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Combining multi-modality data for brain disease diagnosis such as Alzheimer’s disease
(AD) commonly leads to improved performance than those using a single modality.
However, it is still challenging to train a multi-modality model since it is difficult in clinical
practice to obtain complete data that includes all modality data. Generally speaking,
it is difficult to obtain both magnetic resonance images (MRI) and positron emission
tomography (PET) images of a single patient. PET is expensive and requires the injection
of radioactive substances into the patient’s body, while MR images are cheaper, safer,
and more widely used in practice. Discarding samples without PET data is a common
method in previous studies, but the reduction in the number of samples will result in
a decrease in model performance. To take advantage of multi-modal complementary
information, we first adopt the Reversible Generative Adversarial Network (RevGAN)
model to reconstruct the missing data. After that, a 3D convolutional neural network
(CNN) classification model with multi-modality input was proposed to perform AD
diagnosis. We have evaluated our method on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database, and compared the performance of the proposed method with
those using state-of-the-art methods. The experimental results show that the structural
and functional information of brain tissue can be mapped well and that the image
synthesized by our method is close to the real image. In addition, the use of synthetic
data is beneficial for the diagnosis and prediction of Alzheimer’s disease, demonstrating
the effectiveness of the proposed framework.

Keywords: Alzheimer’s disease, multi-modality, image synthesis, 3D CNN, reversible GAN

INTRODUCTION

Alzheimer’s disease (AD) is a common neurodegenerative disease and there is no cure for AD so far.
Relevant researches show that AD accounts for approximately 60–70% of patients with dementia.
Different modalities of neuroimaging can reflect disease changes of AD from different perspectives.
Recent studies have shown that MR images and PET images contain complementary information
in AD diagnosis (Liu et al., 2017). However, it is difficult to obtain complete modality data for all
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individuals. Subjects may lack a specific modality due to the high
cost and the usage of radioactive tracers, which will increase
lifetime cancer risk. In clinical practice, subjects are more willing
to accept MRI scans than PET scans due to price and safety
considerations. Therefore, collecting a large number of paired
data in AD research is a challenge.

In Calhoun and Sui (2016) study, they directly discard
samples with incomplete modalities. This reduces the number
of samples available for training. The lack of training data may
lead to the overfitting problem, thus resulting in poor diagnosis
performance. In the past few years, studies on medical image
synthesis tasks have been performed. They use algorithms to
estimate missing data instead of simply discarding incomplete
samples. For example, Li et al. (2014) applied a 3D convolutional
neural network (CNN) model to predict PET images from MR
images. Moreover, Pan et al. (2018) proposed a 3D-cGAN model
to estimate the corresponding PET data based on MRI data. The
synthetic data is used for AD classification (Pan et al., 2019)
developed a deep learning model called disease-image specific
neural network (DSNN), which can simultaneously perform
image synthesis and disease classification tasks. Additionally, Nie
et al. (2017) synthesized CT images from corresponding MR
images using a cascaded 3D full-convolution network (Zhao
et al., 2018) adopted Deep-supGAN learning maps between 3D
MR data and CT image. Similarly, Bi et al. (2017) synthesized
high-resolution PET images from paired CT images. BenTaieb
and Hamarneh (2017) attempted to solve the staining problem
by training cGAN and task-specific networks (segmentation
or classification models) (Wei et al., 2019) predicted PET-
derived demyelination from multiparametric MRI. The above
studies demonstrate that GAN is a powerful technique for data
simulation and expansion in segmentation or classification tasks.
However, there is still much room to improve the performance
in many medical image synthesis tasks. Some state-of-the-art
methods are one-way image synthesis (for example, generating
PET from MRI, generating CT from MRI, etc.), which cannot
maximize the expansion of missing datasets. Other methods
have used very complex preprocessing steps, resulting in high
computational costs and difficult in reproducing their results.

In this paper, we imputed the missing data through the
3D Reversible Generative Adversarial Network (RevGAN), and
compared the advantages and disadvantages of using synthetic
full image and synthetic ROI image. In addition, we also use
the synthesized data for AD classification prediction. The main
contributions of this study are as follows: First, the reversible
structure was utilized to yield better reconstruction ability in the
image synthesis experiment. We have improved the generator
part, and only one generator was needed to realize bidirectional
image synthesis in the proposed method rather than the two
generators that were used in the methods of Pan et al. (2018).
By adopting the generator together with the stability of reversible
architecture, this allows us to train deeper networks using only
modest computational resources. Second, by comparing the
synthesis experiment of full image and ROI image, we can find
that the structural and functional information of brain tissue can
be mapped well, but it is difficult to map the structure information
such as the skull of the MR image from the PET image. Third, in

