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Background: Research into Alzheimer’s disease has shifted toward the identification
of minimally invasive and less time-consuming modalities to define preclinical stages of
Alzheimer’s disease.

Method: Here, we propose visuomotor network dysfunctions as a potential biomarker
in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s
disease pathology. The functionality of this network was tested in terms of timing,
accuracy, and speed with goal-directed eye-hand tasks. The predictive power was
determined by comparing the classification performance of a zero-rule algorithm
(baseline), a decision tree, a support vector machine, and a neural network using
functional parameters to classify controls without cognitive disorders, mild cognitive
impaired patients, and Alzheimer’s disease patients.

Results: Fair to good classification was achieved between controls and patients,
controls and mild cognitive impaired patients, and between controls and Alzheimer’s
disease patients with the support vector machine (77–82% accuracy, 57–93%
sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between
mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no
algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity,
0.50 area under the curve).

Comparison with Existing Method(s): The classification performance found in the
present study is comparable to that of the existing CSF and MRI biomarkers.

Conclusion: The data suggest that visuomotor network dysfunctions have potential in
biomarker research and the proposed eye-hand tasks could add to existing tests to
form a clear definition of the preclinical phenotype of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative
disease. It is characterized by progressive cognitive decline. It is
estimated that it affects 44 million people worldwide (Patterson,
2018). Despite the many attempts to find a cure for AD, no
disease-modifying treatment has been developed (Au et al., 2015).
Some suggest that experimental treatments were administered
too late in the course of the disease (Sperling et al., 2011). Instead,
optimal treatment would be achieved in the preclinical stage of
AD (Sperling et al., 2011), when pathophysiological changes are
already occurring, but no clinical symptoms—such as memory
loss—have manifested (Jack et al., 2011). In clinical practice, it
is impossible to accurately diagnose patients in the preclinical
stage: in fact, a definitive diagnosis can only be established post-
mortem (Au et al., 2015). Biomarkers, such as cerebrospinal fluid
(CSF) analysis and neuroimaging techniques, are one of the most
promising methods for detecting preclinical AD (Barber, 2010).
Yet, to date, no biomarker has been identified at the start of the
pathophysiological processes of AD, that also has a strong link
with the later emergence of AD’s clinical symptoms (Sperling
et al., 2011). In addition, given the suboptimal sensitivity and
specificity of CSF and structural neuroimaging markers, their use
is mostly restricted to research settings (Almeida, 2002; De Leon
et al., 2004; Schmand et al., 2010; Ritchie et al., 2015; Jack et al.).
Another problem is the heterogeneous nature of AD: a certain
level of a biomarker may be detected in some people, even though
they will never develop AD, while the same biomarker level might
not be detected in people who did develop AD (Au et al., 2015).
For these reasons, AD is still primarily diagnosed on clinical
grounds (Salimi et al., 2018) and consequently, most patients are
not diagnosed until they have progressed to late stages of AD
(Barber, 2010).

Recent studies have indicated that multiple functional
networks throughout the entire brain are already affected by
neurodegeneration in early stage AD (Seeley et al., 2009; Barber,
2010). For instance, there is not only damage to the hippocampus,
a structure that is classically associated with the memory
impairments in AD, but functional imaging studies showed that
other areas, for example in the frontal and parietal lobe, also
atrophied (Burnod et al., 1999; Jacobs et al., 2012). This atrophy
damages several important networks in the brain: the visuomotor
network is one such important function brain network. This
network receives visual and proprioceptive sensory to compute
motor control signals. The planning and executing of the tasks
at hand rely on feedback and feedforward mechanisms through
visual, motor, parietal, and frontal cortices (Ledberg et al., 2007)
in a dynamic manner (Brovelli et al., 2017). The functionality
of the visuomotor network can be quantified in terms of
timing, accuracy, and speed of eye and hand movements when
performing goal-directed tasks. Consequently, impairments in
visuomotor functioning due to underlying neurodegenerative

Abbreviations: AD, Alzheimer’s disease; ANN, Artificial neural network; ANOVA,
Analysis of variance; AUC, Area under the curve; CSF, Cerebrospinal fluid;
EHC, Eye-hand coordination; MCI, Mild cognitive impairment; MMSE, Mini
mental state examination; MRI, Magnetic resonance imaging; PS, Pro-saccade; SD,
Standard deviation; SVM, Support vector machine.

damage could be a marker of early or even preclinical AD and
a valuable addition to existing markers (de Boer et al., 2016;
Salimi et al., 2018). Several studies support this hypothesis:
for instance, it was found that the initiation of saccades was
slowed (Molitor et al., 2015; de Boer et al., 2016) and that
the initiation and execution of motor sequences was impaired
(Salek et al., 2011; de Boer et al., 2016) in AD and MCI
patients compared to healthy elderly. Furthermore, visuomotor
functioning has the benefit of being easy and quick to measure,
compared to existing markers, which are often more time-
consuming (i.e., structural neuroimaging) or invasive (i.e., CSF).
However, although aforementioned studies show a relation,
much is still unclear about the added value of visuomotor
performance for network degeneration and the sensitivity and
specificity of the method. We aimed to study the predictive value
of visuomotor performance by measuring several visuomotor
parameters, such as the time needed to move the eyes or the hand
to a target. Because only one parameter is not sufficient for a
classification (Crawford, 2015), a combination of parameters with
high predictive power were analyzed using machine learning.
This is a promising method, as it can reduce a large dataset
to a small subset of meaningful features using feature selection
methods (Sarica et al., 2018). Thus, machine learning provides
insight in the clinical relevance (i.e., what visuomotor parameters
add to existing markers) of visuomotor performance on the
basis of multiple parameters. A first step toward establishing the
predictive value was taken by Lagun et al. (2011), who showed
that classification algorithm trained on separating healthy elderly
and AD patients could distinguish between healthy elderly
and MCI patients based on their eye movements, with an
accuracy of 87%.

