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The sliding-window-based dynamic functional connectivity networks (SW-D-FCN) derive
from resting-state functional Magnetic Resonance Imaging has become an increasingly
useful tool in the diagnosis of various neurodegenerative diseases. However, it is still
challenging to learn how to extract and select the most discriminative features from SW-
D-FCN. Conventionally, existing methods opt to select a single discriminative feature set
or concatenate a few more from the SW-D-FCN. However, such reductionist strategies
may fail to fully capture the personalized discriminative characteristics contained in
each functional connectivity (FC) sequence of the SW-D-FCN. To address this issue,
we propose a unit-based personalized fingerprint feature selection (UPFFS) strategy
to better capture the most discriminative feature associated with a target disease for
each unit. Specifically, we regard the FC sequence between any pair of brain regions
of interest (ROIs) is regarded as a unit. For each unit, the most discriminative feature is
identified by a specific feature evaluation method and all the most discriminative features
are then concatenated together as a feature set for the subsequent classification task.
In such a way, the personalized fingerprint feature derived from each FC sequence
can be fully mined and utilized in classification decision. To illustrate the effectiveness
of the proposed strategy, we conduct experiments to distinguish subjects diagnosed
with autism spectrum disorder from normal controls. Experimental results show that
the proposed strategy can select relevant discriminative features and achieve superior
performance to benchmark methods.

Keywords: dynamic functional connectivity networks, resting-state functional magnetic resonance imaging,
feature selection strategy, functional connectivity network, autism spectrum disorder

INTRODUCTION

The resting-state functional Magnetic Resonance Imaging (rs-fMRI), as a non-invasive
neuroimaging technique, has been widely applied to capture the blood-oxygen-level-dependent
(BOLD) signal which is sensitive to the spontaneous and intrinsic neural activity within the brain
(Liu et al., 2008). In particular, the functional connectivity (FC), which is defined as the temporal
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correlation of the rs-fMRI signals between different brain
regions of interest [ROIs, which is often defined through image
registration (Luan et al., 2008; Jia et al., 2010; Wu et al., 2011,
2013)], can reflect the degree to which ROIs co-interact (Van Den
Heuvel and Hulshoff Pol, 2010; Biao et al., 2016). A functional
connectivity network (FCN) is usually represented as a graph,
where each node represents a brain ROI and the edge between
two nodes encodes the associated FC. Nowadays, many FCN
models have been developed, from the simple conventional FCN
(Zhang et al., 2015, 2016; Qiao et al., 2018) to the complex time-
frequency analysis based dynamic FCN (Yaesoubi et al., 2015; Du
et al., 2018), for diagnosing some neurodevelopmental diseases
including the autism spectrum disorder (ASD) (Fornito et al.,
2015; Liu et al., 2016; Huang et al., 2018; Zhao et al., 2018), the
major depressive disorder (Greicius et al., 2007; Cullen et al.,
2014) and so on.

Recent studies have shown that the dynamic changes of
the correlation between ROIs contain abundant information
(Damaraju et al., 2014; Wee et al., 2015). To explore the
relationship between the dynamic changes and brain diseases
while accounting for the time-varying connectivity patterns
across ROIs, the sliding window based D-FCN (SW-D-FCN) is
the most widely used technique on account of its simplicity and
effectiveness (Chen et al., 2016, 2017; Du et al., 2018; Zhou et al.,
2018). Specifically the sliding window approach is firstly used to
generate a set of rs-fMRI subseries. Next, Pearson’s Correlation
(PC) based temporal FCN is generated for each subseries. In
the SW-D-FCN, the temporal change of the correlation between
a pair of ROIs along the scanning time is defined as an FC
sequence and thus SW-D-FCN also can be regarded as a set
of FC sequences.

Feature extraction and selection are important in the process
of exploring the time-varying connectivity patterns implicated in
SW-D-FCN. Recently, many different feature extraction methods
have been proposed. For example, Zhang et al. computed a
weighted local clustering coefficient for each node in each
network as a feature (Zhang et al., 2017); Chen et al. extracted
features by calculating the root-mean-square for each FC
sequence (Chen et al., 2017). Although many features can be
obtained by various feature extraction methods to reflect the
dynamic changes of an FC sequence, those features are prone
to redundancy, which hinders the learning of robust classifiers.
More importantly, many features may be irrelevant to the
diagnosis of specific disease. Therefore, to improve the diagnosis
performance, what kind of feature selection strategy should be
adopted to select a smaller subset from the big feature set remains
a key issue to solve.