the classification experiment using full image, we can find that the
classification model is mainly based on the brain tissue area in the
neuroimaging and is not sensitive to the skull and other structures
by comparing the experiment using real MRI and synthetic MRI.
Fourth, by comparing the missing data and the use of synthetic
data, our proposed image synthesis method is not only of high
image quality but also contains disease information about AD,
which can be beneficial for the auxiliary diagnosis of diseases. In
addition, we also designed a multi-modal 3D CNN model that
performed well on the data we used. In the following section,
we will first introduce the dataset that we used for evaluation in
section “Materials.” We introduce the preprocessing steps and
the details of the proposed method in section “Methods.” The
experiments and results are shown in section 4 “Experiments and
Results,” which mainly includes three parts: experimental setup,
image reconstruction and the impact of using synthetic data on
Alzheimer’s diagnosis and prediction. The discussion and the
conclusion of our work are described in sections “Discussion”
and “Conclusion,” respectively.

MATERIALS

Datasets
The data used in this study comes from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, which publicly
provides a series of test subjects’ MRI, PET, other biomarkers
and related diagnostic information, providing researchers with
A set of standard research data used to study the pathogenesis
of Alzheimer’s disease. The data provided by it contains four
sets of sub-libraries, namely ADNI-1, ADNI-2, ADNI-3, and
ADNI GO. These four stages contain data from subjects in
three categories: cognitively unimpaired (labeled as CN), mild
cognitive impairment (MCI) and AD. In the problem of
predicting the conversion of MCI to AD, it is necessary to
review the condition of the MCI subjects so as to keep up with
the progress of the subject’s condition. Data will be collected
again six months, twelve months, eighteen months, twenty-four
months, and thirty-six months after the baseline data is collected.
Generally speaking, the time standard for judging whether MCI
is converted is thirty-six months. Subjects who converted from
MCI to AD within 36 months belonged to developmental mild
cognitive impairment (pMCI), and vice versa were classified as
stable mild cognitive impairment (sMCI). Although there is no
cure for AD so far, the ADNI database has greatly facilitated
research on AD by researchers. Table 1 summarizes the details
of the data we used.

TABLE 1 | Summary of the studied subjects and images from the dataset.

Class Subject Number Image Number

AD 362 647

CN 308 707

pMCI 183 326

sMCI 233 396
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METHODS

There are three major steps in the proposed framework: (i)
Data preprocessing step; (ii) Missing data completion using
3D Reversible GAN; (iii) Disease classification using 3D
convolutional neural networks. The overall framework of the
proposed approach is shown in Figure 1, and the above steps are
introduced in the following subsections, respectively.

In our research, we assume Mk and Pk are the MRI data and
PET data for the kth subject, respectively. The diagnosis result of
the model can be expressed as:

∧

yk
= F(Mk, Pk), (1)

where
∧

ykis the predicted label (such as sMCI/pMCI) for the kth

subject. If the kth subject does not have PET data (missing Pk),

our method will predict a virtual
∧

Pk with Mk by their underlying
relevance. The diagnosis result of the model can be expressed as:

∧

yk
= F(Mk, Pk) ≈ F(Mk, G(Mk)) (2)

G and F are both mapping functions. It can be seen from the
above formula that there are two major tasks in our framework,
(i) learning a mapping function G for completing the missing
data, which is described in section “Data Reconstruction Using
3D RevGAN.” (ii) learning a classification model F for AD
diagnosis and prediction, which is then introduced in section
“Classification With End-to-End CNNs.”

Data Preprocessing
All images were preprocessed based on the following steps as
described in Huang et al. (2019). The Figure 2 shows the data
processing steps. The MR brain images were preprocessed by the
standard ADNI pipeline as described in Jack et al. (2008), which
includes post-acquisition correction of gradient warping, B1 non-
uniformity correction, intensity non-uniformity correction and
phantom-based scaling correction. After that, we performed ITK
N4 Bias correction on the MR image. Based on zxwtools, MR
images were resampled to a 1 mm isotropic world coordinate
system and cropped to a size of 221 × 257 × 221. Since the

pixel value range of the MR image is long-tailed, we set voxels
beyond 1024 as 1024. The pixel values range of the MR images
were unified into [0,1024], using the formula of 1024×(input-
min)/(max-min). For PET data, each patient may have multiple
images, and each Image contains multiple.nii files (30 min to
60 min from taking the medicine, taking pictures at regular
intervals). After PET undergoes image quality control (removal
of outliers, such as images with 0 mean and variance), we
normalize the PET image to [0, 1024] according to the formula
1024×(input-min)/(max-min). After that, we averaged all PET
images of the same patient under the same radiography. Finally,
PET images were registered to the corresponding MR based on
zxhreg through rigid registration. After the registration, PET
images were resampled to a 1 mm isotropic spacing.