The aim of the present study was to examine whether
visuomotor functioning, in terms of both eye and hand
movements, can be a potential new biomarker. We also examined
whether there was additional predictive value in using eye-
hand coordination parameters over just using eye movement
parameters (as in Lagun et al., 2011). To this end, we evaluated the
performance of several classification algorithms when classifying
controls, MCI, AD and consequently determining the predictive
power of visuomotor functioning with only eye movements, or
both eye and hand movements.

MATERIALS AND METHODS

Participants
Participants were included from June 2010 to January 2018. This
study was approved by the Medical Ethical Committee of the
Erasmus MC Rotterdam (MEC-2008-365 and MEC 2012-524).
Data collected until 2015 were previously published by Verheij
et al. (2012) and de Boer et al. (2016). Patients were independently
diagnosed using a standardized diagnostic procedure carried out
by a panel of specialists from the departments of Geriatrics,
Neurology, and Psychiatry from the Erasmus Medical Centre. AD
subjects met the standard criteria for probable AD (NINCDS-
ADRDA) and were considered to be in early stages of the
disease. The clinical diagnosis of MCI and AD was based on
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patient history, laboratory findings, and imaging results. Family
members or caregivers of the patients were recruited as healthy
elderly controls. Subjects were excluded if their mini-mental state
examination (MMSE) (Folstein et al., 1975) score was below
21/30, if they displayed neurological or psychiatric disorders
(excluding cognitive decline related to the diagnosis), or if they
had motor or ocular pathologies which rendered them unable to
touch or see stimuli (unless eyesight could be corrected). The
use of acetylcholinesterase inhibitors was permitted. A written
informed consent was obtained from all subjects. All collected
data were stored in a database.

Measurement Setup
Eye hand tasks were presented on a 32-inch touchscreen (ELO
touch systems). Eye movements were recorded with a head-
mounted video infrared eye-tracking system. We used to systems:
Chronos, Chronos Vision, Berlin, sampling rate of 200Hz, the
EyeSeeCam system, which replaced the Chronos system in 2017
(EyeSeeTec GmbH, Munich, Germany, sampling rate of 220
Hz, resampled to 200 Hz so that the same code could be used
to analyze EyeSeeCam and Chronos data). Both systems used
pupil detection software. Chronos recorded gaze data of both
eyes, whereas EyeSeeCam recorded the gaze data of the left
eye. Hand movements were recorded by an infrared motion
capture system (Vicon, Vicon Motion, Oxford, sampling rate 200
Hz). Subjects wore a glove with four markers on the dominant
hand, which reflected infrared light back to 4 cameras to follow
hand movements. All systems were synchronized using a trigger
controlled by MATLAB R2017a (MathWorks, Natick, MA). The
set-up is illustrated in Supplementary Figure 1.

Experimental Procedures
All participants were tested at the department of Neuroscience
of the Erasmus Medical Centre. Each participant completed a
MMSE to assess general cognitive functioning. Subjects were
seated at 60 cm distance from the touchscreen using a chin rest.
Eye and hand position were calibrated with a 5-point calibration
scheme. Verbal instructions were given and subjects were asked
to act as quickly and accurately as possible. Subjects performed
eight different tasks, three eye tasks, see Supplementary Figure 2,
top panel and 5 eye-hand tasks, see Supplementary Figure 2,
bottom panel. The location of the presented stimuli was
randomized across the screen. Data from the following tasks were
selected from the database when available:

(1) Reflex tasks: assessment of reflexive eye movements (pro-
saccade task) and eye/hand movements (pro-tapping task).

(2) Inhibition tasks: assessment of inhibitory eye movements
(anti-saccade task) and eye/hand tasks (anti-saccade anti-
tapping task and anti-tapping task).

(3) Memory tasks: assessment of short-term memory
eye movements (memory-saccade task) and
eye/hand movements (memory-tapping task and
sequential-tapping task).

Each task started with three practice trials, followed by
eight measurement trials. First, the eye tasks were presented,

followed by the eye-hand tasks. The tasks that involved hand
movement were executed with the index finger of the dominant
hand. Between 2010 and 2018, different protocols have been
applied. Thus not every participant underwent each task. In
Supplementary Table 1, an overview is presented of the
number of participants per group who completed a given
task. Supplementary Figure 3 represents a typical example of
eye and hand traces. Data were pre-processed using custom
MATLAB code. The following parameters were calculated for eye
movements:

- Eye latency: time between target stimulus presentation and
eye movement initiation

- Eye maximum velocity: maximum eye movement velocity
during the primary saccade.

- Eye error: difference in degrees between target position and
final eye position.

- Saccadic amplitude: amplitude of the primary saccade
divided by target amplitude.

- Number of saccades: number of saccades made
during the trial.

The following parameters were calculated for hand
movements:

- Hand latency: time between target stimulus presentation
and release of the touchscreen.

- Hand maximum velocity: maximum hand velocity during
the hand movement.

- Hand error: difference in degrees between target position
and final hand position.

- Hand execution time: time between releasing (click-up) and
touching (click-down) the touchscreen.

- Eye hand interval: time between the initiation of the eye
and the click-up.

- Eye touch interval: time between the initiation of the eye
movement and the click-down.

- Hand total distance: total distance bridged by the hand
movement during the trial.

- Amplitude Click-up Click-down: hand movement
amplitude between the first click-up and click-down
divided by target amplitude.

Finally, several parameters were calculated from the eye trace
to quantify pupil characteristics (Wang and Munoz, 2015):

- Pupil peak: maximum pupil dilation between target onset
and the primary saccade.

- Pupil latency: time from target onset until maximum pupil
dilation occurs.

- Pupil baseline: mean pupil dilation during the
fixation period.

Additionally, anticipation (measure of whether the eye
movement toward the first and second stimuli preceded the hand
movement toward the same stimulus) was calculated for the
sequential-tapping task. Finally, a measure of task performance
was computed for each task, based on the number of correct trials
(all correctly performed trials) divided by the number of valid
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trials (all trials that could be analyzed). Trials that had not been
recorded correctly (invalid trials) were excluded.