Currently, there are two common feature selection strategies:
the single-view based feature selection (SVFS) strategy and the
concatenation-based feature selection (CFS) strategy.

SVFS selects one special set from multiple types of feature sets.
For a better illustration, an example is displayed in Figure 1,
where the feature 1 to feature N in Figure 1B represent N
types of feature set, and the feature 1 is selected as the best
feature set according to a given strategy (see Figure 1C).
Due to its simplicity, this strategy has been widely applied
in current studies. However, one type of feature set only

reflects the characteristics from a single view, ignoring the
personalized differences between FC sequences, thus could not
comprehensively capture the subtle damage of brain functional
tissues caused by neuropsychiatric diseases.

We further give a simple example in Figure 2, where RP3,6
denotes the FC sequence between the 3-rd ROI and the 6-th ROI
of a given patient, RN3,6 denotes the FC sequence between the 3-rd
ROI and the 6-th ROI of a normal control, and the values in the
brackets denote the mean and variance of each FC sequence. As
can be seen from Figure 2C1, in R3,6 (i.e., FC sequences between
3-rd ROI and 6-th ROI), the mean displays significant differences
between the patient and the normal control, while the variance
has no significant differences. On the other hand, in R5,9, as
shown in Figure 2C2, the opposite is true, i.e., the variance largely
varies between the patient and the normal control, while the
mean has no significant differences. On one hand, solely using the
mean as the inputting feature for subsequent classification will
not fully tap into the discriminative ability of R5,9 since the mean
of R5,9 is the same in both the patient and the normal control.
On the other hand, we notice that only using the variance does
not fully characterize the discriminative ability of R3,6. Therefore,
SVFS methods might fail in fully utilized the discriminative
power implied in part of FC sequences.

CFS, as an alternative feature selection and aggregation
strategy, concatenates many types of feature set and inputs
the resulting set to a target classifier for training. Figure 1
displays an illustration of this technique. Specifically, all features
extracted by various feature extraction methods (Figure 1B) are
concatenated into a long feature vector (Figure 1D1). Next, a
feature evaluation method is used to select a few discriminative
features (Figure 1D2), thereby forming a feature vector with
a smaller size for the subsequent classification. However, the
main drawback of CFS is that it may result in a sequence
selection where for a few FC sequences, many types of features
are selected for the subsequent classification, in contrast, for other
FC sequences, not any features are selected. As can be seen in
Figure 1D2, two types of features (i.e., f2,1 and f2,2) are selected
from FC sequence 2, while no features of FC sequence 3 are
included. Such strategy may lead to the issue that the selected
smaller feature vector contains some redundant information due
to the fact that many selected features as they are derived from
the same FC sequence. Besides, such unbalanced selection by
overlooking the diversity of features across all FC sequences
may result in the inability to fully explore the discriminative
information of each FC sequence.

It is worth noting that, brain diseases can cause abnormal
connections among many pairs of ROIs due to the damage
of brain. We believe that the manifestations of connectivity
differences among different pair of ROIs are distinctive due to
their distinct working mechanisms (Smith et al., 2011), which
causes the discriminative fingerprint features from different FC
sequences to exist huge difference. As explained above (Figure 2),
the mean of R3,6 is more discriminative but its variance is worse,
while the variance of R5,9 is more discriminative but its mean
is worse, which indicates the mean can reflect the personalized
connection characteristics of the 3-rd and 6-th ROIs, and the
variance can reflect the personalized connection characteristics
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FIGURE 1 | An intuitive explanation for three feature selection strategies. Here, the color saturation is used to encode the feature discriminative power. The higher
the saturation, the more discriminative the features. Furthermore, the features with the highest color saturation are displayed in white text for easy viewing. (A) Three
example FC sequences from D-FCN. (B) Multiple features extracted from each FC sequence, i.e., feature 1, feature 2. . . feature N. (C) Single-view based feature
selection (SVFS) strategy. (D) Concatenation based feature selection (CFS) strategy. (E) The proposed unit-based personalized fingerprint feature selection (UPFFS)
strategy.

of the 5-th and 9-th ROIs. However, as previously described, both
traditional CFS and SVFS feature selection strategies cannot fully
explore the personalized feature of each FC sequence for more
accurate classification of brain diseases.