In this study, the hippocampus region was selected as
the ROI. We obtain the center of the ROI as follows: First,
for each subject, the hippocampus was segmented using the
MALP-EM (Heckemann et al., 2015; Ledig et al., 2015). After
getting the segmentation result, we directly calculated the center
of the hippocampus (the segmentation result already shows
this value). After that, we randomly selected MR data as a
template and then registered other MR images to the template
through affine registration to obtain a parameter matrix of affine
transformation. After obtaining the affine matrix, we map the
hippocampus center point on the template to each MR image
through the inverse transformation of the affine transformation.
Since MR and PET have been registered before, the ROI center
of the obtained MR can also be used as the ROI center of PET.
After determining the ROI center of the image, we cropped a
96× 96× 48 voxel hippocampus region from the image.

Before the data enters the model, the pixel values range of the
data is unified into [0,1] using the formular of (input-min)/(max-
min). The full image and the corresponding ROI image are shown
in Figure 3.

Data Reconstruction Using 3D RevGAN
In recent years, a lot of studies have widely used GAN
(Goodfellow et al., 2014; Yu et al., 2017) in the field of medical
image generation. Problems such as data shortage and class
imbalance can be solved by GAN (Frid-Adar et al., 2018),
and help to understand the data distribution and its potential

FIGURE 1 | The overall flow chart of the proposed method. It includes three parts, and the data is preprocessed first. RevGAN was then used to synthesize MRI and
PET and to evaluate the image quality. Finally, we verify the impact of the synthesized images on disease classification.
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FIGURE 2 | The pipeline of data preprocessing.

FIGURE 3 | (A,B) show the coronal section, median sagittal section and transverse section of MR image and PET image, respectively. (B) is registered to the
corresponding (A) through rigid registration. The dimensions of (A,B) are the same as 221 × 257 × 221. (C) is the area near the hippocampus of the MR image and
(C) is obtained from (A). Since (A,B) are registered, we can obtain (D) corresponding to (C) from (B). In short, (A,B) or (C,D) represents the same area in the brain.

structure. In this study, we propose an image generation model
based on the RevGAN (van der Ouderaa and Worrall, 2019).
The proposed framework of our 3D RevGAN model is illustrated
in Figure 4, which includes a reversible generator (G), and also
two adversarial discriminators (D1, D2). The generator consists
of three sequential parts (encoder, invertible core, decoder). The
encoder part is constructed by a 3× 3× 3 convolutional layer for
extracting the knowledge of images. The instance normalization
layer and ReLU activation function follow the convolutional

layer. The encoder maps the image into a higher dimensionality
space. The invertible core C and its inverse C−1 are composed of
many 3D reversible blocks, which can transfer knowledge from
the original domain to the target domain. In our model, we use
invertible residual layer, as used in Gomez et al. (2017), using
additive coupling (Dinh et al., 2014) as a reversible block. In this
work, two reversible blocks were used. Each reversible block is
composed of a subnetwork R1 and a subnetwork R2 as shown
in Figure 5. R1 and R2 are not reversible. This layer is very
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FIGURE 4 | Illustration of our proposed image synthesis method using 3D-RevGAN for learning the mappings between MRI and PET. Encoders Enc (red) and Enc
(purple) lift/encode from the image space into the feature spaces. Decoders Dec (black) and Dec (green) project/decode back to the image space. Compared with
CycleGAN using two generators, RevGAN only uses one generator to complete the bidirectional mapping from MRI to PET and PET to MRI.

flexible and easy to implement. The detailed structures of R1 and
R2 are shown in Figure 5, which consist of two convolutional
layers, one normalization layer and one non-linear activation
layer. The network structure is based on SRCNN (Dong et al.,
2014). R1 and R2 in Figure 5 satisfy the following relationship:

y1 = x1+R1(x2) x1 = y1−R1(x2), (3)

y2 = x2+R2(y1) x2 = y2−R2(y1), (4)

Since core C and its inverse C−1 share parameters, C−1

will also be trained when training C, and vice versa. Finally,
the decoder part is constructed by a 1 × 1 × 1 convolutional
layer for constructing the images in the target domain and is
directly followed by a tanh activation function. Decoder projects
the image back into the low dimensional image space. For the
discriminator, we adopt the PatchGAN architecture as proposed
in Zhu et al. (2017). It inputs a pair of real image (such as Pk)
and synthetic image [G(Mk)]. We combine the adversarial loss
(LGAN) loss with the cycle consistency loss (Lcyc), so the total loss
function used in our model is as follows:

LRevGAN = LGAN(G, D1)+ LGAN(G−1, D2)+ λ Lcyc(G, G−1)
(5)

The weighting factor λ (called lambda) is used to control the
weight of the cyclic consistency loss in the total loss.

