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The memristor-based convolutional neural network (CNN) gives full play to the
advantages of memristive devices, such as low power consumption, high integration
density, and strong network recognition capability. Consequently, it is very suitable
for building a wearable embedded application system and has broad application
prospects in image classification, speech recognition, and other fields. However, limited
by the manufacturing process of memristive devices, high-precision weight devices
are currently difficult to be applied in large-scale. In the same time, high-precision
neuron activation function also further increases the complexity of network hardware
implementation. In response to this, this paper proposes a configurable full-binary
convolutional neural network (CFB-CNN) architecture, whose inputs, weights, and
neurons are all binary values. The neurons are proportionally configured to two modes
for different non-ideal situations. The architecture performance is verified based on the
MNIST data set, and the influence of device yield and resistance fluctuations under
different neuron configurations on network performance is also analyzed. The results
show that the recognition accuracy of the 2-layer network is about 98.2%. When
the yield rate is about 64% and the hidden neuron mode is configured as −1 and
+1, namely ±1 MD, the CFB-CNN architecture achieves about 91.28% recognition
accuracy. Whereas the resistance variation is about 26% and the hidden neuron mode
configuration is 0 and 1, namely 01 MD, the CFB-CNN architecture gains about 93.43%
recognition accuracy. Furthermore, memristors have been demonstrated as one of the
most promising devices in neuromorphic computing for its synaptic plasticity. Therefore,
the CFB-CNN architecture based on memristor is SNN-compatible, which is verified
using the number of pulses to encode pixel values in this paper.

Keywords: memristor, binarized neural networks, convolutional neural networks, device defects effect,
configurable neuron, neuromorphic computing

INTRODUCTION

In recent years, the neuromorphic hardware inspired by human brain has aroused researchers’
attention (Mead, 1990). Compared with traditional hardware, including FPGA, GPU, and CPU
(Boybat et al., 2018), brain-inspired neuromorphic computing systems is more efficient to
implement deep neural networks for their less power consumption and quicker computing
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speed. Although the neuromorphic computing system based
on complementary-metal-oxide-semiconductor (CMOS) has
achieved a great progress, constrained by limited area in portable
devices, there remains huge challenge to implement a brain-level
neuromorphic system based on the standard CMOS technology
(Wang et al., 2018).

Memristor has the advantages of low consumption power,
nanoscale size, non-volatile storage, and multi-value tune-ability
(Hu et al., 2014). And the memristor array (Strukov et al., 2008)
can be used to execute vector-matrix multiplication (VMM) in
one step naturally, therefore, memristor has been regarded as one
of the most potential devices for implementing neuromorphic
computing such as convolutional neural networks (CNNs) (Yao
et al., 2020), spiking neural networks (SNNs) (Midya et al., 2019;
Nikiruy et al., 2019), and multi-layer perceptron (MLP) (Pham
et al., 2018). Among them, the research on CNNs (Yakopcic et al.,
2016, 2017; Sun et al., 2018) is of great significance, as it has
present excellent performance in object recognition (Krizhevsky
et al., 2017) and detection (Girshick, 2015).

Yakopcic et al. (2015; 2016; 2017) proposed a neuromorphic
circuit using memristor to mitigate the problem caused by
existing parallel structure of the crossbar, and then used
this circuit to implement a CNN algorithm based on ex-situ
training. Additionally, the first memristor based circuits that
can completely parallelize the recognition of CNN have been
presented by them. In order to tackle the problem of specific
object recognition based on memristor array circuits, Sun et al.
(2019a) proposed Full-Parallel Convolutional Neural Networks
(FP-CNN) for generating multiple output feature maps in one
step processing cycle, and the three-layer architecture of the FP-
CNN achieves 99% classification accuracy. Zeng et al. (2018)
proposed a new memristor architecture for image convolution
calculations, which outputs just one element at a time, and they
proposed an algorithm for convolution on an image for this
architecture so that a complete feature map can be generated.

In many cases, the research concluded above considered the
memristor as the device with multi-level or precise memristance.
Constrained by the manufacturing technology, the devices with
multi-level memristance are not stable or easily and successfully
prepared on a large scale, whereas the memristor devices
with binary value (namely high resistance state HRS and low
resistance states LRS) are basically available. Besides, the current
memristor based CNN architecture usually has just one type
of activation function, which is fulfilled in high precision and
failed to be configurable automatically, exploited in the hidden
layer. Therefore, from the perspective of reducing overhead
and complexity of hardware, we propose a configurable full-
binary convolutional neural network (CFB-CNN) architecture.
Our contributions can be summarized as following:

• At the algorithm-level, we propose a fully binarized
network architecture with configurable neurons. This
architecture also achieves good performance under the
condition that the memristor array has inherent defects like
yield rates and memristance variation.
• We compare our CFB-CNN architecture with other state-

of-the-art CNN architectures whose inputs, weights, and

neurons are high precision in terms of classification
accuracy on MNIST dataset. In addition, the hardware
overheads of the CFB-CNN architecture are presented.
Through experiments, we found that, at the cost of less
hardware resource consumption, the recognition rate of
the CFB-CNN architecture on the MNIST dataset is just
reduced by 0.8%.
• We also verify the feasibility of our architecture on

FASHION-MNIST dataset. From our experiments,
the classification accuracy on this dataset achieves to
86.97%, which shows 2.71% decline compared with basic
computation unit (Sun et al., 2019b), a conventional CNN
with full precision.
• What’s more, in order to prove that the memristor-based

CFB-CNN architecture is compatible with SNN, we use the
number of pulses to encode the pixel value of the images
in the MNIST data set for conducting related simulation
experiments. And the results show that the memristor-
based CFB-CNN architecture is well compatible with SNN.
• Last but not least, we give the scheme of implementing

configurable neurons at the circuit level, and then
investigate the impact caused by the hidden neuron output
fluctuation on the recognition rate of the CFB-CNN
architecture.