To address the above issue, we propose a novel unit-
based personalized fingerprint feature selection (UPFFS) strategy.
Specifically, the FC sequence between any pair of ROIs is
regarded as a unit which is handled independently. By using
feature extraction methods, we extract multi-view features jointly
from each unit, such as feature 1, feature 2, . . ., and feature N as
shown in Figure 1B. Next, for each unit, the most discriminative
one, which is regarded as its fingerprint feature, is selected
from multi-view features by using a specific feature evaluation
method, as shown in Figures 1E1,E2. Last, all the selected
features are concatenated as a final feature set for the downstream
classification task.

In summary, the main advantages of the proposed strategy are
twofold: (1) For different FC sequences, the most discriminative
feature types were are distinctive. The proposed UPFFS strategy
can better extract personalized features according to the
characteristic of each FC sequence, thus solving the single-view
problem of SVFS; (2) due to the global damage of disease
to human brain, the UPFFS can fully explore the damage

information contained in each ROI pair, thereby avoiding the
redundant information of CFS caused by the selection bias of
the FC sequence, and while fully exploring the discriminative
information of each FC sequence.

The rest of this article is organized as follows. In the “Materials
and Methods” section, we introduce two baseline strategies
(i.e., SVFS and CFS) and provide the details of our proposed
unit-based personalized fingerprint feature selection (UPFFS)
strategy. In the “Experiment and Results” section, we detail our
experimental setting, including network construction, feature
selection, classifier construction, and the evaluation measures.
In the “Discussion” section, we discuss the impact of different
feature evaluation methods, compare our strategy with other
benchmarks, and analyze the identified discriminative features.
Finally, the “Conclusion” section summarizes the paper.

MATERIALS AND METHODS

Figure 3 illustrates the flow of these three strategies (i.e., SVFS,
CFS, and the proposed UPFFS) which will be described in
detail in the following subsections. We also display the feature
processing pipeline prior to feature selection while the detail of
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FIGURE 2 | A simple example of the individual difference in the manifestation of connectivity differences between brain ROI pairs. (A1) Patient sample. (A2) Normal
control sample. (B1) Two FC sequences from patient sample, RP

3,6 and RP
5,9. (B2) Two FC sequences from normal control sample, RN

3,6 and RN
5,9. (C1) Display of

RP
3,6 and RN

3,6. (C2) Display of RP
5,9 and RN

5,9.

the feature processing will be introduced in the “Experiment and
Results” section.

For ease of description, we define the variables that will be
involved in the following subsections: (1) ρi,j

(
k
)

denotes the
correlation between the i-th ROI and the j-th ROI in
k-th time window; (2) ρi,j =

{
ρi,j (1) , ρi,j (2) , . . . , ρi,j (K)

}

(
i, j = 1, 2, . . . ,M

)
denotes the FC sequence between the i-th

ROI and the j-th ROI where M is the number of ROIs and K
is the number of time windows; (3) fi,j(d) denotes the feature
extracted from ρi,j with the d-th feature extraction method;
(4) Fd =

[
fi,j(d)

]
1<i,j<M (d = 1, 2, 3, . . . ,D) aggregates all d-th

features in ρi,j across all pairs of ROIs i and j.

Frontiers in Neuroscience | www.frontiersin.org 4 March 2021 | Volume 15 | Article 651574

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-651574 March 16, 2021 Time: 16:31 # 5

Zhao et al. UPFFS Strategy for Dynamic FCN

FIGURE 3 | Overview of feature selection strategy, including four main steps: ¬ rs-fMRI acquisition,  D-FCN construction, ® feature extraction, and ¯ feature
selection. (M) Feature extraction. What’s more, we display three feature selection strategies: (A) single-view based feature selection (SVFS) strategy, (B)
concatenation based feature selection (CFS) strategy; and (C) unit-based personalized fingerprint feature selection (UPFFS) strategy.

