belluardo et al., 1997; Bansal et al.,
2003). Hence, the consequence of Fgf8 expression deficit is more
severe, as other compensatory factors may not be available during
SCN development.

NEURONAL DIFFERENTIATION IN THE
DEVELOPING SCN

Many transcription factors such as Rax, forkhead box D1
(Foxd1), Nkx2.2, Lhx2, Six3, Six6, and ventral anterior homeobox
1 (Vax1) are expressed in the ventral anterior hypothalamic
neuroepithelium prior to the onset of SCN neurogenesis,
although expression of many of these factors become restricted to
specific anatomical regions or is lost entirely as the SCN develops
(Shimogori et al., 2010; VanDunk et al., 2011).

A subset of these genetic markers such as Lhx2, Rax, Foxd1,
and Nkx2.2 are expressed transiently in the ventral anterior
hypothalamus and are gradually lost as the SCN develops.
Foxd1 is broadly expressed in the developing hypothalamus
from E11.5 to E13.5 and has been shown to be necessary
for SCN development (Newman et al., 2018a). At the early
stages of SCN neurogenesis, Foxd1-deficient mice display mild
developmental deficits, with reduced expression of Vax1 and Six3
and a decrease in cellular proliferation (Newman et al., 2018a).
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FIGURE 3 | Embryonic development of the murine SCN. (A) Developmental timeline of the murine SCN. In mice, SCN neurogenesis begins around E12 and is
considered complete by E15 (green bar). Avp, Vip, and Grp transcripts are first detected in the developing SCN at E18, E18.5, and P0, respectively (arrows). Many
SCN cells are lost during P0–P8 by apoptotic cell death (red bar). Expression timeline of selected hypothalamus- and SCN-enriched transcription factors are shown;
those with known developmental functions are depicted in turquoise and the others are depicted in gray. (B–D) Schematic illustrations of the murine brain/SCN
showing the spatiotemporal expression patterns of Six3 (gray), Six6 (turquoise), and Lhx1 (green) at (B) E13.5, (C) E15.5, and (D) P0. Cells expressing Avp (red), Grp
(yellow), and Vip (blue) at P0 are depicted as colored circles. Dashed lines in (A) indicate the boundaries of the anterior hypothalamus (aH) and the hypothalamus
(Hyp). Dashed lines in (C,D) indicate the margins of the SCN. Expression data are from Shimogori et al. (2010), VanDunk et al. (2011), Bedont et al. (2014), Newman
et al. (2018a); unpublished observation (AH Cheng and HYM Cheng). 3V, third ventricle; OC, optic chiasm.

By P0.5, more severe defects are observed in the SCN of Foxd1-
deficient mice, including reduced expression of genetic markers
and agenesis (Newman et al., 2018a). Rax is expressed in the
murine ventral hypothalamus between E10.5 and E12.5 (Pak
et al., 2014). Deletion of Rax prior to E8.5 disrupts Shh expression
and is accompanied by a patterning defect of the mediobasal
hypothalamus as described in the previous section, whereas later
deletion causes misspecification of ventral medial hypothalamic
nucleus (VMH) neurons (Lu et al., 2013; Orquera et al., 2016).
Lhx2 is required for specification of the SCN, as Lhx2−/− mice
lack expression of multiple central anterior markers at E12.5,
including Lhx1 and Vax1 (Roy et al., 2013). In contrast to many
early anterior hypothalamic markers that are down-regulated
in the SCN later in development, Six3 and Six6 expression
in the SCN persists throughout the lifespan (Shimogori et al.,
2010; VanDunk et al., 2011; Clark et al., 2013). Both Six3 and
Six6 are required for initial SCN specification, as both Nestin-
cre; Six3f l/fl and Six6−/− mice fail to form a morphologically
recognizable SCN or to express SCN-specific markers (VanDunk
et al., 2011; Clark et al., 2013). Collectively, these observations
suggest that early genetic markers have a long-lasting impact
on SCN development by regulating the activation of other
transcription factors. Moreover, they may be able to prime the

activation of cis-regulatory elements that control the expression
of cell type-specific genes during differentiation.