The rest of this paper is organized as following. Section II
details the architecture of CFB-CNN. Section III elaborates the
process of implementing CFB-CNN architecture on memristor
array and analyses the defects influences to the network. Section
IV concludes the paper.

ARCHITECTURE OF CFB-CNN

Convolutional Neural Network
A typical architecture of CNN applied in most image
classification tasks can be depicted as Figure 1.

As shown in Figure 1, a classic CNN is made up of two
modules: the first one is served as a feature extractor, which
is equipped with convolution and pooling layer, and its output
feature maps should be sent to the second module, namely
the fully connected layer, which is functioned as a classifier to
determine which category to be the winner through calculating
the probability of each category.

The Topology of CFB-CNN
The architecture of the CFB-CNN builds on our previous FP-
CNN (Sun et al., 2019a), whose architecture is the same as the
typical CNN architecture. In our previous design, the pooling
layer consumes a certain number of op-amps, increasing the
complexity of hardware implemented for CNN. Meanwhile, the
weights and neurons in FP-CNN are high precision requiring
memristor equipped with multilevel resistance state and relatively
complex circuits for activation function, which is challenging
for implementing memristor based CNN. Therefore, for better
realization of memristor CNN, we have investigated the all
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FIGURE 1 | A typical architecture of convolutional neural network.

binarized CNN without pooling layer, while neurons in hidden
layer are configurable.

In this work, the CFB-CNN architecture is the simplest version
of the CNN architecture described in Figure 1, consisting in
just one feature extractor module without pooling layer and a
classifier that just with one fully connected layer. Figure 2 shows
the architecture of CFB-CNN.

In the convolutional layer, there are sixteen 9 × 9 kernels.
Since the values of the input image and the filter are binarized to
0, 1, and+1,−1, each kernel scans across the input image with a
stride of 1× 1 and performs bitwise vector matrix multiplication.
These operations will generate sixteen output feature maps with
size being 20 × 20. And the activation layer is divided into
two proportionally adjustable parts. Specifically, the first part
binarizes the pixel of the feature maps into +1 or −1 using
the function of binary tanh, and the other binarizes the maps
into 0 or 1. And the parameter of the proportion µ is used to
determine how many feature maps are entered into the first part.
Especially, when all feature maps are binarized to ±1, the CFB-
CNN architecture is referred as±1 MD, on the contrary, it would
be referred to 01 MD when all feature maps are binarized to 0 or
1. In the training process, the percentage of activation with ±1 is
µ, while that with 0 or 1 is 1-µ. The value of µ remains constant
during training, and the training method is consistent with the
usual training method of binary CNN. During the testing process,
the weights after well trained and the value of µ that has been
set during training are used for completing classification tasks.
Figure 3 elaborates the data flow of the CFB-CNN architecture
and gives the detail information about hardware overheads for
fully connected layer.

At first, the input images are binarized to 0 and 1, then
all the binarized pixels would be converted to a 1 × 784
pulses voltage output vector with amplitude information by the
Pulse Generator (PG), and the vector is taken as the input
dataflow of the memristor based CFB-CNN architecture. The
pulses enter the memristor convolution kernel for performing
parallel convolution operations. The output of the convolution
operations is activated by the function of binary tanh and binary
sigmoid. After that, the activation results are transferred to the

fully connected layer as inputs. The number of outputs in the
fully connected layer is the same as that of categories, and the
pulse signal with the largest amplitude in output denotes the final
classification result of the input image.

Training Method of CFB-CNN
By training and testing the CFB-CNN architecture on the
training set of MNIST, the well-trained weights and baseline are
obtained for verifying the implementation feasibility. At first, the
model refereed as ±1 MD is trained firstly. During the training
procedure, the MNIST dataset has been separated into three
parts, namely training set, validation set and testing set, each of
them contains 55000, 5000, and 10000 images, respectively. 100
epochs are set for training, and each epoch complete iterations
on 550 batches with batch size being 100. The method of
exponentially decaying learning rate is adopted, and the initial
learning rate is 0.01. Additionally, the moving average model is
used, and the moving average decay rate is 0.99. The input images
are binarized to 0,1 according to Eq. 1.

f (x) =

{
0, x ≤ 0.5
+1, x > 0.5

(1)

And the neurons are binarized according to Eq. 2, specifically,
neurons determined by parameter µ are binarized to ±1 using
the expression on the left, while the rest neurons are binarized
to 0 or 1 using the expression on the right. And the weights
are also binarized to ±1 using the left expression. It should be
noticed that the network is trained with 1-bit precision in the
forward computation but 32-bit floating point precision in back
propagation (Courbariaux and Bengio, 2016), to be more specific,
the gradient of tanh function is used to approximate the gradient
of binary activation function.

f (x) =

{
−1, x ≤ 0
+1, x > 0

or f (x) =

{
0, x ≤ 0
+1, x > 0

(2)

After the architecture of ±1 MD is well-trained, the rest 10000
images are used to test its performance of recognition. The results
show that the CFB-CNN architecture behaves well with 98.2%
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FIGURE 2 | Diagram of the CFB-CNN architecture, the input of the fully connected layer is the flattening 16× feature maps, the top labels give the information about
input image size, kernel size, number of kernels, and number of neurons in the hidden layer.

FIGURE 3 | Data flow of CFB-CNN architecture.

classification accuracy. Then the mode of neurons is modified
to be 0,1 and the network, namely 01 MD, is retrained under
the same circumstance. For testing the same 10000 images, the
classification accuracy is 98.22%.