Traditional Feature Selection Strategies
Single-View Based Feature Selection Strategy
The main idea of single-view based feature selection (SVFS) is
to select the best-performing type of feature set for the target
classification task. Specifically, SVFS firstly tests the performance
of each feature set Fd with a specific criterion (d = 1, 2, . . . ,D,
where D is the number of feature extraction methods as motioned
above), such as the classification accuracy, and then the best-
performing feature set F̂ is selected according to the following
definition:

F̂ = opt{Fd}Dd=1 (1)

where opt{Fd}Dd=1 denotes the selection of the best one from all
types of feature sets.

Next, in order to remove the redundant features and preserve
the discriminative features that are most likely relevant to disease,
SVFS utilizes the feature evaluation method (e.g., the two-sample
t-test between normal control and patient subjects) in the next
step and the features with better evaluation results are retained to
form the final feature set γ SV .

Figure 3A shows an example of SVFS. In this example, feature
set 2 is selected as the optimal feature set in Figure 3A1, (i.e., F̂ =
F2). Then, in Figure 3A2, the discriminative features are selected
to form the final feature set γ SV .
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In this way, the feature set that are most between-
class discriminative can be selected. However, the personality
differences of each FC sequence are ignored which may
hinder the identification of the disease-altered brain connectivity
patterns in a comprehensive manner, because some FC sequences
may show discrimination information in other feature sets (e.g.,
F1, F3, . . . , FD) instead of F2.

Concatenation Based Feature Selection Strategy
The main idea of Concatenation Based Feature Selection (CFS)
is to firstly concatenate many types of features as a big feature
set and then filter out some discriminative features as the final
feature set for classification. Specifically, in the first step, the
features from each feature set Fd (d = 1, 2, . . . ,D) are vectorized
as a vector vd. Next, all vd are concatenated into a long vector
v and the discriminative features are selected from v with the
feature evaluation method to form the final feature set γ C.

Figure 3B is an example of CFS where the vectors vd from each
feature set Fd are concatenated into a long vector in Figure 3B1,
and in Figure 3B2, the discriminative features are selected to
form the final feature set γ C.

Therefore, the discriminative information from all feature
sets can be explored in such a way. However, the information
redundancy that may be caused by the selected features in the
same FC sequence and the omission of some FC sequences will
affect the classification results.

Unit-Based Personalized Fingerprint
Feature Selection Strategy
In this subsection, we introduce a novel unit-based personalized
fingerprint feature selection (UPFFS) strategy, which takes an
adaptive approach in extracting the personalized fingerprint
feature for each FC sequence.

Specifically, a FC sequence ρi,j ={
ρi,j (1) , ρi,j (2) , . . . , ρi,j (K)

} (
i, j = 1, 2, . . . ,M

)
is regarded as

a unit and the multiple types of features from a unit are combined
as a feature vector f i,j (i.e., f i,j =

{
fi,j (1) , fi,j (2) , . . . , fi,j (K)

}
where fi,j (1) denotes the first type of feature from ρi,j), as shown
in Figure 3C1. Next, the feature evaluation method is performed
for each f i,j internally. In this way, the most discriminative

personalized fingerprint feature f̂i,j (Figure 3C2) with the best
evaluation result will be selected from each unit using the
following formula:

f̂i,j = opt{fi,j
(
d
)
}
D
d=1 (2)

where the opt{fi,j
(
d
)
}
D
d=1 denotes the selection of the best

evaluation result from f i,j .
For the whole D-FCN, the fingerprint feature matrix FM

(Figure 3C3) can be composed with the fingerprint features f̂i,j
of all FC sequences according to the following definition:

FM =
[
f̂i,j
]

1<i,j<M
(3)

The features with better evaluation results than the default
threshold will also be preserved to form a final fingerprint feature

set γUPF (Figure 3C4) to avoid the impact of units which are less
relevant to the disease.

This approach can not only solve the single-view problem of
SVFS by considering multiple feature sets simultaneously, but
also fully take into account the personalized features of each FC
sequence which avoids the feature selection imbalance in CFS.