Classification With End-to-End CNNs
After the missing data of multi-modality have been completed
using the above steps, the diagnosis and prediction of AD
are then performed using a classifier. In some previous

studies, the hippocampus regions have been chosen as
the ROI for the diagnosis of AD (Dickerson et al., 2001;
Schuff et al., 2009; Salvatore et al., 2015). The ROI selection
is an important step in the proposed method in clinical
practice. The hippocampus area is of great significance in
the diagnosis of AD, and has been used as a biomarker in
diagnostic criteria for Alzheimer’s disease. The hippocampal
atrophy is highly related to AD and can be reflected in
MR and PET images. The brain atrophy of AD patients
affects both the structural change and the metabolic function
change at the same time. Lots of previous studies have
used the hippocampus area as ROI for the prediction and
diagnosis of AD. In contrast, if a full image is used, although
more disease information can be used, the information
of a large number of irrelevant regions in the full image
coexist and may hamper the accuracy of the prediction
model. The use of the hippocampus as an ROI is not only
essential to improve the diagnostic accuracy, but also can
reduce the computational burden and reduce the data
redundancy. For a fair comparison, we also performed
experiments using full images and use scipy.ndimage.zoom
to scale the registered full image size from (221, 257, 221) to
(110, 128, 110).

CNN has been well applied in the classification and prediction
of brain disease. Briefly, CNN extracts feature through
convolutional layers and reduces the network parameters
through weight sharing and pooling of convolution. Finally, the
classification task is completed through the fully connected
layer. The subsequent development of many advanced
networks such as AlexNet (Krizhevsky et al., 2012), VGG
(Simonyan and Zisserman, 2014), ResNet (He et al., 2016)
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FIGURE 5 | The reversible block is composed of R1 and R2.

and so on. In our experiment, in order to evaluate the
performance of our proposed 3D CNN, we chose the
classic model of VGG and ResNet as the baseline model
for comparisons.

Although MR and PET share most information of AD disease
changes, it should be mentioned that these two modalities
also have complementary information (Fan et al., 2008; Wee
et al., 2014; Calhoun and Sui, 2016), which can be beneficial
for further improvement of AD diagnosis. The process of
synthesized PET can generate complementary information.
Although this information comes from MRI, the classification
model cannot use this information directly. Through our
synthesis method, these hidden information are displayed, so
that the classification network can obtain more information.
For example, elements (5, 6, 7) are in set A, (15, 16, 17)
are in set B, and B = A +10. As long as we know the
relationship between AB, we can infer each other. However,
in our case A does not contain B, and B does not contain
A. In this study, the relationship between MRI and PET is
a more complex non-linear complementary relationship, and
our model is needed to fit the relationship between them.
The synthetic network is trained through a large number of
pairs of other people’s MRI and PET relationships. During the
training process, the synthetic network learns the method of
converting the information in the MRI into the corresponding
PET information.

We proposed a 3D CNN model based on ROI crop
to learn a classifier and to fuse different features from
both MRI and PET. It is worth noting that the general
classification model uses batch norm, while we use instance
norm (Ulyanov et al., 2016). The output of each convolutional
layer is down-sampled by the max-pooling operations. In the
1st, 2nd, 3rd, and 4th layers, the size of the convolutional
kernel is set to 1 × 1 × 1, 5 × 5 × 5, 9 × 9 × 9,
5 × 5 × 5, respectively. The number of channels is 4 for
the 1st layer, 32 for the 2nd layer, 64 for the 3rd and 4th
layers. The classifier consists of 2 FC layers and a softmax
layer. After passing the softmax layer, the model outputs
the diagnostic label. The detailed model structure is shown
in Figure 6.

EXPERIMENTS AND RESULTS

We have evaluated the effectiveness of our proposed method in
the following experiments. Firstly, we evaluated the quality of the
synthetic images generated by 3D reversible GAN. Some image
quality metrics were used for the evaluation of the reconstructed
images. After that, we compared our classification model with
other methods including the VGG and ResNet model in the
diagnosis task of AD vs. CN. Finally, we verified the impact of
the generated PET data in the classification task of Alzheimer’s
diagnosis and prediction. Bold values mean the best value in the
comparative experiment.