Furthermore, for the reason that the memristor conductance
(synaptic weight) is able to be modulated by the number of pulses,
which means that the input of the memristor based CFB-CNN
architecture can be applied in the form of pulses, we also test
the performance of memristor based CFB-CNN architecture by
applying a number of pulses determined by the pixel value of
the image. Here, in order to facilitate the encoding of the image
pixels in the form of the number of pulses, the image pixels
are compressed into 4 bits for representation. For the model of
01 MD, the testing images compressed into 4 bits are directly
input into the CFB-CNN architecture (4-bit-01 MD) which is
well-trained according to Eqs 1, 2, and the recognition rate is
97.73%. While for the model of ±1 MD, the training dataset
of MNIST are compressed into 4 bits for retraining the CFB-
CNN architecture (4-bit-±1 MD). After the 4-bit-±1 MD is
well-trained, the rest 10000 images are also compressed as the
same way and the recognition rate of the ±1 MD is 98.37%. And
the good recognition results show that the input of the network
architecture is able to be encoded by number of identical spikes,
that is to say, the CFB-CNN architecture is SNN-compatible.

Additionally, the CFB-CNN architecture is also tested on the
FASHION-MNIST. With other things being equal, the number of

the kernels and the kernel size to is 32 and 7× 7, then the hidden
neurons are binarized to 0 or 1 according to Eq. 2, while the input
images are binarized to±1 according to Eq. 3.

f (x) =

{
−1, x ≤ 0
+1, x > 0

(3)

The classification accuracy on FASHION-MNIST is 86.97%
which is 2.71% lower than that of the work (Sun et al., 2019a).

Hardware Implementation of CFB-CNN
As mentioned above, the CFB-CNN architecture is the simplest
one without pooling-layer, compared with a classical three-layer
CNN architecture (Sun et al., 2019a), viz., convolution layer,
pooling layer and fully connected layer. In realizing hardware
CFB-CNN architecture, memristors are used to store the weighs
and integrated into an array with one memristor at each cross
point to execute VMM operation existed in the CFB-CNN
architecture. The inputs to the row lines of the array are in the
form of pulse voltage, and the results obtained from the column
are in the form of current according to the Kirchhoff’s law. The
weights in the CFB-CNN architecture are programmed to the
conductance value of the memristors. Because all weights in the
CFB-CNN architecture must be binarized to +1 or −1 and the
memristance cannot be negative, two memristors are used to
represent one weight. When the value of the weight is+1, the two
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FIGURE 4 | The demo about how to execute a convolution operator by using memristor crossbar. The size of the convolutional kernel is 2 × 2. The inputs sent to
the array are in the form of DC voltage, and each weight is stored by two memristors.

memristors would be programmed to (GLRS, GHRS), otherwise,
they would be programmed to (GHRS, GLRS). Eq. 4 reflects the
relationship between the weights in CFB-CNN and conductance
stored in memristor array.

y = kx = (GLRS − GHRS) wi (4)

where wi represents the weights in CFB-CNN, and the parameter
y is the target conductance mapped by the corresponding weights.

A demonstration about how to perform a convolution
operator in memristor crossbar is given in Figure 4. The
input image with two dimensions would be reshaped into one
dimension, and the binarized pixels are directly converted to
DC or impulse voltages to input the memristor array. And then
the detail methods of mapping the 16 convolution kernels in
the CFB-CNN architecture to memristor array is illustrated in
Figure 5.

One convolution operation, as shown in Figure 6, is taken as
an example to illustrate the hardware architecture of the entire
network. In this example, the input image and kernel size are
both 2× 2, and the number of the convolution kernels is 16. And
the configurable neurons with two types of activation functions,
following behind the convolution layer, are implemented by the
circuit in Figure 6B. This circuit mainly consists of one Single-
Pole-Double-Throw switch (SPDTs) and one comparator. The
function of the SPDTs is to decide which types of output value,
±1 (±VCC) or 0,1 (GND,VCC) the comparator will be. To
be more specific, the input of SPDTs Vs would be set to be
VCC if a neuron with the types of value 0,1 (GND, VCC) were
expected. Otherwise, it would be set to be GND. The current
values obtained by the VMM operation are converted to voltages
by op-amp, afterward these voltages are input to the comparator.
And the output of the comparator is the input of the fully
connected layer.

Here, the convolution kernel size of the CFB-CNN
architecture is set to be 9× 9, and the number of the kernel is 16.
As shown in Figure 5, each kernel is arranged in two columns,
therefore, each one will consume 9 × 9 × 2 memristors. And all
the sixteen kernels need to execute 400 convolution operations.
Hence, the total number of memristors that the convolution layer

required is 162 × 400 × 16. As mentioned above, sixteen feature
maps with size being 20 × 20 would be output by convolutional
layer, as a result of which, the number of neurons input to fully
connected layers is 20 × 20 × 16. And the number of weights
in fully connected layer is 20 × 20 × 16 × 10, on account of the
number of categories needed to be classified of recognition task.
Consequently, 20 × 20 × 16 × 10 × 2 memristors are required
in fully connected layer.

SIMULATION AND EXPERIMENTAL
RESULTS

Simulation About Network Parameters
Selection
Since there is no pooling layer in the CFB-CNN architecture,
the size of the feature maps which poses a significant impact
on network performance is only determined by the size of the
convolution kernel. Beyond that, the input number of the fully
connected layer also depends on kernel size. And the number
of memristors in fully connected layer is also determined by the
number of neurons input to it. Therefore, network performance
and the total number of memristors required are seriously
affected by the kernel size. And the results of simulation about
the influence of convolution kernel size and kernel numbers
on network performance and the total number of memristors
required are given in Figure 7.