EXPERIMENT AND RESULTS

To evaluate the effectiveness of the framework, we perform
classification on the ASD subjects and normal controls.
Specifically, we construct the traditional SW-D-FCN which is
also called low-order dynamic functional connectivity networks
(Lo-D-FCN), and the SW-D-FCN based high-order dynamic
functional connectivity networks (Ho-D-FCN) on the rs-fMRI
data set from the Autism Brain Imaging Data Exchange (ABIDE)
database (Di Martino et al., 2014), apply seven feature extraction
methods based on the central moment method, and then input
the extracted features into a linear support vector machine
(SVM) for linear fusion. In particular, the ASD data set
and data preprocessing are same as those in a recent study
(Wee et al., 2016).

Comparison of Feature Selection
Strategies Based on Lo-D-FCN
Lo-D-FCN Construction. In the construction of Lo-D-FCN, the
entire rs-fMRI time series are firstly divided into K overlapping
sub-windows by a sliding window with a prefixed window length
W and a step size S (Figure 4A1). Next, for each sub-window,
the correlations between the rs-fMRI time series from each
pair of ROIs are calculated to create the sub Lo-FCN. As the
example shown in Figures 4A2–B2, in the sub-window 2, xi
and xj denote the rs-fMRI time series from the i-th and the
j-th ROI respectively, and ρi,j(2), as a component of sub Lo-
FCN 2 (i.e., the second subnetwork of Lo-D-FCNs), denote the
Pearson’s correlation (PC) of xi and xj. Repeating the above
process, a series of sub Lo-FCN can be constructed which is
called Lo-D-FCN (Figure 4B1). Obviously, the Lo-D-FCN can
quantify the correlation change between each pair of ROIs in
total scanning time.

Feature Extraction. In this experiment, we utilized seven
center-distance feature extraction methods for extracting the
dynamic variation of FC among multiple ROIs along the
scanning time (Zhao et al., 2020). In particular, for Lo-D-FCN,
the FC sequence of the i-th and the j-th ROI are defined as
ρi,j =

[
ρi,j (1) , ρi,j (2) , . . . , ρi,j (K)

]
. ρi,j reflects the FC dynamic

changes of the i-th and the j-th ROI along the scanning
timeline, which can be quantified by calculating its center-
distance features. The features from all ρi,j can form a series of
feature matrices.

Classifier Learning. The important features are selected using
the traditional SVFS, CFS, and the proposed UPFFS strategies
respectively from the set of all feature matrices. It is noteworthy
that we utilize the t-test as the feature evaluation method in this
experiment. Besides, we employ a sixfold cross-validation (CV)
strategy to perform experiments and train the linear support
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FIGURE 4 | Flow chart of constructing Lo-D-FCN and Ho-D-FCN, where (A1) is the rs-fMRI series, (A2) is the second rs-fMRI subseries based on a sliding window,
(B1) denotes the Lo-D-FCNs, (B2) denotes the second subnetwork of Lo-D-FCNs, (C1) denotes the Ho-D-FCNs, and (C2) denotes the second subnetwork from
Ho-D-FCNs.

vector machines (SVMs) (Cortes and Vapnik, 1995) for ASD
classification tasks. For instance, one subject is selected as the
testing dataset for each CV, while the other 5 subsets are used as
the training dataset, and further, the nested fivefold CV is utilized
on these 5 subsets to adjust the p-value in t-test model, as well
as gamma (γ) and alpha (α) in SVM (classification learning and
fusion parameters). In particular, the type of most discriminative
feature of each FC sequence in UPFFS is determined with the
training dataset.

For fair comparison, the sixfold CV was repeated 10
times and the samples are randomly partitioned each time
differently to reduce the bias due to random seed selection
and the optimal parameters are limited in the following
range: p-value∈ [0.01 : 0.01 : 0.1], γ ∈

[
2−5, 2−4, . . . , 25] and

α ∈ [0.1 : 0.1 : 0.9].
Classification Results. Similar to previous studies (Zhao

et al., 2017), we use classification accuracy (ACC), sensitivity
or true positive rate (TPR), specificity or true negative rate
(TNR), positive predictive value (PPV), negative predictive value
(NPV), F1 score1 as performance indicators to quantify the
performance of different feature selection strategies. Notably,
in the classification work of this experiment, we consider ASD
patients as positive and normal controls as negative.