Data Handling
Data from the memory saccade task were excluded because data
was collected from too few participants. Outliers—defined as data
points that were more than two standard deviations removed
from the group mean—were excluded per trial per subject. When
eye latency, hand latency, or pupil latency were outliers, the eye,
hand, or pupil parameters were all removed, because outliers in
these parameters often indicated faulty measurements. In other
cases, only the parameter that was an outlier was removed. On
average, 4.26% of all data points (SD = 2.65%, range: 0–11.99%)
were excluded as outliers. Any missing value was marked as “not a
number.” Lastly, data were standardized with z-scores within the
external cross-validation procedure to prevent data leakage. The
final dataset consisted of 96 subject instances where each instance
contained 77 functional parameters and one nominal variable,
which indicated the subject’s group. The dataset was prepared for
classification in WEKA 3.8 (WEKA, University of Waikato, New-
Zealand). A Zero rule algorithm was used as baseline (ZeroR in
WEKA). This algorithm predicts that every subject is part of the
largest group in the dataset. The performance of three supervised
algorithms was compared to this baseline:

1. Support vector machine (SVM) (Cortes and Vapnik, 1995):
a linear classifier which separates groups at the point where
the distance between the groups is the greatest by drawing
a hyperplane. SVMs use the kernel trick (Shawe-Taylor
and Cristianini, 2004) to perform non-linear classification:
data are transformed, using a mapping function (defined
by the kernel), to a high-dimensional space where a
linear hyperplane can be found. When this hyperplane is
transformed back to 2-dimensional space, it will become
a non-linear separator. A drawback of the kernel trick
is that the most effective type of kernel is not known
beforehand, making it necessary to test multiple kernels
(LibSVM function in WEKA). The SVM was chosen in
this study so a direct comparison could be made with
Lagun et al.’s study (2011), who looked at the value of eye
movement parameters for distinguishing between healthy
controls and MCI or AD patients. Furthermore, SVMs are
fast to train and are flexible because different kernels can
be included in the model. We included a variety of kernels
(radial basis function kernel, polynomial kernel, sigmoid
kernel, linear kernel) to accommodate potential differences
in data structures and to compare the performance of
simple and high dimensional kernels. Although better
performance might be expected from higher dimensional
kernels, simpler kernels save time and processing power:
therefore, there is value in comparing the performance of
simpler kernels to higher dimensional kernels.

2. Decision tree (Breiman et al., 1984): a simple algorithm that
splits the dataset into smaller partitions until it can correctly
classify most instances. For each split, the parameter that
would provide the best separation between groups at that
point is chosen. The decision tree was selected because

it is a simple, easily interpretable, and computationally
inexpensive algorithm that gives immediate insight in
the parameters and weights used for classification (J48
algorithm in WEKA).

3. Artificial neural network (ANN) (Schmidhuber, 2015): the
algorithm creates a network of hidden nodes, with differing
weights, which are activated or deactivated depending on
the input they receive. The activation pattern of all nodes
is transformed into the predicted class for the subject. The
ANN is a very flexible algorithm, that performs well on
complex problems (multilayer perceptron in WEKA). ANNs
are also suitable to handling multiclass problems, which the
SVM does not readily lend itself for.

We selected these three models for comparison and to find the
model with the best performance and the easiest implementation.
For example, the ANN is expected to do well because it is tailored
to complex problems, but it is computationally heavy and takes
a long time to train. Therefore, if a decision tree or SVM could
achieve similar performance, these types of algorithms would
be preferred in practice. This is especially true for the decision
tree, as this algorithm gives complete insight in which features
are used. However, since the decision tree has more trouble with
complex problems, we also included the SVM as the middle road.

Figure 1 represents a flow chart of the steps that were involved
to convert the data into the final model including:

Feature Selection
Feature selection was performed for all dataset views to identify
the functional variables that would be most meaningful for
classification and additionally, to prevent model overfitting by
reducing the number of features that the ANN would be trained
on. Additionally, we performed significance tests in SPSS 24
(IBM SPSS, Chicago, United States) to verify whether the selected
variables could meaningfully separate the groups. Normality was
tested for each selected variable using the Shapiro-Wilk test.
For normally distributed data, two-tailed t-tests were performed
and Cohen’s d was calculated as a measure of effect size. For
non-normally distributed data, a non-parametric Mann-Whitney
U-test was performed and r-squared was calculated as a measure
of effect size (Rosenthal et al., 1994). One variable (Anticipation)
recorded the number of trials that the subject anticipated a
stimulus in the sequential-tapping task and therefore, a chi-
square test was performed. Phi was taken as a measure of effect
size. The significance level for all tests was α = 0.05. Exact p-values
were reported, unless p < 0.001.

To gain insight in the parameters used by models other than
the ANN, we performed post hoc feature selection in WEKA
using the most successful classifier with the same hyperparameter
settings on the HC-controls, HC-MCI, HC-AD, and MCI-AD
comparisons. This method returned the merit of a parameter and
ranked them from most to least merit. Parameters were selected
if their merit was > 0.01.

Hyper-Parameter Selection
Cross-validated parameter selection was performed to optimize
each model’s hyper-parameters. Hyper-parameters influence the
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FIGURE 1 | Flowchart of the classification process.

learning process of a model. For parameter selection, the hyper-
parameters were varied over a pre-established range. All trained
instances were compared and the hyper-parameters of the
instance with the highest accuracy were chosen. The hyper-
parameter that was specified first was optimized first and with
that optimal value, the second hyper-parameter was optimized.
Optimization was internally cross-validated 10 times. Specifically,
for the ANN we optimized learning rate and momentum (ranges:
0.0001–1); for the decision tree we optimized the confidence
factor (range: 0.1–0.9) and the minimum number of objects
(range: 1–10); and for the SVM we optimized the cost and the
gamma (ranges: 0.0001–1).