As shown in Figure 7C, for the problem of MNIST dataset
identification, whether the neuron mode is configured to be ±1
or 0,1, the memristor amounts soars with the increase of the
convolution kernel size ranging from 3 × 3 to 11 × 11. As
for the recognition performance of the CFB-CNN architecture,
it improves continuously when the kernel size increases from
3 × 3 to 9 × 9 as shown in Figures 7A,B. However, when the
convolution kernel size is set to be 11 × 11, there is no evident
improvement in network performance except for the increased
hardware consumption. Therefore, in order to make the network
have a higher recognition rate and less hardware consumption,
the kernel size is configured to be 9 × 9. Another information
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FIGURE 5 | Memristor array structure of the convolution kernel. The pixels in the sliding window are convolved with 9 × 9 kernel using the memristor array.

FIGURE 6 | The example depicts the hardware implementation of the CFB-CNN architecture, (A) module of convolution layer, (B) detailed circuit of configurable
neurons, (C) module of fully connected layer.

acquired, under the condition where the convolution kernel size
is configured to be 9 × 9, is that when the number of kernels is
set to be 16, 18, and 20, respectively, the CFB-CNN architecture
can perform well with recognition rate more than 98% no

matter what kind of the hidden neuron mode is configured.
However, the memristor amounts soars up with the increase of
kernel number as shown in Figure 7C, making it difficult for
hardware implementation of the CFB-CNN architecture due to
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FIGURE 7 | Simulation results about convolution kernel size and amounts impact on network performance and number of memristors that required in hardware
implementation of the CFB-CNN architecture, (A) simulation results for ±1 MD, (B) simulations results 01 MD, (C) memristor amounts required in hardware
implementation of the CFB-CNN architecture.

the enormous overhead of memristors. Therefore, the size and
number of convolution kernels in the CFB-CNN architecture is
configured to be 9× 9 and 16.

Effect of Memristance Fluctuation and
Array Yield on Network Performance
Firstly, the weights in the well-trained CFB-CNN architecture
are programmed to the memristor array using the method in
Figure 4. Then, the memristor based CFB-CNN architecture is
tested on the MNIST dataset. Without considering any non-
ideal characteristics of memristors, the CFB-CNN architecture
based on memristor array has a recognition rate of 98.2% for
binary input images and 98.37% (4-bit-±1 MD) or 97.73% (4-
bit-01 MD) for 4-bit input images. Although the manufacturing
technologies of binary devices are relatively mature, the factors
that affect network performance, such as yield and device
resistance fluctuations, cannot be ignored. Hence, the Monte
Carlo method is used to analyze the influence of memristance
variation and yield of array on network performance. In
simulation, the memristance of HRS and LRS corresponds to
1 M� and 1 k�, respectively (Liu et al., 2016). The excitation
signal adopts a voltage pulse with a fixed amplitude of 0.1 V, and
the pulse width is 10 ns. That is to say, when the pixel value of
the input image is binary, viz., 0 and 1, the pixel value “1” will
be encoded as one pulses, in contrast, the pixel value “0” means
that there is no pulse. Likewise, when the input of the image is
4 bits, the memristor based CFB-CNN architecture inputs are
distributed from 0 to 15 pulses, to be more specific, when the
pixel value is 8, it will be encoded as 8 pulses with amplitude
and pulse width being 0.1 V and 10 ns. For the defect of device
variation, it is assumed that the memristance variation follows
normal distribution, which can be described as Eq. 5.

R ∼ N(µ0, σ
2) (5)

Where µ0 represents the average values, viz., 1 M� in HRS and
1 k� in LRS. The parameter σ should satisfy the equation that
depicts as Eq. 6.

σ = µ0 × rate (6)

where the parameter rate represents the percentage of variation
varying from 0 to 30%.

To analyze the influence of device variation on the CFB-CNN
architecture, the memristors suffered from the defect of variation
should be mapped back to the logical weights in CFB-CNN.
Specifically, suppose that the two memristors corresponding to
weight “1” experience a resistance fluctuation, their conductance
will change from GLRS and GHRS to G’LRS and G’HRS, where G’LRS
and G’HRS in memristor array are the actual representation of
the weight “1,” while GLRS and GHRS in memristor array are the
ideal representation of the weight “1.” Consequently, this two
memristors suffering from the fluctuation no longer correspond
to a perfect “1” weight in the CFB-CNN architecture. And the
actual weight in CFB-CNN corresponding to the two memristors
after experiencing the fluctuation should be obtained from Eq. 7.

wr
i = x =

1
k

yr =
1

GLRS − GHRS
yr (7)

where yr represents the difference of the conductance of the two
memristors after experiencing a fluctuation in the memristance,
and wr

i represents the actual weight in CFB-CNN corresponding
to the two memristor after experiencing variation.

For the yield problem, an assumption has been made that
when the device in array is damaged, it means that this memristor
sticks at GHRS (S-A-H) or GLRS (S-A-L). During the process
of simulation, the resistance in memristor array is randomly
changed to be GHRS or GLRS for emulating the defect of S-A-
H or S-A-L (Liu et al., 2017). And the damaged device has a
50% chance of being stuck at GHRS or GLRS when there exists
a yield problem.