Table 1 reports the best results of ASD identification with
SVFS, CFS, and our UPFFS strategy in Lo-D-FCN where SVFSLo
denotes the classification model using Lo-D-FCN and SVFS

1https://en.wikipedia.org/wiki/Sensitivity_and_specificity

strategy. Specifically, for Lo-D-FCN construction, we select W =
60, S = 2 (e.g., the sliding-window length W equals to 60 and
step size S equals to 2) as the optimal construction parameters
according to the previous study (Zhao et al., 2020). The best
results are highlighted in bold.

From Table 1, we note that: (1) The proposed UPFFS strategy
achieves better results than when using one of the seven center-
distance methods alone (SVFS) or simple concatenation features
(CFS); (2) the CFS just marginally boosts the classification
accuracy compared with SVFS. The possible reason for such
results is the unbalanced selection of the features from different
FC sequences as previously mentioned in the “Introduction”
section, and the UPFFS achieves better results by combining
multiple types of features while avoiding this problem.

Comparison of Feature Selection
Strategies Based on Ho-D-FCN
Ho-D-FCN Construction. To further study the impact of
different SW-D-FCN artifacts on the classification performance,
we applied the above three strategies on the “correlation’s
correlation” (Morris and Rekik, 2017; Soussia and Rekik,
2018) based Ho-D-FCN which is constructed by the sub Ho-
FCN calculated from each sub Lo-FCN to extract higher-level
interactions between ROIs. Specifically, in each Lo-FCN the
correlation between one ROI and all other ROIs is regarded
as a sequence, and the correlation between these sequences is
calculated to form a Ho-FCN.
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Figures 4B2–C2 shows an example of constructing the
sub Ho-FCN 2 where ρi (2) denotes the sequence of the
correlations between the i-th ROI and the other ROIs in
sub-window 2, and hρi,j(2), as a component of this sub Ho-
FCN, denotes the correlation of ρi (2) and ρj (2). Repeating
the above process, as shown in Figure 4C1, a series of
sub Ho-FCN can be constructed which is called Ho-D-FCN.
Obviously, the Ho-D-FCN can reflect the interaction pattern
of temporal correlations from different ROI pairs over the
whole scan time.

Classification Results. For Ho-D-FCN construction, we select
W = 60, S = 10 as the construction parameters according to the
previous research (Zhao et al., 2020). Since feature extraction
and classifier learning are consistent with those above, we will
not repeat them here. Table 2 displays the classification results
where SVFSHo denotes the classification model with Ho-D-FCN
and SVFS strategy. The best results are also highlighted in bold.

It can be seen that the results of Ho-D-FCN are similar
to those of Lo-D-FCN despite the modest improvement
in accuracy. Specifically, the proposed UPFFS performs
significantly better than these two traditional strategies in
Ho-D-FCN, and CFS also slightly improves the classification
performance compared with SVFS, which further supports our
preliminary hypothesis.

Classification Performance Based on the
Fusion of Lo-D-FCN and Ho-D-FCN
There are complex connections inside the brain, thus it is difficult
to fully capture the relationship between various regions through
a single type of FCN. In order to further improve the classification
performance, it is a general practice to combine the Lo-D-FCNs
and Ho-D-FCNs by linear fusion of SVM ensemble decision
scores (Zhao et al., 2020). In this paper, we fuse the SVM scores
from two D-FCNs using different feature selection strategies.

TABLE 1 | ASD classification results with different feature selection strategies using Lo-D-FCN.

Model ACC (%) TPR (%) TNR (%) PPV (%) NPV (%) F1 (%)

SVFSLo 70.4 ± 0.14 70.0 ± 0.45 70.8 ± 0.15 69.7 ± 0.11 71.4 ± 0.55 69.7 ± 0.20

CFSLo 70.9 ± 0.15 69.6 ± 0.48 72.1 ± 0.23 70.5 ± 0.14 71.5 ± 0.21 69.9 ± 0.22

UPFFSLo 73.6 ± 0.06 70.7 ± 0.12 76.4 ± 0.11 74.2 ± 0.09 73.2 ± 0.06 72.3 ± 0.07

TABLE 2 | ASD classification results with different feature selection strategies using Ho-D-FCN.