Downstream of Six3 and Six6, Lhx1 is a crucial regulator
of SCN terminal differentiation (Figure 3; Bedont et al., 2014).
Lhx1 is considered to be the only known transcription factor
involved in SCN differentiation and the earliest selective marker
expressed throughout the developing SCN (VanDunk et al., 2011;
Bedont et al., 2014). Six3-cre; Lhx1f l/fl SCN retains expression
and proper compartmentalization of most markers initially
expressed prior to E16.5, but neuropeptides with important roles
in circadian function, including VIP, GRP, and AVP, are absent
in the adult SCN (Bedont et al., 2014). By P4, significantly
fewer SCN neurons are present in Lhx1-deficient SCN due to
increased cell death from P0 to P4 (Bedont et al., 2014). Through
bioinformatic and luciferase analyses, LHX1 has been shown to
directly regulate the expression of Vip and potentially Nms, Prok2,
and proenkephalin (Bedont et al., 2014; Hatori et al., 2014).
Given that Lhx1 is first detectable at E11.5, the relatively normal
development of Lhx1-deficient SCN from E11.5 to E16.5 suggests
that Lhx1 is not necessary for early cell fate decisions or regional
patterning of the SCN. Instead, Lhx1 is likely regulating terminal
differentiation of SCN neurons. It is also possible that the loss
of Lhx1 is compensated by one or more factors during this
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period; one potential candidate is Lhx8, an Lhx1 homolog that
is co-expressed with LHX1 in the SCN from E11.5 to E16.5
(Shimogori et al., 2010). Alternatively, Creb3l1, an Lhx1-regulated
gene, is a regulator of AVP expression in the SCN, although its
role in SCN development has yet to be explored (Greenwood
et al., 2014; Hatori et al., 2014).

Zfhx3 is another genetic marker with known roles in certain
aspects of SCN function. Zfhx3 is highly and almost exclusively
expressed in the adult SCN (Lein et al., 2007). While the
constitutive knockout of Zfhx3 results in preweaning sublethality
in heterozygous mice and the dominant missense mutation of
Zfhx3, Short circuit (Sci), is homozygous perinatal lethal, adult
mice with a single allele of Sci show downregulated neuropeptide
expression and shortened period of wheel-running activity
(Parsons et al., 2015). Furthermore, ablating Zfhx3 in adult
mice using a tamoxifen-inducible transgenic line recapitulated
the circadian behavioral deficit in Zfhx3Sci/+ mice, indicating
that Zfhx3 acts to regulate SCN function in adulthood by
activating transcription at AT motifs (Parsons et al., 2015; Wilcox
et al., 2017). Its function in the developing SCN remains unclear.

The clock gene Rora is expressed in the ventral SCN starting
at E14.5, throughout the SCN at E17.5, and in a pattern more
restricted to the SCN shell by P21 (VanDunk et al., 2011;
Newman et al., 2018a). Staggerer mice (Rorasg/sg) containing
a deletion of the fifth exon of Rora have a morphologically
normal SCN with nominal VIP and AVP expression; however,
more characterization is necessary to conclude the function (or
the lack thereof) of Rora during SCN development, as only the
expression of VIP and AVP were examined in Rorasg/sg mice
(VanDunk et al., 2011).

NEURONAL LOSS, GLIAL
DEVELOPMENT, AND
SYNAPTOGENESIS

A large number of SCN neurons are lost during the perinatal
period through the activation of caspases and pro-apoptotic
proteins of the Bcl-2 family. However, the mechanisms that
initiate apoptosis in SCN neurons are largely unclear. SCN cell
death begins as synapse formation increases, with substantial
death between P1–P7 in mice (Ahern et al., 2013; Mosley
et al., 2017). SCN neuronal survival might be dependent on
intercellular communication, as apoptotic neurons are isolated
from the neuronal clusters (Moore and Bernstein, 1989).
Although peak cell death occurs in the murine SCN by P7, an
additional 20% of cells are lost by adulthood (Bedont et al., 2014).

It has been estimated that the adult rat SCN contains at
least 108 synapses with the majority of these being intra-SCN
connections (Güldner, 1976; van den Pol, 1980; Moore and
Bernstein, 1989). Anatomical studies investigating synaptology
in the rat or hamster SCN have revealed important insights
on the timing of synapse formation within the SCN (Lenn
et al., 1977; Moore and Bernstein, 1989; Laemle et al., 1991;
Speh and Moore, 1993). Extensive studies in rats demonstrated
that synaptic development is largely a postnatal event with a
spike of synaptogenesis occurring between P4 and P10 (Moore
and Bernstein, 1989). At E19, 2 days after the end of rat

SCN neurogenesis, the neuropil surrounding SCN neurons is
sparse and contains large and medium-sized dendritic profiles
(Moore and Bernstein, 1989). Immature synapses with very few
synaptic vesicles are also present at this time (Lenn et al., 1977;
Moore and Bernstein, 1989). Synaptic number and diversity
gradually increase from E21 to P2, and then expand rapidly
from P2 to P10 (Moore and Bernstein, 1989). Another 30% of
the synapses are formed after P10 (Moore and Bernstein, 1989).
The window of SCN synaptogenesis overlaps with the arrival of
prominent afferent projections. For both mice and rats, terminals
from the RHT begin to sparsely innervate the ventrolateral
SCN ipsilaterally at birth, followed by the first appearance of
contralateral projections in the ventromedial SCN at P4 (McNeill
et al., 2011). By P10, the morphology of the axon terminals
and the density of the RHT projections are considered to be
adult-like (McNeill et al., 2011). Other SCN afferents such as the
raphe nuclei and the IGL also innervate the nuclei postnatally
and slowly mature in the following weeks (Takatsuji et al., 1995;
Migliarini et al., 2013).