Experiment Setting
Experimental environment: PyTorch framework, Nvidia
GTX1080 GPU. During the image reconstruction training, the
Adam optimizer (Kingma and Ba, 2014) was used. The reversible
blocks were implemented using a modified version of MemCNN
(van de Leemput et al., 2018). Peak signal-to-noise ratio (PSNR),
and structural similarity index measure (SSIM) (Hore and
Ziou, 2010) are used as evaluation metrics of image quality.
RMSE, PSNR and SSIM are the most common and widely used
objective image evaluation metrics in image reconstruction.
RMSE and PSNR measure absolute errors between source and
synthetic images, and SSIM measures structural similarities
between them. In the classification experiment, we continue
to use Adam as the optimizer. The dataset was separated into
training part, validation part and testing part. The ratio of
training set, validation set, and test set is 7:2:1. ACC, SEN, SPE,
AUC are used as evaluation metrics. These four metrics represent
accuracy, sensitivity, specificity and area under the curve,
respectively. The higher values of these metrics indicate better
classification performance. A 10-fold cross-validation approach
was employed to measure and to compare the performance of
different methods.

Results of Image Reconstruction
Paired ROI Image
From Figure 7, we can see that our synthetic PET images are very
similar to their corresponding real images. When calculating the
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FIGURE 6 | Architecture of our 3D CNN model. Note that if the input is MRI and PET, the input size is 2 × 96 × 96 × 48. The first dimension is the number of
channels. FC is a full connected layer. The parameters of FC1 and FC2 are 512 and 2, respectively.

deviation image, we use matplotlib to draw the heat map, and the
deviation image is normalized to [0, 255] for display. There are
only positive values in the deviation image, and different slices
have different ranges, the largest range is [0, 255]. These results
indicate that our trained RevGAN model can generate synthetic
PET scans with good image quality that are similar to real PET
scans. In addition, we have listed the experimental results in
some related papers using different methods in recent years for
reference. The results are in Table 2, which shows that the results
of different methods are similar in terms of PSNR in PET image
reconstruction. It can be seen from Table 2 that our method
SSIM reached 0.9389 in MRI image reconstruction, achieving the
best performance.

Full Image
To compare the performance based on ROI and that based
full images, we have performed a further experiment using full
images. The registered full image data (221, 257, 221) is scaled
using scipy.ndimage.zoom, and the size is resized to (110, 128,
110), and the resolution of the image is reduced. It can be seen
from the results of Figure 7 and Table 2 that the metric of the
generated MR image has decreased significantly. Comparing to
the use of ROI, the full MR image contains not only the structural
information of the brain tissue but also the structural information
such as the skull. Although PET images also have complete head
coverage, the signal levels of non-brain tissues are quite different
compared with brain tissues, so it creates challenges in alignment
between the MR images and the PET image. This will lead to
decrease the reconstruction performance of image synthesis.

Results of Disease Diagnosis Prediction
Evaluation of our Proposed 3D CNN Classification
Model
We chose 3D-VGG11 and 3D-ResNet10 as the baseline models
for comparison. We used the same settings for all models to
make fair comparisons. The experimental results are shown in
Tables 3, 4. The experiment in Table 3 used MRI-ROI data,
while the experiment in Table 4 used PET-ROI data. As shown
in Table 3, we can see that the ACC and SEN of our proposed
3D CNN model achieved 82.00 and 82.29%, respectively. The
experimental results are better than the VGG11 and ResNet10

models. The 3D VGG11 model is slightly better than our model
in SPE and AUC metrics. As shown in Table 4, it can be seen that
VGG11 has a very good performance on PET images. The ACC,
SEN, and AUC reached 89.11, 90.24, and 92.64%, respectively.
It is worth noting that our proposed model is higher than
the other two models in the SPE metric. If the age-correction
processing of Lin et al. (2018) was performed, the performance
of the proposed method was improved. The experimental results
show that our four-layer model has better performance than the
VGG11 and ResNet10 models which have many layers with much
more parameters, indicating the effectiveness of our proposed
classification method in the diagnosis of AD.

Results of Diagnosis Using Synthetic Data
The model used in all multi-modal experiment is our 3D CNN
model. We simulated the absence of data and tested the impact
of the generated PET on the diagnosis and prediction of AD
(Tong et al., 2017) used non-linear graph fusion to fuse the
features of different modalities. To take advantage of information
about the disease, we adopted a framework to integrate multi-
modality information based on our proposed 3D CNN model.
In this part of the experiment, MR and PET images are used as
two parallel channels. After then, the paired MR image and PET
image are stacked as a 4D image. We also employed the above
four metrics for performance evaluation of AD diagnosis. Disease
classification results were reported in Tables 5–8.

As shown in Table 5, the method used real data got the best
metrics in terms of ACC, SPE, and AUC. Note that "MRI + 100%
synthetic PET" has the highest value in SEN. A similar situation
can be seen in Tables 6–8. The method used real data got the
best metrics in terms of ACC, SEN, while using 100% synthetic
PET has achieved the highest AUC in Table 6. In Table 7, the
method using real data obtained the best indicators in terms of
ACC, SPE, and AUC. Please note that "PET + 100% synthetic
MRI" has the highest SEN value. In Table 8, the method used
real data got the best metrics in terms of ACC, SEN, while using
100% synthetic MRI has achieved the highest SPE and AUC. As
shown in Tables 5–8, after using synthetic data, there is a higher
classification score. This shows that our method is effective. The
experimental ROC curves are shown in Figures 8, 9. Moreover,
the relevant experimental results using full image are shown in
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FIGURE 7 | Deviation between real image and synthetic images. In the deviation image, the yellower the color, the greater the error, and the red and black areas
represent smaller deviation.