Model ACC (%) TPR (%) TNR (%) PPV (%) NPV (%) F1 (%)

SVFSHo 70.7 ± 0.04 71.1 ± 0.12 70.2 ± 0.05 69.6 ± 0.03 71.8 ± 0.06 70.3 ± 0.05

CFSHo 71.5 ± 0.17 71.3 ± 0.38 71.7 ± 0.14 70.7 ± 0.14 72.5 ± 0.24 70.9 ± 0.22

UPFFSHo 74.0± 0.10 73.8 ± 0.25 74.3± 0.12 73.3± 0.09 74.9± 0.15 73.5± 0.13

TABLE 3 | Fusion result of different feature selection strategies.

Model ACC (%) Promote (Lo/Ho) TPR (%) TNR (%) PPV (%) NPV (%) F1 (%)

SVFSLo + SVFSHo 71.4 ± 0.23 1.0/0.7 73.1 ± 0.16 69.8 ± 0.14 69.9 ± 0.10 73.1 ± 0.12 71.4 ± 0.11

CFSLo + CFSHo 72.8 ± 0.07 1.9/1.3 72.0 ± 0.36 73.6 ± 0.14 72.3 ± 0.06 73.5 ± 0.14 72.1 ± 0.13

UPFFSLo + UPFFSHo 76.0 ± 0.10 2.4/2.0 74.4 ± 0.31 77.5 ± 0.20 76.0 ± 0.13 76.1 ± 0.14 75.1 ± 0.14

FIGURE 5 | Classification performance comparison among different feature evaluation methods. (A) The result of Lo-D-FCN. (B) The result of Ho-D-FCN.
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Specifically, each SVM classifier can output a decision score
indicating the probability of a subject belonging to a class. So
we calculate the weighted average of the decision scores from
two SVM classifiers to obtain the classification results, where the
weight tuned for each SVM is determined using a nested CV. The
final classification results are shown in Table 3, where the symbol
" + " represents the fusion, for example, SVFSLo + SVFSHo
represents the fusion of Lo-D-FCN and Ho-D-FCN under the
SVFS. We also highlight the best results with a bold font in
Table 3.

In addition to the indicators above, we also display the
improvement of fusion results compared to the single D-FCN
in classification accuracy with the Promote(Lo/Ho) indicator
(e.g., 2.4/2.0 represents that the fusion network improved 2.4
compared to Lo-D-FCN and 2.0 compared to Ho-D-FCN in
the classification accuracy). Based on Table 3, we derive the
following conclusions: (1) the feature fusion result consistently
produces better results than features derived from a single
network, i.e., the promote indicators are all greater than 0,
which is similar to the conclusions of previous studies (Zhao
et al., 2020); (2) our UPFFS strategy has better results and
greater improvement compared with other strategies, which
indicates that our feature selection framework can select more
complementary discriminative features from Lo-D-FCN and
Ho-D-FCN, thus the SVM classifier has a better learning and
generalizability to unseen samples.

DISCUSSION

Effect of Different Feature Evaluation
Method
The feature evaluation method is an important part of our
UPFFS strategy. In order to investigate the effect of the
feature evaluation method on the classification performance,

TABLE 4 | Abbreviations of ROIs selected from Lo-D-FCN and Ho-D-FCN.

Abbreviation ROI name Abbreviation ROI name

PreCG Precentral gyrus ROBsup Orbitofrontal cortex
(middle)

IFGoperc Inferior frontal gyrus
(opercular)

IFGtrian Inferior frontal gyrus
(triangular)

SMA Suplementary motor
area

SFGmed Superior frontal gyrus
(medial)

ORBsupmed Orbitofrontal cortex
(medial)

REC Rectus gyrus

PCG Posterior cingulate
gyrus

HIP Hippocampus

PHG ParaHippocampal
gyrus

CAL Calcarine cortex

LING Lingual gyru IPL Inferior parietal lobul

SMG Supramarginal gyrus ANG Angular gyrus

PAL Pallidum TPOmid Temporal pole
(middle)

IV-V-VER Lobule IV, V of vermis VI-VER Lobule VI of vermis

we further utilize chi-square and fisher score as our feature
evaluation method respectively to replace the t-test, then perform
classification experiments following the same steps. In particular,
the threshold for alternative feature evaluation method is also
adjusted by nested CV, where the threshold range of chi-
square is set to [0.1 : 0.1 : 1] and the threshold range of fisher
score is [0.01 : 0.005 : 0.05] according to previous studies. The
experimental results are shown in Figure 5.