Similar to other brain regions, astrogliogenesis follows
neurogenesis in the SCN, with the astrocyte marker glial fibrillary
acidic protein (GFAP) first detectable shortly before birth, at
E15 in hamsters and E20 in rats (Botchkina and Morin, 1995;
Munekawa et al., 2000). In both species, there is a postnatal
increase in GFAP+ processes that complements the decreasing
expression of vimentin (a marker of radial glia) (Botchkina and
Morin, 1995; Munekawa et al., 2000). The first major increase
in GFAP expression within the SCN, indicative of astrocytic
maturation, occurs around P3-P4 in rats (Munekawa et al., 2000).

EXPRESSION OF CLOCK GENES AND
NEUROPEPTIDES

During late gestation, circadian rhythms of clock gene expression
gradually emerge in a staggered fashion. PER proteins are
generally considered to be the earliest core clock components
to exhibit rhythmicity. PER2:LUC rhythms are detected as early
as E13.5 in SCN slice cultures, but histological data collected
from in vivo studies have placed the onset of Per2 and PER2
rhythm at a later stage, around E17 (Shimomura et al., 2001;
Ansari et al., 2009; Wreschnig et al., 2014; Landgraf et al.,
2015; Carmona-Alcocer et al., 2018). Per1 gene and protein
expression begin to show daily oscillations at around the same
developmental age as Per2, or ∼E18 (Shimomura et al., 2001;
Ansari et al., 2009). In comparison, Cry1 and Cry2 show
robust rhythmicity after birth, with Cry1, CRY1, and CRY2
beginning to oscillate at P1, P10, and P2, respectively (Ansari
et al., 2009; Huang et al., 2010). In contrast to the highly
dynamic expression of PER and CRY, CLOCK and BMAL1
are constitutively expressed in the adult or developing murine
SCN, respectively (Von Gall et al., 2003; Ansari et al., 2009).
CLOCK is detectable at low levels at E18 and gradually rises
to reach adult-level expression by P10 (Ansari et al., 2009).
On the other hand, BMAL1 is robustly expressed in a large
proportion of SCN cells at E18 and remains at a constantly
high level during later developmental stages (Ansari et al., 2009).
However, rhythmic Bmal1 expression in the SCN can be detected
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at ∼P3 (Huang et al., 2010). The transcriptional activator of
Bmal1, Rora, is first expressed at E13.5 and is found throughout
the murine SCN by E17.5; therefore, Rora might contribute
to the expression of BMAL1 at E18 (Ansari et al., 2009;
VanDunk et al., 2011).

In mice, Vip expression is first detected∼3.5 days after the end
of neurogenesis in the SCN core, at E18.5 (Kabrita and Davis,
2008; VanDunk et al., 2011). VPAC2 and VIP reach detectable
levels shortly after birth (P0 to P2) (Carmona-Alcocer et al.,
2018). Further increases in the level of VIP expression as well
as VIP-containing projections have been reported as the SCN
matures (Herzog et al., 2000). Similarly, Avp is first detected in
the murine SCN at E18 and robust expression of AVP is evident
by P0 (Hyodo et al., 1992; VanDunk et al., 2011; Bedont et al.,
2014). AVP expression continues to rise as the animal matures
to ∼P30, at which point an adult level of expression is achieved
(Herzog et al., 2000).

Intriguingly, mature SCN neurons continue to express genes
that are commonly associated with maintenance of the stem
cell states, even though the SCN does not undergo adult
neurogenesis. These genes include doublecortin-like (DCL),
transportin 1, Six3, Lhx1, and Sox2 (Sato et al., 2011; VanDunk
et al., 2011; Saaltink et al., 2012; Hoefflin and Carter, 2014;
Brown et al., 2017; Beligala et al., 2018; Cheng et al., 2019).

SCN neurons also conspicuously exhibit low levels of NeuN,
a marker for mature neurons (Morin et al., 2011). This raises
the possibility that SCN neurons are not fully committed to
a differentiated state, thus retaining a degree of plasticity that
presumably allows it to rearrange neuronal circuitry in order
to entrain and adapt to a dynamic environment. It is also
possible that SCN neurons have “re-purposed” these stem cell or
developmental genes for circadian rhythm regulation once their
canonical role has been fulfilled.
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