The impact of device variation on network performance when
neurons are configured to be different types is firstly analyzed.
Figure 8A shows the impact on network performance when
device variation ranges from 0 to 30%. Obviously, when the
memristance variation is 26%, the recognition rates of the model
of 01 MD and 4-bit-01 MD are 93.43 and 94.3%, respectively.
As for the model of ±1 MD and 4-bit-±1 MD, they degrade to
about 90.85 and 89.68% in separate. And when the memristance
variation is 30%, the recognition rates of ±1 MD and 4-bit-
±1 MD are declined to 47.53 and 56.19% separately, but the
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FIGURE 8 | Impacts caused by different types of defects on 01 MD and 4-bit-01 MD or ±1 MD and 4-bit ±1 MD, (A) recognition rate of CFB-CNN architecture on
MNIST dataset with memristance variation varying from 0 to 30%, (B) recognition rate of CFB-CNN architecture on MNIST dataset when damaged device rate is
varying from 0 to 40%.

model of 01 MD and 4-bit-01 MD still achieve about 79.38 and
77.2% recognition rates severally.

After that, the impact of yield rate in memristor array on
the CFB-CNN architecture’s performance is also analyzed on
MNIST dataset. And, to facilitate the analysis of impact of yield
rate in array on the CFB-CNN architecture, the logical value 0
and +1 are used to represent the low conductance state (GHRS)
and the high conductance state (GLRS) in memristor array,
respectively, so the relationship between the weights in the CFB-
CNN architecture and conductance states in memristor array is
similar as in Figure 9A. Thereby, in the process of simulating the
influence of the array yield on network performance, the original
weight matrix containing only +1, −1 should be expanded into
a weight matrix containing only 0, 1 according to the relation
shown in Figure 9A. Subsequently, the values in the matrix are
assigned “0” (GHRS) and “1” (GLRS) according to the ratio of
0∼40%, as shown in Figure 9B. As shown in Figure 8B, with the
yield rate being 64%, the recognition rate of the ±1 MD remains
about 91.28%. While the recognition rate of 01 MD drops nearly
to 89.13%. However, the recognition rates of 4-bit-01 MD and 4-
bit-±1 MD models both decrease slightly, and their recognition
rates are 88.73 and 87.32%, respectively.

Impact of Neuron Output Variation on
Network Performance
In addition to the defect that caused by device, the noise
in the circuit can also lead to a fluctuation on the neuron
outputs, which may also degrade the CFB-CNN architecture
performance. Hence, it makes sense to investigate the influence
of neuron output fluctuation on performance of this proposed
architecture. The configurable neurons would output impulse
voltage with amplitude to be 0 V (GND), 3.3 V (VCC), or
±3.3 V (±VCC), which corresponds to the logical value 0, 1, or
±1 of the configurable neuron output in the trained CFB-CNN
architecture, respectively. Here, an assumption has been made

that the fluctuation of neuron output value satisfies the relation of
normal distribution, and the expectations of the distribution are
0 V, 3.3 V, or±3.3 V, respectively. That means, if the configurable
neuron needs to output an ideal voltage 0 V, its real output voltage
would be determined by the relation N ∼ (0, σ2). In the same
way, the output value after experiencing variation should also be
mapped back to neuron output in the CFB-CNN architecture.
When the output value experiencing fluctuation changes from 3.3
to 3.63 V, the neuron output in CFB-CNN would change from 1
to 1.1. The parameter σ, ranging from 0 to 1.2, reflects the range of
the fluctuation. The analysis results of neuron output fluctuation
as shown in Figure 10.

Obviously, when the neuron is configured as ±1, the
fluctuation of the neuron has less influence on the network
performance no matter what kind of input the CNN-CFB
architecture is, because it is more difficult to achieve the transition
from the logic level “−1” to the logic level “+1” than the logic
level “0” to the logic level “1.”

Simulation of CFB-CNN With Pooling
Layer
In this section, a controlled experiment, comparing the
CFB-CNN architecture with pooling layer (MODEL1) with
the counterpart without pooling layer (MODEL2) from the
perspective of defects tolerance and area consumption, is given
to demonstrate why the CFB-CNN architecture does not need
a pooling layer. And the comparison results about networks’
robustness under the condition where the yield rate and device
variation are ranging from 0 to 40% and 0 to 30% in separate.
However, when the mode of the hidden neurons in MODEL1
is configured to be 0,1, the condition of the analysis for neuron
output variation is ranging from 0 to 3% being different from
that when the hidden neurons are configured to be +1 or −1.
And in order to exclude the influence of other factors, following
limitations are made:
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FIGURE 9 | The illustration of the simulation process about yield problem, (A) relationship between the weights in CFB-CNN architecture and conductance states in
memristor array, (B) description about how to simulate the damaged device in Python.

• Firstly, in order to eliminate the difference on the
robustness of the network on non-ideal devices caused by
different convolution kernels and the size of feature maps
that input to fully connected layer, a large convolution
kernel size, namely 7× 7, is also used in MODEL1.
• Secondly, to obtain the feature map size of 20 × 20, the

pooling layer kernels are set to be 3× 3 and the step size is 2.
• Finally, in order to avoid the different performance

resulting from difference in the number of memristors used
in MODEL1, the number of convolution kernels is 21. In
this case, the number of memristors used in MODEL1 is
roughly the same as the number of memristors used in
MODEL2.

The ideal recognition rate of the MODEL1 is 98.43 and
96.79% corresponding to the neuron mode of +1 or −1 and
0,1, respectively. Under the condition where the neuron mode
is configured to be +1 or −1, its performance has a certain
improvement compared with MODEL2. However, when the
neuron mode is configured to be 0,1, the recognition rate of
the MODEL1 is 1.43% lower than MODEL2. As shown in
Figures 10, 11A,B, when the hidden layer neuron configuration
of the MODEL1 is 0,1, the robustness of MODEL1 to device
non-ideality is declined slightly. What’s more, the neuron output
variation degrades the performance of the CFB-CNN architecture
sharply as shown in Figures 11C,D. Last but not least, the
complexity of hardware implementation for MODEL2 declines
significantly compared with MODEL1 resulting from the fact
that no pooling layer is needed in MODEL2. Based on the

above analysis, the CFB-CNN architecture without pooling layer
cannot only simplify the design of the circuit, but also has
excellent robustness to neuron output variation at the cost
of negligible recognition loss. Consequently, the CFB-CNN
architecture without pooling layer is adopted in this work.