Model Training
Eight optimized models were trained for each dataset view: one
decision tree, three ANNs with one hidden layer with 2, 4, or
6 hidden neurons, and four SVMs with different kernels (radial
basis function kernel, polynomial kernel, sigmoid kernel, linear
kernel). Model training was performed in WEKA with 10-fold
cross-validation. The model training was repeated 10 times in
order to achieve more robust results.

Model Evaluation
Classification performance was assessed based on accuracy
(correctly classified data points/total data points), sensitivity
(data points correctly classified as positives/total data points
classified as positives), specificity (data points correctly classified
as negatives/total data points classified as negatives), and area

under the curve (AUC, measure of classification accuracy,
independent of class distribution). These outcome measures
were averaged across the 100 repetitions and reported as
the final performance estimates. Per dataset view, the model
that scored the highest on most performance metrics, as
determined with a one-way analysis of variance (ANOVA),
was selected as the “best performing model.” When there
was no significant difference in performance between models
(α = 0.05), models with a higher sensitivity were preferred,
because it is more important to correctly classify patients. The
performance of the “best performing model” was assessed using
the following rules of thumb. These rules did not apply to
the baseline algorithm, which was considered to be a poor
performer in all cases because of its strategy. Thus, algorithms
that performed similarly to the baseline were also considered
poor performers.

Learning Curves
We generated learning curves in WEKA to assess whether
sample size was sufficient. Learning curves are used to indicate
how much data a model needs to be trained on to achieve
a good performance (Figueroa et al., 2012). The curves
were generated by plotting model accuracy against sample
size. Sample size was manipulated by training the algorithm
on a fraction of the total dataset (starting at 10%), which
was increased by 10% until the complete dataset was used.
Typically, a learning curve that indicates a sufficient sample
size first shows a rapid increase in performance, followed by
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a turning point where the performance increase slows. The
last part of the curve is flat and indicates that performance
will not improve further, even if sample size is increased
(Figueroa et al., 2012).

RESULTS

In total, 96 subjects were selected from the database. Table 1
provides an overview of the demographics of these subjects.
21 MCI patients were diagnosed with MCI due to Alzheimer’s
disease and 1 was diagnosed with MCI or early stage dementia.
The mean age of all subjects was 74.9 years (SD = 6.15)
and the mean MMSE score was 25 (SD = 4.01). A one-
way ANOVA showed no differences between groups in age
[F(2,91) = 1.097, p = 0.338] and a difference in MMSE scores
between groups [F(2,83) = 23.37, p < 0.001]. Post hoc tests,
corrected for multiple comparisons with a Bonferroni correction,
showed that the mean MMSE scores of the controls were
higher than of the MCI patients (p < 0.001) or the AD
patients (p < 0.001). Figures 2–5 give an overview of the
raw performance data of each group (Figure 2: eye latency;
Figure 3: hand latency, and hand error; Figure 4; pupil latency;
Figure 5: performance).

Feature Selection
Table 2 presents the information gain (if selected for the ANN)
or merit (if selected by the SVM) and the results of the
significance tests for each selected variable. The variables are
divided per task to provide better insight in the importance of
each task. For illustration purposes, we chose to present the
results of the significance tests only for the HC and patients
(both MCI and AD) dataset. All selected variables differed
significantly between the control group and the aggregated
patient group and most of the variables showed medium to
very large effect sizes (Cohen, 1988). To give an indication
of the similarities between the selected variables between
datasets the feature selection results for the controls—MCI,
controls—AD, and MCI—AD datasets, using all parameters are
presented in Table 2. Table 3 reports the descriptive statistics
of the functional variables that were selected based on their
information gain (gain > 0), except for the variables that
were only selected for the MCI—AD dataset, as these variables
did not provide sufficient predictive power to classify MCI
and AD patients.

TABLE 1 | Subject demographics.

Parameter Controls MCI AD

N 37 22 37

Male 22 (59.45%) 12 (54.55%) 20 (54.05%)

Female 15 (39.55%) 10 (45.45%) 17 (55.95%)

Age 75.9 (6.3) 75.5 (7.1) 73.7 (4.77)

Age range 65–84 65–90 63–88

MMSE 29 (1.86) 24 (2.79) 23 (4.28)

Predictive Power: Controls vs. Patients
Table 4 displays the performance of all algorithms on the
controls and patients dataset. The baseline algorithm achieved a
sensitivity of 100% and a specificity of 0%, because it predicted
all subjects were patients. Whether sensitivity or specificity was
100% depended on which group was the largest, as the baseline
algorithm predicted that all instances were part of the largest
group. To assess which algorithm performed the best, a one-
way ANOVA was performed for each performance metric. For
all metrics, the mean performance of the tested algorithms
differed significantly [accuracy: F(8,891) = 47.41, p < 0.001, partial
η2 = 0.30; sensitivity: F(8,891) = 85.96, p < 0.001, partial η2 = 0.44;
specificity: F(8,891) = 139.08, p < 0.001, partial η2 = 0.56; AUC:
F(8,891) = 83.40, p < 0.001, partial η2 = 0.43]. Additional post hoc
tests revealed that the SVM (linear kernel) had the best accuracy,
the SVM (sigmoid) the best sensitivity, the SVM (linear) the best
specificity and the decision tree had the best AUC. Overall, the
SVM (linear) performed best or amongst the best on all metrics
and it achieved a good classification. The confusion matrix of this
algorithm is shown in Table 5.

Predictive Power: Controls vs. MCI/AD
and MCI vs. AD
Control vs. MCI
The means differed significantly for all metrics [accuracy:
F(8,891) = 19.49, p < 0.001, partial η2 = 0.15; sensitivity:
F(8,891) = 77.10, p < 0.001, partial η2 = 0.41; specificity:
F(8,891) = 70.05, p < 0.001, partial η2 = 0.39; AUC:
F(8,891) = 31.91, p < 0.001, partial η2 = 0.22]. Post hoc analyses,
corrected for multiple comparisons using the Bonferroni test,
indicated that the SVM (linear) was the best performing
algorithm on all metrics (see also Table 6).