TABLE 2 | Comparison with others.

Synthetic PET Synthetic MRI

PSNR SSIM PSNR SSIM

Pan et al., 2020 HGAN 30.24 0.6945 26.07 0.6683

Pan et al., 2019 FGAN 29.62 0.6817 25.10 0.6404

Hu et al., 2019 Adversarial U-Net (2D slice) 25.13 − − −

Pan et al., 2018 3D-cGAN 24.49 − − −

The proposed method (ROI) RevGAN 29.34 0.8034 29.81 0.9389

The proposed method (Full Data) RevGAN 29.42 0.8176 24.97 0.6746

The quality of the reconstructed image. Results of image synthesis achieved by different methods. Just as a reference, because the selected data and data
preprocessing are different. Bold values mean the best value in the comparative experiment.

Tables 9, 10, and the ROC curve is shown in Figure 10. In
this study, for the classification tasks using full image, resampled
images at a lower resolution were used instead of using multiple
patches as (Pan et al., 2018). We think that not all patches within
the whole image were affected by the disease changes of AD. Some
patches from AD subjected may be not affected by AD and their
diagnostic label may be fuzzy. Therefore, if the selected patches
are not accurate, it will lead to poor performance. In addition,
compared with using a full image, using multiple patches will lose
the spatial position information between different brain regions.

DISCUSSION

In the classification task, we propose a 3D CNN model with only
four convolutional layers to achieve T1-MRI and FDG-PET AD
diagnosis. The hippocampal area was used as ROI for input as
it is the most frequently studied and is thought to be of the
highest related region of AD. Through our experiments, we found
that the proposed four-layer network has a lightweight structure
but with competitive performance in AD classification tasks.

Especially, we use small-sized kernels in the first convolutional
layer to prevent early spatial downsampling in contrast to most
standard architectures for image classification. For example,
ResNet uses relatively large kernel sizes and strides in the first
layer, which dramatically reduces the spatial dimension of their
inputs. This can accelerate the computation. However, the loss
of a large amount of information at the beginning layer may
adversely affect the results, especially in medical images (Liu et al.,
2020). In addition, the input size is only 96 × 96 × 48 due to the
use of ROI-based data in our experiments. Therefore, premature
downsampling can cause severe performance degradation. It can
be seen from Table 5 that the performance of "50% synthetic
+ 50% real" is worse than "100% real" and "100 synthetic."
This indicates that the complexity of the data will affect the
performance, because the distribution of synthetic data and
actual data may be slightly different, and mixing the two types
will make it difficult to train the model. It can be seen from
Table 4 that very good performance can be achieved using only
PET data. From the Table 6, it is strange that best SPE was
achieved with “MRI+50%PET+50%synthetic PET,” and best AUC
is achieved with imputed PET (better than when full real data
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TABLE 3 | Results (%) of the models trained from only MRI data
for CN vs. AD task.

Model ACC SEN SPE AUC

3D-VGG11 81.19 79.27 83.45 83.67

3D-ResNet10 80.87 79.63 82.23 81.21

3D CNN (4 layers) 82.00 82.29 81.69 81.76

Bold values mean the best value in the comparative experiment.

TABLE 4 | Results (%) of the models trained from only PET data
for CN vs. AD task.

Model ACC SEN SPE AUC

3D-VGG11 (Huang et al., 2019) 89.11 90.24 87.77 92.69

3D-ResNet10 86.26 86.56 85.94 84.48

3D CNN (4 layers) 88.77 89.11 88.41 87.11

Bold values mean the best value in the comparative experiment.

TABLE 5 | Diagnosis results (%).