Simulation With Different Proportions of
Neuron Configuration
As mentioned in Section “Convolutional Neural Network,”
the proportion µ could be adjusted to determine how many
feature maps to be binarized to +1 or −1. And in Sections
“Effect of Memristance Fluctuation and Array Yield on Network
Performance” and “Impact of Neuron Output Variation on
Network Performance,” we just present the non-ideal analysis
results of the memristor based CFB-CNN architecture with µ

being 0 or 1. For a more detailed analysis of the architecture, a
simulation with different proportions of neuron configuration is
given. Table 1 shows the recognition performance of the CFB-
CNN architecture on MNIST dataset without considering defects.

As shown in Table 1, the network gets good recognition
performance under different configuration. Similarity,
considering non-ideal conditions mentioned above, the
performance of this architecture with different proportions of
neuron configuration is analyzed and shown in Figure 12.

As shown in Figures 12A,B, the model of ±1 MD shows
excellent adaptability to the yield defects. And the architecture
of 01 MD has good adaptability to the memristance variation
defects. As shown in Figures 12C,D, the robustness of the
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FIGURE 10 | Neuron output variation analysis results of ±1 MD (left, A) and 4-bit-±1 MD (bottom left, C) or 01 MD (right, B) and 4-bit-01 MD (bottom right, D), and
each box corresponds to 50 experiment results.

CFB-CNN architecture to the neuron output variation with the
proportion of the neuron configuration being 0% is improved
by utilizing two kinds of activation functions. Moreover, with
the different proportions, the robustness of the network to
different device defects is also varied. Hence, we can choose
the appropriate proportion to improve the performance of
the memristor based CFB-CNN architecture according to the
characteristic of the memristor array.

Implementation Overheads
To evaluate the hardware overheads of the memristor based CFB-
CNN architecture, the size of Pt/HfO2:Cu/Cu memristor (Liu
et al., 2016) ranging from 2 to 5 µm is used for analyzing. And
the impulse voltages with amplitude and width being 0.2 V and
50 ns are used as the read and programming conditions, while
the voltages with (1.5 V/50 ns) and (−2 V/50 ns) are used for
setting and resetting operation, respectively. The evaluation for
energy consumption of the CFB-CNN architecture consists in

energy consumption in convolutional layer and fully connected
layer. And for the inference of one picture in MNIST dataset,
an estimation method similar to ref (Li et al., 2017) is used
to evaluate the energy consumed in the fully connected layer,
while the energy consumed in convolutional layer is estimated
as follows:

• Firstly, we should count how many points with a pixel
value of “1” are included in the test set after binarization
processing, and then calculate the average number of pixels
included in each image. According to statistics, the total
number of pixels is around 1.52e6, and so the average
number of pixels contained in each image is 152. That is
to say, each image will contain 152 pulses for input.
• Secondly, a geometric probability model is introduced to

approximate the number of pixels included in each sliding
process of the convolution kernels, since the pixels included
in the convolution kernels during each sliding process are
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FIGURE 11 | The influence of device non-ideality on the recognition rate of the CFB-CNN architecture with pooling layer, (A) the influence of array yield on the
recognition rate of the CFB-CNN architecture, (B) the influence of the memristance variation on the performance of the CFB-CNN architecture, (C,D) the influence of
the neuron output variation on the recognition rate of the CFB-CNN architecture with pooling layer and hidden layer neurons configured as ±1 or 0, 1, respectively.

uncertain. Specifically, when the size of the convolution
kernel is 9 × 9, it would account for the percentage of
81/784 in a 28× 28 image. Therefore, the number of pixels
contained in the convolution kernel in each sliding process
is 152× 81/784, approximately 16. Which means that, there
would be 16 rows of valid inputs in the memristor array
as shown in Figure 5. Hence, in each convolution process,
16 × 32 memristors will participate in the calculation, and
the number of devices with low resistance state and high
resistance account for half, respectively.
• Finally, the energy consumption of one convolution

operation is calculated from Eq. 8. And the total energy
consumption of the convolutional layer is 400 times of that
consumed by one convolution operation.

Ef =
V2

R
RON

× NON ×1t +
V2

R
ROFF

× NOFF ×1t (8)

where VR represents the input voltage (Here assumed to be
0.1 V with pulse width being 50 ns), RON and ROFF represent
the memristor state in LRS and HRS in separate, while NON
and NOFF represent the number of memristors in LRS and
HRS, respectively.

In the same way, for the model of 4-bit-01 MD or 4-bit-
±1 MD, the method of averaging is used to calculate the
number of pulses that will be included in each image when
the input images are compressed into 4 bits. To be more
specific, the sum of the pixels of the test set image quantized
to 4 bits is first calculated, and then it is converted into the

TABLE 1 | Recognition rate on MNIST varying with proportion.