Control vs. AD
The means differed significantly for all metrics [accuracy:
F(8,891) = 45.07, p < 0.001, partial η2 = 0.29; sensitivity:
F(8,891) = 19.15, p < 0.001, partial η2 = 0.15; specificity:
F(8,891) = 4.59, p < 0.001, partial η2 = 0.04; AUC: F(8,891) = 38.68,
p < 0.001, partial η2 = 0.26]. Post hoc analyses, using the
Bonferroni test, indicated that the SVM (linear) was the best
performing algorithm on accuracy; on the other metrics, all
algorithms performed similarly, except the baseline algorithm
and the SVM (sigmoid), which performed worse.

MCI vs. AD
the means differed significantly for all metrics [accuracy:
F(8,891) = 5.55, p < 0.001, partial η2 = 0.05; sensitivity:
F(8,891) = 53.30, p < 0.001, partial η2 = 0.32; specificity:
F(8,891) = 71.40, p < 0.001, partial η2 = 0.39; AUC:
F(8,891) = 24.82, p < 0.001, partial η2 = 0.18]. Post hoc analyses,
using the Bonferroni test, indicated that the ANN (6 neurons)
performed best on sensitivity, and AUC. On accuracy, the ANN
did not outperform the baseline algorithm. On specificity, the
ANN was outperformed because algorithms behaving like the
baseline algorithm showed 100% specificity. These algorithms
were disregarded, leaving the ANN (6 neurons) as the algorithm
with the highest sensitivity.
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FIGURE 2 | Mean performance on eye latency for all groups, on all tasks. Error bars represent standard error. MCI*: MCI group was excluded because of insufficient
data (N = 3).

FIGURE 3 | Mean performance on hand latency and hand error for all groups, on all tasks. Error bars represent standard error. Significant differences for the
anti-saccade anti-tapping task indicate differences for hand error; other indicated differences are for hand latency. Significant differences were indicated with
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. MCI∗: MCI group was excluded because of insufficient data (N = 3).

The confusion matrices of these comparisons are shown
in Table 7.

Learning Curves
Figure 6 shows the learning curves generated for all datasets,
using the accuracy of the best performing algorithm plotted
against sample size. The learning curves for the controls and
patients, controls and MCI patients, and controls and AD
patients show the initial large increase in accuracy and the
turning point where this increase slows. The final phase, where
performance plateaus, was not achieved. The learning curve for

the MCI and AD dataset displayed only a marginal increase in
performance, indicating that the algorithm learned minimally
from the EHC parameters.

Predictive Power: Eye Parameters vs.
Eye-Hand Parameters
The best performing algorithm for each comparison was trained
on one dataset containing all data from the eye tasks and one
dataset containing all data from eye-hand tasks. Classification
performance was examined for the HC and MCI and the HC and
AD datasets. The HC and the patient’s dataset was disregarded
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FIGURE 4 | Mean performance on pupil latency for all groups. Error bars represent standard error. Significant differences were indicated with ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001.

FIGURE 5 | Mean weighted performance over all trials for all groups, on all tasks. Error bars represent standard error. Significant differences were indicated with
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. MCI*: MCI group was excluded because of insufficient data (N = 3).

because we aimed to directly examine classification separately for
the patient groups. The MCI and AD dataset was disregarded
because classification failed using all EHC parameters, which
indicated that classification would also fail on the splitted
datasets. A one-way ANOVA was performed on all metrics
to compare classification performance on the split datasets
(significance level α = 0.05). The difference in performance was
taken as the additional predictive value of eye-hand tasks. Table 4
reports the performance of the SVM (linear) on the split datasets,
with the performance of the baseline for reference.

Control vs. MCI
Classification based on eye-hand tasks outperformed
classification based on eye tasks on accuracy, sensitivity,
and AUC [accuracy: F(1,198) = 48.69, p < 0.001, partial
η2 = 0.20; sensitivity: F(1,198) = 300.03, p < 0.001, partial
η2 = 0.60; AUC: F(1,198) = 129.28, p < 0.001, partial η2 = 0.40].

Classification based on eye tasks performed better on specificity
[F(1,198) = 51.62, p < 0.001, partial η2 = 0.21]; however, the
confusion matrix of this algorithm (Table 8) suggests that it
performed similarly to the baseline and only had a high specificity
at the expense of the sensitivity. Therefore, classification based
on eye-hand tasks was considered superior on all metrics.

Control vs. AD
Classification based on eye-hand tasks outperformed
classification based on eye tasks on accuracy, sensitivity,
and AUC [accuracy: F(1,198) = 36.32, p < 0.001, partial η2 = 0.16;
sensitivity: F(1,198) = 104.42, p < 0.001, partial η2 = 0.35; AUC:
F(1,198) = 36.41, p < 0.001, partial η2 = 0.16]. Classification based
on eye tasks performed better on specificity [F(1,198) = 26.70,
p < 0.001, partial η2 = 0.12]; however, the confusion matrix of
this algorithm (Table 8) suggests that the high specificity and
lower sensitivity followed the pattern of the baseline algorithm.
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TABLE 2 | The feature selection results, ranked by IG and merit, for the HC—MCI, HC—AD, and MCI—AD datasets.