It can be seen from Figure 5 that UPFFS always has a better
result than traditional strategies with different feature evaluation
methods, which further shows the outperformance of the UPFFS
strategy. On the other hand, we empirically found that the
performances are sensitive to the feature evaluation methods.
For instance, the ASD classification results of chi-square in
Ho-D-FCN (Figure 5B) are lower than the others. Thus, in

FIGURE 6 | Circular graphs of the top 10 discriminative connections selected by UPFFS. (A) The Lo-D-FCNs. (B) The Ho-D-FCNs.
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practice, the feature evaluation methods of UPFFS should be
utilized carefully depending on the dataset in hand and the target
classification task.

Top Discriminative Feature
For exploring the internal reasons that the UPFFS strategy
improves the ASD classification performance from a
physiological aspect, we identify the set of the most
discriminative features. Specifically, we count the frequency
at which features are selected within the sixfold cross-
validation and quantify the discriminative ability of one
feature with its frequency. The higher its frequency, the more
discriminative it is regarded.

Figure 6 visualizes the top 10 most discriminative features
selected by UPFFS strategy in Lo-D-FCN (Figure 6A) and Ho-
D-FCN (Figure 6B) respectively with circular graphs, where a
node denotes an ROI and a line between the two nodes denotes a
connection feature which represents the correlation between two
ROIs (Krzywinski et al., 2009). Table 4 lists the abbreviations of
brain regions in Figure 6.

From the results shown in Figure 6 and Table 4, we find
that: (1) the corresponding ROIs of the top discriminative
connection features selected by the UPFFS strategy include
the superior frontal gyrus, orbitofrontal cortex, hippocampus,
calcarine cortex, angular gyrus, etc., which are associated with
visual processing, social cognition, and emotional expression.
These findings are consistent with previous studies (Di
Martino et al., 2009; Scherf et al., 2015). In particular,
superior frontal gyrus (medial) (Goldberg et al., 2006; Sato
et al., 2012), orbitofrontal cortex (medial) (Ye et al., 2014),
hippocampus (Ha et al., 2015), calcarine cortex (Libero et al.,
2014; Perkins et al., 2015), angular gyrus (Goldberg et al.,
2006) have been reported as potential biomarkers for ASD
identification. (2) Most of the selected discriminative features
connect the brain lobe of transhemisphere rather than the
same hemisphere, which indicates that the UPFFS strategy
can identify abnormal distribution patterns over the whole
brain. (3) The discriminative features of Lo-D-FCNs, and
Ho-D-FCNs are obviously different, indicating that these two
networks can contain complementary information for ASD
and that our UPFFS strategy is able to capture such rich and
personalized information.

CONCLUSION

In this paper, we proposed a new feature selection strategy, called
UPFFS, which regarded the FC sequence between any pair of

brain ROIs as a unit and extracts the personalized fingerprint
feature from each unit, thus reflecting the discriminative
information in SW-D-FCN more comprehensively. We evaluated
the performance of the proposed UPFFS and two traditional
approaches on two types of SW-D-FCN. The experimental
results have shown that: (1) UPFFS always has better ability
to extract discriminative information compared with the
two traditional approaches; (2) UPFFS is able to extract
features that are unique to the network, making features
from different networks more complementary and causing
a higher improvement in classification result for the fusion
of two networks; (3) we also found that the top selected
discriminative brain regions by UPFFS are related to visual
processing, social cognition, and emotional expression which is
in line with previous research results and further validates the
effectiveness of UPFFS.

Although we proposed this strategy for SW-D-FCN, this
idea can be utilized in other fields requiring personalized
feature identification, and it should be indicated that the feature
evaluation method have a certain influence on the classification
results. In our future work, we will apply the UPFFS to other types
of “omic” datasets such as genomics for underpinning biological
biomarker in a variety of disorders.
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