Proportion (µ) 1 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0

Recognition rate (%) 98.2 98.17 98.17 98.01 98.15 98.18 97.97 98.08 98.22
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FIGURE 12 | The CFB-CNN architecture with different proportions of neuron configuration with different types of defects existing in memristor array, (A) the impact
of the yield ranging from 60 to 100% in memristor array on the CFB-CNN architecture, (B) the impact of memristance variation on the performance of CFB-CNN
architecture, (C) the impact of neuron output variation on the CFB-CNN architecture, (D) detailed distribution of test accuracy with the parameter σ being 1.2 and
the proportion of the neuron configuration being 12.5 and 0.0%, respectively.

corresponding number of pulses according to the coding rules.
And finally the average number of pulses contained in each
image is obtained, that is 2245. Since, there are 28 × 28
pixels in an image, we assume that each pixel is able to be
encoded into 2245/784, about three pulses. In addition, since the
size of the convolution kernel size is 9 × 9, there will be 9 × 9
rows of inputs in the memristor array. Hence, in each convolution
process, 81 × 32 memristors will participate in the convolution

TABLE 2 | Implementation overheads.

Input Type Latency Area (F2) Energy (J) Device numbers

CFB-CNN (0,1) 0,1 50 ns 4.6592e6 5.4270e-8 1.1648e6

CFB-CNN (±1) 0,1 50 ns 4.6592e6 8.3282e-8

CFB-CNN (0,1) 4 bits 50 ns 4.6592e6 7.8021e-7 1.1648e6

CFB-CNN (±1) 4 bits 50 ns 4.6592e6 8.1041e-7

calculation, and the high and low resistance memristors account
for half in separate. Terminally, the energy consumption of one
convolution operation for the model of 4-bit-01 MD or 4-bit-
±1 MD is calculated as Eq. 9.

E4bit = 3Ef (9)

TABLE 3 | Performance comparison with other publications.

Parameters Reference
(Yakopcic et al.,

2017)

Reference (Sun
et al., 2019a)

This work

Network Structure 6c-2s-72c-2s-FCL 20c-2s-FCL 16c-FCL 16c-FCL

Memristor Amount 7,898,026 1,336,000 1,164,8001,164,800

Activation Function Sigmoid Abs ±1 0,1

Accuracy 98.92% 99% 98.2% 98.22%

Power Dissipation (W) >10 0.156–3.142 1.666 1.085
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As shown in Table 2, the energy cost is different between the
CFB-CNN architecture at different modes. This is mainly because
when the hidden layer neuron is configured to be 0,1, part of
the voltage pulse amplitude input to the fully connected layer is
0 V, therefore, some memristors in the array are not involved
in the convolutional operation. Table 3 shows the comparison
of the performance between our network and other similar
designs. We note that the proposed CFB-CNN architecture offers
comparable performance.

We can notice that the number of memristors required in the
CFB-CNN architecture is the least, in the case of that, it can still
achieve the similar recognition rates compared with other two
works. And the power dissipation of the CFB-CNN architecture is
also more competitive compared with other two advanced works,
which means that the proposed CFB-CNN architecture is suitable
for embedded implementation.

CONCLUSION

In this work, we propose a CFB-CNN architecture, whose
inputs, weights, and neurons are all binary values. In addition,
we have given the scheme about hardware implementation of
configurable neurons. Furthermore, the CFB-CNN architecture
is verified to be SNN-compatible by encoding the pixel value
of the input image as number of spikes for simulation, which
means that both SNNs and CNNs are application candidates
for this architecture. Certain simulations have been conducted
on the MNIST to verify the CFB-CNN architecture. The results
show that when the architecture uses a two-layer network, it
has a good classification performance on the MNIST data set,
with a recognition rate of 98.2%. In addition, this architecture
shows excellent robustness to device non-ideal characteristics,
specifically, when the yield rate is about 64% and the hidden

neuron mode is configured as −1 and +1, the CFB-CNN
architecture can achieve about 91.28% recognition accuracy.
Whereas the resistance variation is about 26% and the hidden
neuron mode configuration is 0 and +1, the CFB-CNN
architecture can obtain about 93.43% recognition accuracy. To
sum up, the network architecture of this work is based on binary
memristive synaptic device, and it has better robustness to the
defect of device which means that it is suitable for embedded
application of memristors.

DATA AVAILABILITY STATEMENT

Publicly available edatasets were analyzed in this study. This
data can be found here: http://yann.lecun.com/exdb/mnist/index.
html.

AUTHOR CONTRIBUTIONS

LH and HL designed the architecture of full-binary CNN,
the circuit of configurable neurons and the experiments. WW
and ZL gave help for designing methods of simulation. LH
performed the simulation work and conducted the experiments.
LH, HL, ZL, WW, HN, and QL contributed to the writing and
editing of the manuscript. JD supervised the project. All authors
discussed the results.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 61974164, 62074166, 61804181,
61704191, 62004219, and 62004220).

REFERENCES
Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Parnell, T., Tuma, T.,

et al. (2018). Neuromorphic computing with multi-memristive synapses. Nat.
Commun. 9:2514.

Courbariaux, M., and Bengio, Y. (2016). BinaryNet: training deep neural networks
with weights and activations constrained to +1 or -1. arXiv [Preprint] arXiv:
abs/1602.02830.

Girshick, R. J. C. S. (2015). Fast R-CNN. arXiv [Preprint] arXiv:1504.08083.
Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G. S., and Linderman, R. W. (2014).

Memristor crossbar-based neuromorphic computing system: a case study. IEEE
Trans. Neural Netw. Learn. Syst. 25, 1864–1878. doi: 10.1109/tnnls.2013.
2296777

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet Classification with
Deep Convolutional Neural Networks, Vol. 60. New York, NY: ACM, 84–90.