HC—MCI HC—AD MCI—AD

Variables IG Variables IG Variables IG

Hand movement time (stimulus 1) (ST)*** 0.187 Hand latency (PT)*** 0.190 Hand latency (PT)*** 0.165

Hand movement time (stimulus 2) (ST)*** 0.157 Hand latency (stimulus 2) (ST)*** 0.186 Pupil latency (AS) 0.028

Eye touch interval (stimulus 1) (ST)*** 0.110 Hand movement time (stimulus 1) (ST)*** 0.161 Hand total distance (ASAT) 0.005

Eye touch interval (stimulus 2) (ST) 0.077 Hand movement time (PT) 0.132 Hand error (AT) 0.004

Hand error (ASAT)** 0.048 Eye-hand interval (PT)*** 0.126 Hand movement time (AT) 0.004

Eye latency (ASAT) 0.034 Hand latency (stimulus 1) (ST)*** 0.118 Hand latency (AT) 0.004

Eye latency (AS) 0.113 Hand maximum velocity (ASAT)* 0.003

Hand movement time (stimulus 2) (ST)*** 0.108 Hand maximum velocity (AT) 0.002

Eye touch interval (stimulus 1) (ST)*** 0.097

Pupil latency (AS) 0.077

Saccadic error (PS)*** 0.067

Anticipation (stimulus 2) (ST) 0.016

HC—MCI (SVM) HC—AD (SVM)

Variables Merit Variables Merit

Number of saccades (PT) 0.034 Hand latency (PT)*** 0.030

Hand latency (AT) 0.027 Hand latency (AT) 0.022

Hand total distance (ASAT)* 0.020 Number of saccades (PT) 0.022

Hand maximum velocity (ASAT)* 0.014 Pupil latency (AS) 0.016

Hand movement time (AT) 0.014 Eye-hand interval (PT)*** 0.014

Hand error (PT) 0.014 Eye latency (AS) 0.014

Eye-hand interval (stimulus 1) (ST)*** 0.014 Pupil latency (PT)* 0.011

Number of saccades (PS) 0.014 Amplitude Click up-Click down (PT)* 0.011

Fixation error (PS) 0.010

Eye latency (PT) 0.010

Saccadic error (PS)*** 0.010

Amplitude Click up- Click down (PT)* 0.010

See Figures 1, 2 for the task name abbreviations. * indicates the variable was significantly different between the groups in that dataset (*p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001).

Therefore, classification based on eye-hand tasks was considered
superior on all metrics.

DISCUSSION

In the present study, the functional consequences of
neurodegeneration on the visuomotor network have primarily
been assessed in both patients with AD and in patients with mild
cognitive impairments using eye-hand coordination (EHC) tasks.
The aim of this study was to establish the predictive value of EHC
for network dysfunction and the sensitivity and the specificity of
this method. This predictive power depended on the predictive
power of the individual parameters that constitute visuomotor
performance, such as the timing, accuracy and speed of
movements. An accuracy of 87% was found using a classification
algorithm that distinguished between healthy elderly and MCI
patients, based on only eye movement parameters (Lagun
et al., 2011). In the present study, a combination of eye and hand
movements parameters were obtained, because AD patients seem
to have difficulties with handling increased load (Toepper, 2017).
As expected, the best classification performance was achieved

for HC and AD patients, followed by HC and all patients, and
finally HC and MCI patients. The eye-hand task parameters, in
comparison with only eye movement parameters, were shown to
contribute most to classification performance for all comparisons
(Tables 2, 4). Based on the eye tasks, we found a reduction in
predictive power of ± 12%. This indeed suggests that an increase
in cognitive load contributes to the best classification of controls
and either patient group.

The predictive power of visuomotor performance was
determined by several parameters that were selected during the
feature selection procedure using the best performing model for
each comparison, to gain insight in the parameters that were most
useful for classification (Tables 2, 4). The parameters with the
most merit for classification primarily came from the reflexive
tapping task and from the inhibition tapping task, contributing
to the hypothesis that adding hand movement to the tasks
increases their predictive value. In particular, parameters related
to latency (time between target presentation and movement
initiation), parameters that characterize hand movement (e.g.,
hand total distance, hand maximum velocity, hand movement
time, hand error), and the number of saccades were the most
useful information for classification. Several of these parameters
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TABLE 3 | Descriptive statistics of the most important parameters per task.

EHC task Variable HC (mean ± SD) MCI (mean ± SD) AD (mean ± SD)

Pro-saccade Fixation error 1.8 ± 0.7deg 2.7 ± 1.3deg 2.7 ± 1.7deg

Saccadic error 3.6 ± 1.3deg 4.5 ± 1.6deg 5.2 ± 1.8deg

Number of saccades 2.7 ± 0.9 3.1 ± 1.0 3.1 ± 1.4

Anti-saccade Saccadic error 10.1 ± 3.7deg 17.0 ± 4.3deg 14.0 ± 6.2deg

Pro-tapping Eye-hand interval 240 ± 66 ms 251 ± 75 ms 390 ± 233 ms

Hand movement time 518 ± 147 ms 637 ± 217 ms 603 ± 163 ms

Amplitude click up—click down 25.6 ± 1.44m 25.1 ± 2.2m 24.5 ± 2.1m

Number of saccades 2.2 ± 0.9 2.0 ± 0.7 2.2 ± 0.8

Anti-tapping Hand total distance 138 ± 51 mm * 166 ± 50 mm

Hand movement time 716 ± 285 ms * 877 ± 371 ms

Hand maximum velocity 740 ± 953v * 538 ± 201v

Sequential tapping Hand total distance (stimulus 1) 15.9 ± 7.2 mm 24.4 ± 21.8 mm 16.1 ± 4.2 mm

Eye-hand interval (stimulus 1) 248 ± 74 ms 305 ± 108 ms 342 ± 140 ms

Eye touch interval (stimulus 1) 730 ± 115 ms 967 ± 178 ms 900 ± 284 ms

Hand movement time (stimulus 1) 477 ± 79 ms 729 ± 178 ms 644 ± 193 ms

Hand movement time (stimulus 2) 506 ± 100 ms 663 ± 165 ms 596 ± 152 ms

Anticipation (stimulus 2) Range: 1–2 trial(s) 1 trial(s) 1 trial(s)