ACC SEN SPE AUC

MRI+PET (Real data) 89.26 82.69 96.48 90.98

MRI+PET (Miss 50% data) 84.64 85.82 83.45 83.92

MRI+50%PET+50% synthetic PET 87.63 87.07 88.24 87.07

MRI+ the other 50% synthetic PET 87.99 87.76 88.24 87.36

MRI+100%synthetic PET 89.05 90.48 87.50 87.92

In this AD vs. CN classification experiment, all MR images are real, but PET
images were divided into five cases. The data used in the experiment is an ROI
image. "MRI+ the other 50% synthetic PET" is to replace the original real data in
"MRI+50%PET+50% synthetic PET" with synthetic data and change the synthetic
data to real data. Bold values mean the best value in the comparative experiment.

are available). In lots of previous studies, the use of single-
modal PET has been able to achieve very good results in the
classification of AD. In this work, all multi-modal experiments
use the four-layer 3D CNN model we designed, and the best result
of single-modal PET is to use the 3D VGG11 of Huang et al.
(2019). The models used are inconsistent (Tables 4, 5). These four
indicators describe the performance of the model from different
aspects, rather than absolute positive correlation. Therefore, due
to different experimental settings, some evaluation metrics will
fluctuate. In the comparative experiments using real data and
synthetic data, the number of data samples is small. AD, NC,
pMCI, and sMCI are 647, 707, 326, and 396, respectively. The
numbers of samples in different categories are imbalanced. This
makes the model biased toward a certain type of sample in order
to reduce its own loss, which causes fluctuations in some metrics.
When data is missing or synthetic data is used, this situation is
more likely to happen.

From Tables 9, 10, it can be seen that although the image
resolution becomes lower when using the full image, it still
achieves a good classification score. The analysis in “Full Image”
shows that the structural and functional information of brain
tissue can be mapped very well, but it is difficult to map
the structural information such as the skull of the MR image
from the PET image. Therefore, it does not perform well when

TABLE 6 | Diagnosis results (%).

ACC SEN SPE AUC

MRI+PET (Real data) 72.84 88.89 52.78 68.30

PET+MRI (Miss 50% data) 66.87 67.05 66.67 68.95

MRI+50%PET+50% synthetic PET 69.28 55.68 84.62 70.29

MRI+ the other 50% synthetic PET 68.49 84.62 50.00 67.53

MRI+100%synthetic PET 71.23 74.36 67.65 73.66

In this pMCI vs. sMCI classification experiment, all MR images are real, but PET
images were divided into five cases. The data used in the experiment is an ROI
image. Bold values mean the best value in the comparative experiment.

TABLE 7 | In this AD vs. CN classification experiment, all PET images are real, but
MR images were divided into five cases.

ACC SEN SPE AUC

MRI+PET (Real data) 89.26 82.69 96.48 90.98

MRI+PET (Miss 50% data) 84.64 85.82 83.45 83.92

PET+50%MRI+50% synthetic MRI 87.12 81.68 92.48 85.59

PET+ the other 50% synthetic MRI 86.71 87.73 85.51 84.92

PET+100%synthetic MRI 88.64 91.60 85.71 87.36

The data used in the experiment is an ROI image. Bold values mean the best value
in the comparative experiment.

TABLE 8 | In this sMCI vs. pMCI classification experiment, all PET images are real,
but MR images were divided into five cases.

ACC SEN SPE AUC

MRI+PET (Real data) 72.84 88.89 52.78 68.30

PET+MRI (Miss 50% data) 66.87 67.05 66.67 68.95

PET+50%MRI+50% synthetic MRI 67.81 83.33 50.00 67.87

PET+ the other 50% synthetic MRI 68.67 67.05 70.51 69.81

PET+100% synthetic MRI 71.18 69.07 73.97 70.80

The data used in the experiment is an ROI image. Bold values mean the best value
in the comparative experiment.

synthesizing a full MRI image from a PET image (Table 2).
This problem can be avoided if only the hippocampus ROI
is used. Although the quality of the synthesized MR image is
not high, the classification result of using the synthesized MR
image is not bad (Tables 9, 10). This shows that the model
mainly focuses on changes in brain tissue structure (such as
hippocampus atrophy, etc.) when diagnosing and predicting
diseases, and the structure of irrelevant areas such as the skull has
little effect on the results.

In the image synthesis task, reversible blocks are very memory-
efficient. Therefore, by adopting the generator together with the
stability of reversible architecture, this allows us to train deeper
networks using only modest computational resources. Increasing
the depth of the reversible block improves the non-linear fitting
ability of the model, which can generate higher quality images.
Moreover, reversible architecture has been demonstrated to yield
superior results when trained using fewer training data in the
work of Chang et al. (2018). It can be seen from Table 2
that compared with our work, Pan et al. (2018, 2019, 2020)
performed more preprocessing steps to obtain better alignment
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FIGURE 8 | The ROI data is used here. The ROC curves in the experiment of
disease classification with the synthetic PET image.

between MR image and PET images, thus resulting in a good
reconstruction results. Despite their advantage on the alignment,
our proposed method are still superior to Pan et al. (2018)
work on the reconstruction quality of synthetic images in
some metrics as shown in Table 2. It is worth noting that
too much preprocessing may lose more original information
and affect the reliability of the experiment. When registering
the PET images to the corresponding MRI, we use nearest
neighbor interpolation (Olivier and Hanqiang, 2012). This leads
to moiré pattern (Oster and Nishijima, 1963) on the PET image.
Compared with the real image, the synthesized PET image has
reduced moiré pattern (see Figure 7). Related experimental
results are shown in Table 2. From Tables 5–8, we can see
that the performance of the method using our synthetic data is
superior to those using missing data. The experimental results
show that our synthetic PET is beneficial for disease diagnosis.
If our synthetic data does not contain disease information,
it may hamper the performance of AD diagnosis, leading to
worse performance.