Li, Z., Chen, P.-Y., Xu, H., and Yu, S. (2017). Design of ternary neural network
with 3-D vertical RRAM array. IEEE Trans. Electron Devices 64, 2721–2727.
doi: 10.1109/ted.2017.2697361

Liu, C., Hu, M., Strachan, J. P., and Li, H. (2017). “Rescuing memristor-based
neuromorphic design with high defects,” in Proceedings of the 2017 54th
ACM/EDAC/IEEE Design Automation Conference, (Piscataway, NJ: IEEE).

Liu, S., Wang, W., Li, Q., Zhao, X., Li, N., Xu, H., et al. (2016). Highly
improved resistive switching performances of the self-doped Pt/HfO2:Cu/Cu
devices by atomic layer deposition. Sci. China Phys. Mech. Astronomy 59:
127311.

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Midya, R., Wang, Z. R., Asapu, S., Joshi, S., Li, Y. N., Zhuo, Y., et al. (2019).
Artificial neural network (ANN) to spiking neural network (SNN) converters
based on diffusive memristors. Adv. Electron. Mater. 5:1900060. doi: 10.1002/
aelm.201900060

Nikiruy, K. E., Emelyanov, A. V., Rylkov, V. V., Sitnikov, A. V., and Demin, V. A.
(2019). Adaptive properties of spiking neuromorphic networks with synapses
based on memristive elements. Tech. Phys. Lett. 45, 386–390. doi: 10.1134/
s1063785019040278

Pham, K. V., Nguyen, T. V., Tran, S. B., Nam, H., Lee, M. J., Choi, B. J., et al. (2018).
Memristor binarized neural networks. J. Semicond. Technol. Sci. 18, 568–577.

Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. (2008). The missing
memristor found. Nature 453, 80–83. doi: 10.1038/nature06932

Sun, S.-Y., Li, Z., Li, J., Liu, H., Liu, H., and Li, Q. (2019a). A memristor-
based convolutional neural network with full parallelization architecture.
IEICE Electron. Express 16:20181034. doi: 10.1587/elex.16.201
81034

Sun, S.-Y., Xu, H., Li, J., Li, Q., and Liu, H. (2019b). Cascaded architecture
for memristor crossbar array based larger-scale neuromorphic
computing. IEEE Access 7, 61679–61688. doi: 10.1109/access.2019.29
15787

Sun, X., Peng, X., Chen, P.-Y., Liu, R., Seo, J-s, and Yu, S. (2018). “Fully
parallel RRAM synaptic array for implementing binary neural network with
(+1,-1) weights and (+1,0) neurons,” in Proceedings of the 2018 23rd Asia

Frontiers in Neuroscience | www.frontiersin.org 13 March 2021 | Volume 15 | Article 639526

http://yann.lecun.com/exdb/mnist/index.html
http://yann.lecun.com/exdb/mnist/index.html
https://doi.org/10.1109/tnnls.2013.2296777
https://doi.org/10.1109/tnnls.2013.2296777
https://doi.org/10.1109/ted.2017.2697361
https://doi.org/10.1109/5.58356
https://doi.org/10.1002/aelm.201900060
https://doi.org/10.1002/aelm.201900060
https://doi.org/10.1134/s1063785019040278
https://doi.org/10.1134/s1063785019040278
https://doi.org/10.1038/nature06932
https://doi.org/10.1587/elex.16.20181034
https://doi.org/10.1587/elex.16.20181034
https://doi.org/10.1109/access.2019.2915787
https://doi.org/10.1109/access.2019.2915787
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-639526 March 22, 2021 Time: 13:40 # 14

Huang et al. Memristor Based Neural Networks

and South Pacific Design Automation Conference, (Piscataway, NJ: IEEE),
574–579.

Wang, J. J., Hu, S. G., Zhan, X. T., Yu, Q., Liu, Z., Chen, T. P., et al. (2018).
Handwritten-Digit recognition by hybrid convolutional neural network based
on HfO2 memristive spiking-neuron. Sci. Rep. 8:12546.

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2016). “Memristor crossbar
deep network implementation based on a convolutional neural network,” in
Proceedings of the 2016 International Joint Conference on Neural Networks,
(Piscataway, NJ: IEEE), 963–970.

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2017). “Extremely parallel memristor
crossbar architecture for convolutional neural network implementation,” in
Proceedings of the 2017 International Joint Conference on Neural Networks,
(Piscataway, NJ: IEEE), 1696–1703.

Yakopcic, C., Hasan, R., and Taha, T. M. (2015). “Memristor based neuromorphic
circuit for ex-situ training of multi-layer neural network algorithms,” in
Proceedings of the 2015 International Joint Conference on Neural Networks,
(Piscataway, NJ: IEEE).

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020). Fully
hardware-implemented memristor convolutional neural network. Nature 577,
641–646. doi: 10.1038/s41586-020-1942-4

Zeng, X., Wen, S., Zeng, Z., and Huang, T. (2018). Design of memristor-
based image convolution calculation in convolutional neural network. Neural
Comput. Appl. 30, 503–508. doi: 10.1007/s00521-016-2700-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Huang, Diao, Nie, Wang, Li, Li and Liu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 March 2021 | Volume 15 | Article 639526

https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1007/s00521-016-2700-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Memristor Based Binary Convolutional Neural Network Architecture With Configurable Neurons
	Introduction
	Architecture of Cfb-Cnn
	Convolutional Neural Network
	The Topology of CFB-CNN
	Training Method of CFB-CNN
	Hardware Implementation of CFB-CNN

	Simulation and Experimental Results
	Simulation About Network Parameters Selection
	Effect of Memristance Fluctuation and Array Yield on Network Performance
	Impact of Neuron Output Variation on Network Performance
	Simulation of CFB-CNN With Pooling Layer
	Simulation With Different Proportions of Neuron Configuration
	Implementation Overheads

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