Anti-saccade anti-tapping Hand maximum velocity 496 ± 106v * 459 ± 183v

Hand total distance 104 ± 46 82 ± 82 153 ± 31

*Only 3 MCI patients had valid data and were there excluded from all analyses for these measures.

have also been described in previous EHC studies (Molitor et al.,
2015). For instance, the finding that reflexive saccades made by
AD patients are often hypometric is comparable to the parameter
saccadic error (the distance between the end position of a saccade
and the actual target position) which was selected in this study.
Another example is the increased latency of eye movements when
executing the anti-saccade task. Furthermore, it was found that
the initiation and execution of motor sequences were impaired
in AD patients and in MCI patients when cognitive load was
increased (Salek et al., 2011). We detected a similar impairment
in our patient group, represented by the parameter from the pro-
tapping task. The remaining selected parameters (Table 2 and
Supplementary Table 2) in the current study could not be related
to previous literature, as studies into visuomotor performance
in MCI and AD patients are scarce. However, the similarities
discussed here do support the results of the feature selection
procedure and provide additional evidence that these specific
tasks and parameters contribute to the predictive power.

Considering our findings, visuomotor performance appears
as a promising approach to distinguish MCI or early stage AD
patients from controls. Yet, it must also be compared to existing
biomarkers to determine its clinical relevance. The findings of the
current study were compared to a recent overview of studies that
examined the performance of CSF and neuroimaging markers
for the classification of controls, MCI patients, and AD patients
(Figure 7; Henriques et al., 2018). Overall, the classification
performance found in the present study seems comparable to
that of the existing CSF and MRI biomarkers. Unfortunately, our
findings are also similar in that neither visuomotor performance
nor CSF markers are particularly successful in distinguishing
between MCI patients and AD patients. Although the CSF
marker classification achieved a fair AUC, sensitivity remained

insufficient. In summary, visuomotor performance can compare
to the existing biomarkers, although the classification of MCI
and AD patients remains challenging. Assessment of visuomotor

TABLE 4 | Performance of all algorithms for the classification of controls and
patients, ordered by descending accuracy per algorithm class.

Algorithm Accuracy Sensitivity Specificity AUC

Baseline (Zero rule) 62% 100% 0% 0.50

ANN (2 neurons) 72 ± 14% 77 ± 17% 62 ± 25% 0.76 ± 0.16

ANN (4 neurons) 70 ± 14% 74 ± 16% 63 ± 25% 0.76 ± 0.16

ANN (6 neurons) 69 ± 14% 74 ± 16% 62 ± 24% 0.76 ± 0.16

Decision tree 76 ± 12% 88 ± 13% 57 ± 24% 0.82 ± 0.15

SVM (linear
kernel)

82 ± 11% 93 ± 10% 63 ± 27% 0.78 ± 0.16

SVM (polynomial
kernel)

81 ± 12% 94 ± 11% 60 ± 28% 0.77 ± 0.14

SVM (RBF kernel) 80 ± 11% 97 ± 8% 53 ± 26% 0.75 ± 0.13

SVM (sigmoid
kernel)

62 ± 4% 100 ± 0% 0 ± 0% 0.50 ± 0

The abbreviation RBF stands for radial basis function kernel.
The two models in bold are the best performing models.

TABLE 5 | Confusion matrix for the performance of the SVM (linear) for the
controls-patients comparison.

Controls (predicted) Patient (predicted)

Controls (actual) 63% 37%

Patient (actual) 7% 93%

The result of the hyperparameter tuning for the SVM (linear) was a cost of 0.316.
Cost represents the penalty given for misclassification: a higher cost allows less
misclassification when drawing the decision boundary.
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TABLE 6 | Performance of the best performing algorithm, with hyperparameter selection results, for the classification of controls and MCI Patients, controls and AD
Patients, and MCI Patients and AD patients with all data and separately for eye tasks and eye-hand tasks.

Dataset Algorithm Accuracy Sensitivity Specificity AUC

Controls—MCI Baseline 63% 0% 100% 0.50

SVM (linear) (C = 0. 579) 77 ± 16% 57 ± 34% 90 ± 16% 0.74 ± 0.18

Controls—AD Baseline 46% 30% 70% 0.50

SVM (linear) (C = 0.369) 78 ± 16% 71 ± 22% 84 ± 20% 0.78 ± 0.16

MCI—AD Baseline 63% 0% 100% 0.50

ANN (6 neurons) (Default) 61 ± 17% 39 ± 39% 75 ± 25% 0.66 ± 0.25

HC—MCI Baseline 63% 0% 100% 0.50

Eye tasks SVM (linear) 64 ± 8% 3 ± 11% 100 ± 0% 0.51 ± 0.50

Eye-hand tasks SVM (linear) 77 ± 18% 60 ± 31% 88 ± 17% 0.74 ± 0.19

HC—AD Baseline 46% 30% 70% 0.50

Eye tasks SVM (linear) 70 ± 13% 43 ± 25% 96 ± 10% 0.70 ± 0.13

Eye-hand tasks SVM (linear) 81 ± 14% 76 ± 21% 86 ± 17% 0.81 ± 0.14

TABLE 7 | Confusion matrices of the SVM (linear) for the controls and MCI
patients classification and the controls and AD patients classification, and the
ANN (6 neurons) for the MCI patients and AD patients classification.

Controls (predicted) MCI (predicted) AD (predicted)

Controls (actual) 90% 10%

MCI (actual) 43% 57%

Controls (actual) 84% 16%

AD (actual) 29% 71%

MCI (actual) 57% 43%

AD (actual) 31% 69%

performance offers some practical advantages: it is simple and
quick to perform, non-invasive, and relatively cheap when
compared to, for example, MRI scans.