FIGURE 9 | The ROC curves in the experiment of disease classification with
the synthetic MR image. The ROI data is used here.

TABLE 9 | The AD vs. CN classification experiment uses synthetic full data
and real full data.

ACC SEN SPE AUC

MRI+PET 92.28 90.38 94.37 92.76

MRI+100% synthetic PET 91.95 89.74 94.37 92.51

PET+100% synthetic MRI 90.77 90.58 90.98 91.60

Bold values mean the best value in the comparative experiment.

The main limitations of this study and future work are as
follows. In this study, since the hippocampus is an appropriate
ROI selection for the AD diagnosis, we can use the ROI block
that removes the redundant information in the data to diagnose
and predict the disease and improve performance. When applied
to other diseases without a specific target ROI, it is difficult to
take advantage of the ROI-based method. Moreover, it would be
interesting to show the biologically meaningful measurements
of the synthetic data over the real data. In this work, the
synthetic PET data were used for AD diagnosis and focused
more on the disease changes of AD, rather than the real FDG
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TABLE 10 | The sMCI vs. pMCI classification experiment uses synthetic full data
and real full data.

ACC SEN SPE AUC

MRI+PET 74.10 75.00 73.08 76.60

MRI+100% synthetic PET 73.78 64.52 85.92 75.09

PET+100% synthetic MRI 73.49 73.86 73.08 76.03

Bold values mean the best value in the comparative experiment.

FIGURE 10 | The ROC curves in the experiment of classification with the full
data.

metabolic changes. The aim of the reconstruction is to improve
the classification of AD in the scenario of missing data. The
detailed investigation of reconstructing biologically meaningful
synthetic data will be carried out in future. Last but not the
least, in Tables 5, 6, the ratio was set to 50% (half synthetic
PET data) and 100% (all synthetic PET data) in our experiments.
By adding more synthetic PET data, the accuracy has been
improved by comparing the new results in Tables 5, 6. The
effect of the ratio parameter in the random selection of the
synthetic PET data will be carefully studied in future work.

Finally, the synthesized PET images may be helpful for improving
the AD diagnosis performance, while they do not reflect the
real metabolic changes of the FDG PET imaging. In Table 3,
we have compared the performance of three different CNN
models on the AD vs. CN task based on MRI data. Comparing
Tables 3, 5, we can find that the performance of MRI+synthetic
PET and MRI+PET (Real data) is superior than that of MRI
alone due to the complementary information. But, we also believe
that there is not a strong relationship between MR and PET
in all scenarios, and a good mapping between MRI and PET
needs to meet some conditions. If the synthetic model that we
trained in the AD diagnosis scene is directly applied to other
diseases, it may not work. For example, if we want to apply
our method in the scene of tumor diagnosis, a large number
of paired MR and PET must be used to retrain the model so
that the model can find the relationship between MR and PET
in the scene of tumor diagnosis. In this study, hippocampal
atrophy in AD patients will be reflected in the structure and
functional metabolism of the hippocampus. However, there are
many other diseases that may not affect tissue structure and
tissue function metabolism at the same time, so it is difficult
to find the relationship between MRI and PET. To sum up,
whether the disease can cause changes in tissue structure and
metabolic function simultaneously may be a condition for MR
and PET to be able to map well. Therefore, further research
needs to be explored.

CONCLUSION

To conclude, we proposed a 3D reversible GAN for imputing
those missing data to address the issue of missing data.
Specifically, we have also presented a novel 3D CNN architecture
to perform classification for AD diagnosis. Moreover, we tested
the impact of the synthetic data in the classification task of AD
by simulating missing data. During the experiment to evaluate
the impact of synthetic data, the multi-modal fusion method
by channel fusion (MR images and PET images were stacked
into 4D images) is selected. Experiments on the ADNI dataset
demonstrate that our method generates reasonable neuroimages.
Through the experimental results, we can also find the following
three conclusions: First, we can find that the structural and
functional information of brain tissue can be mapped well,
but it is difficult to map the structure information such as
the skull of the MR image from the PET image. Second, the
classification model is mainly based on the brain tissue area in
the neuroimaging and is not sensitive to the skull and other
structures. Third, when the data is missing, the performance of
AD diagnosis and MCI conversion prediction can be significantly
improved using our method.
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