This study has several limitations. First, the predictive power
of visuomotor performance, and thus its clinical relevance,
depend on the tasks that are included in the eye-hand
coordination protocol. Our current protocol focused on reflexive
behaviors and inhibition and to a lesser extent on memory.
The performance scores on the memory tasks were for a
majority of the patients very low. Most of the patients failed
to complete the memory tasks, indicating that subjects were
too fatigued to properly perform these tasks at the end of
the protocol, or that these tasks were not appropriate for this
population. Still, memory tasks cannot be disregarded in general
(Lagun et al., 2011). These tasks involve the recognition of a
previously seen image, a function that relies on a temporal-
parietal memory network (Hirose et al., 2013). Interestingly,
this network can also be related to the parietal lobe damage
that patients sustain in early stages of AD (Jacobs et al., 2012).

FIGURE 6 | Learning curves for the healthy controls (HC) and the Alzheimer’s Disease (AD) patients and the Mild Cognitive Impairment (MCI) patients. The SVM
(linear) for the HC—patients, HC—MCI, and HC—AD are plotted and of the ANN (6 neurons) the MCI—AD dataset is plotted.
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Because early stage neurodegeneration damages the parietal
lobe, this network would likely also be disrupted (Hirose et al.,
2013). Therefore, a recognition task could be an adequate
addition to our protocol. Previous literature also suggests that
a smooth pursuit task might contribute to classification, as
studies reported that AD patients showed increased latencies
when they initiated smooth pursuit as compared to controls.
Additionally, while following the target, patients showed a lower
gain and velocity of eye movements, and because patients tended
to lag behind the stimulus, they made more catch-up saccades
(Molitor et al., 2015).

Second, we performed no power calculations before the study
was conducted, because it was an exploratory study. Instead,
we assessed sample size post hoc by generating learning curves
(Figure 2). The learning curves for the SVM on the controls
and patients, controls and MCI patients, and controls and AD
patients datasets indicate that classification would likely have
benefitted from an increased sample size, as the curves do not
plateau. An increase in sample size could also benefit model
stability: the standard deviations of the performance metrics are

TABLE 8 | Confusion matrix of the SVM (linear) for the HC and MCI patients and
the HC and AD patients classification using only eye tasks.

HC (predicted) MCI (predicted) AD (predicted

HC (actual) 100% 0%

MCI (actual) 98% 2%

HC (actual) 96% 4%

AD (actual) 57% 43%

large and could indicate noisy data, which could be remedied
by increasing sample size. However, the learning curves do
reach a point where performance only continues to increase
minimally. This indicates that a larger sample size would only
have a small effect, as the model has learned most of the
important patterns in the data. Therefore, we advise that future
studies increase the sample size, as that would likely improve
classification performance.

Furthermore, due to the relatively small sample size in this
study, there was a discrepancy between the distribution of the

FIGURE 7 | After Henriques et al. (2018). The classification performance of algorithms using CSF or MRI markers to classify HC, MCI patients, and AD patients,
compared to classification performance using EHC parameters.
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control and the patient groups and the distribution of these
groups in clinical practice. In our study, controls and AD patients
made up an equal part of our sample, whereas in the clinic, most
people would be patients: consequently, the group of controls
would be relatively small. Even if groups of patients with other
types of dementia would be included, 60–80% of the total patient
group would still be an AD patient (Williams and First, 2013).
This difference is important to keep in mind, because group
distribution affects how a model classifies a subject. If almost all
instances presented to a model are AD patients and not controls,
the algorithm might learn that it can simply classify every
subject as being part of the largest group, as it will still achieve
a high accuracy. Such a strategy is useless for diagnosis and
therefore, it would also be important for future studies to assess
the classification models from this study in a more realistically
distributed sample. Lastly, data on how subjects performed on
conventional diagnostic methods and clinical information such
as age of disease onset were unfortunately not available for the
complete group of patients. This limits insights in for example
how uniform the patient groups were and in which stage of the
disease individual patients were. In future studies we recommend
that this information is also collected.

As stated previously, early diagnosis is primarily hindered
by the heterogeneity of AD, as some patients may show severe
symptoms, but no abnormalities in biomarker measurements, or
vice versa. As such, no single marker has been identified that
can diagnose all cases of AD. It has recently been suggested
that AD is not one disease, but a collection of subtypes (Au
et al., 2015) that differ in their neuropathological and structural
characteristics (Ferreira et al., 2017). The idea of subtypes
with different underlying pathologies also gives rise to the
hypothesis that an assay of biomarkers could be more useful
for diagnosis than relying on a single biomarker, provided that
each marker adds new information. For example, it was shown
that MRI can complement the standard diagnostic procedure
by distinguishing four types of AD using MRI scans, which
could not be distinguished using routine cognitive evaluations
or CSF analysis (Ferreira et al., 2017). Recent studies have
also shown that combining existing biomarkers increases the
predictive power beyond what the individual markers could
achieve (Zhang et al., 2011; Henriques et al., 2018). Visuomotor
performance could provide complementary information (i.e.,
about functional deficits in patients) in much the same way and
when combined with the existing markers, it could further boost
the predictive power for early stage AD. As such, testing of
visuomotor network dysfunctions could potentially be added to
the current diagnostic procedure.

Future research should aim to improve the classification
performance of visuomotor network dysfunctions, by adding
different types of tasks to develop an optimal protocol.
Subsequently, it would be valuable to study whether visuomotor
performance correlates with functional network degeneration
as measured by neuroimaging techniques, as it is hypothesized
to reflect network degeneration. If visuomotor performance
can be related to neurodegeneration in this way, next steps
should involve replicating the current results in different medical
centers and in larger datasets, preferably with a realistic group

distribution. Lastly, future research could investigate whether
visuomotor functioning could also be a marker for other types
of dementia. Neurodegeneration in other dementias also disrupts
multiple pathways which are integral to good visuomotor
functioning. For example, fronto-temporal dementias could be a
valuable field of study, as the frontal lobe is also an important
structure for visuomotor function (e.g., planning saccades).

CONCLUSION

Visuomotor network dysfunctions have potential in biomarker
research and the proposed eye-hand tasks could add to a clear
definition of the preclinical phenotype of AD.
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