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The brain of neonates is small in comparison to adults. Imaging at typical resolutions

such as one cubic mm incurs more partial voluming artifacts in a neonate than in an adult.

The interpretation and analysis of MRI of the neonatal brain benefit from a reduction in

partial volume averaging that can be achieved with high spatial resolution. Unfortunately,

direct acquisition of high spatial resolution MRI is slow, which increases the potential

for motion artifact, and suffers from reduced signal-to-noise ratio. The purpose of this

study is thus that using super-resolution reconstruction in conjunction with fast imaging

protocols to construct neonatal brain MRI images at a suitable signal-to-noise ratio and

with higher spatial resolution than can be practically obtained by direct Fourier encoding.

We achieved high quality brain MRI at a spatial resolution of isotropic 0.4 mm with 6 min

of imaging time, using super-resolution reconstruction from three short duration scans

with variable directions of slice selection. Motion compensation was achieved by aligning

the three short duration scans together. We applied this technique to 20 newborns

and assessed the quality of the images we reconstructed. Experiments show that

our approach to super-resolution reconstruction achieved considerable improvement

in spatial resolution and signal-to-noise ratio, while, in parallel, substantially reduced

scan times, as compared to direct high-resolution acquisitions. The experimental results

demonstrate that our approach allowed for fast and high-quality neonatal brain MRI for

both scientific research and clinical studies.

Keywords: neonatal brain MRI, super-resolution, image reconstruction, anisotropic acquisition, isotropic

reconstruction, fast imaging, spatial resolution, high-resolution MRI

1. INTRODUCTION

Magnetic resonance imaging (MRI), as a noninvasive neuroimaging method, has revolutionized
our knowledge over the past 20 years in understanding the human brain. Imaging for neonates
and infants enables studying brain developments and neurodevelopmental disorders from early
stages, which is crucially important to both scientific research and clinical studies (Weisenfeld
and Warfield, 2009; Giampietri et al., 2015; Mongerson et al., 2019; Tortora et al., 2019; Ding
et al., 2020). However, it is challenging to precisely delineate the anatomical structures of the
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brain of neonates due to the small size of brain tissues in
comparison to adults (Dubois et al., 2020). The spatial resolution
is thus a critical factor in neonatal brain MRI. The typically used
spatial resolutions in current clinical MRI practices, such as 3D
imaging at isotropic 1 mm and 2D imaging with 0.5 mm in-plane
resolution and 2 mm slice thickness, unfortunately, incur more
partial voluming artifacts in neonates than in adults.

The interpretation and analysis of MRI of the neonatal brain
benefit from a reduction in partial volume effect by increasing
spatial resolution (Makropoulos et al., 2018; Dubois et al., 2019).
Unfortunately, direct high-resolution (HR) MRI acquisition is
time consuming and costly, and suffers from reduced signal-to-
noise ratio (SNR). The long MRI scan for high spatial resolution
potentially causes motion artifacts (Afacan et al., 2016). It is
more prominent to the neonates who cannot be sedated, e.g.,
in a scan for the purpose of scientific research where sedation
is typically unavailable. Also, even in scans where sedation is
enabled to avoid subject motion, e.g., in a clinical scan, the
long MRI scan for high spatial resolution leads to a substantial
reduction in SNR, which in turn, increases the difficulty in
distinguishing the signal of interest from noise. The underlying
principle, from the imaging physics perspective, is that the
reduced voxel size raises a reduction in the amount of signal
received by the individual voxels. Consequently, the acquisition
of short duration is critically important to neonatal MRI. The
limitations of direct HR acquisition, therefore, necessitate the
development of the methods that allow for imaging for neonates
at high spatial resolution and high SNR, while in parallel, with
short scan duration.

Current methods address the above limitations with a number
of techniques, including parallel imaging (Pruessmann et al.,
1999; Griswold et al., 2002), shifting to the ultra high field (7T)
MRI (Annink et al., 2020), and super-resolution reconstruction
(SRR) (Plenge et al., 2012). Parallel imaging and 7T MRI rely
on hardware and imaging platforms, such as high density phased
array receive coils and appropriate pulse sequence modification.
In contrast, SRR, as a post-acquisition processing method, is
performed on the acquired data that is in general of low spatial
resolution and high SNR. Therefore, SRR is not subject to these
limitations in hardware and platforms.

SRR originated in Tsai and Huang (1984) and was used for
improving the quality of natural images. Fiat (2001) introduced
SRR to MRI. It was showed in Scheffler (2002), and Peled and
Yeshurun (2002) that SRR is unable to enhance the in-plane
resolution of a 2D MRI or the resolution of a true 3D acquisition
due to the Fourier encoding scheme. Also, it was demonstrated
in Greenspan et al. (2002) that SRR is effective to improve
the through-plane resolution of acquisitions of 2D slice stacks
since the slices are individually Fourier encoded. Consequently,
current SRR methods are designed to reduce the slice thickness
of 2D slice stacks. Combining multiple low-resolution (LR)
scans with different orientations was leveraged in Shilling et al.
(2009), and then this framework was extended in Poot et al.
(2010) to perform SRR with arbitrary image orientations and
translations. SRR was quantitatively assessed and experimentally
demonstrated in Plenge et al. (2012) to allow for a trade-off
between spatial resolution, SNR, and acquisition time. Extensive

SRR methods have recently been developed to improve MRI
quality with a various of techniques (Gholipour et al., 2010a,b,
2015; Rousseau et al., 2010; Murgasova et al., 2012; Scherrer et al.,
2012, 2015; Van Reeth et al., 2012; Kainz et al., 2015; Dalca et al.,
2019; Sui et al., 2019, 2020).

SRR algorithms can mainly be classified as either a
learning-based or a model-based method. Learning-based SRR
summarizes the patterns mapping between LR and HR images
over HR training data sets. Deep learning-based SRR has recently
gained significant interest (Chaudhari et al., 2018; Chen et al.,
2018; Zhao et al., 2019; Cherukuri et al., 2020; Wang et al.,
2020; Xue et al., 2020). However, these methods require a large
number of HR MRI acquisitions as the training data sets to learn
the SRR model. The quality of the training data sets directly
determines the quality of SRR. As discussed above, however, it is
practically challenging to acquire HR data sets. Therefore, model-
based SRR is commonly used in practice. Model-based SRR relies
on an MRI acquisition model, from which an inverse problem
is derived. As SRR estimates the super-resolved slices from
much fewer acquired slices, the inverse problem is severely ill-
posed. Prior knowledge, also known as regularization, is typically
incorporated to separate the optimal estimate from the infinitely
many solutions to the inverse problem. State-of-the-art priors
include total variation (TV) (Plenge et al., 2012; Shi et al., 2015;
Tourbier et al., 2015), non-local mean (Manjón et al., 2010), and
gradient guidance Sui et al. (2019, 2020).

In this work, we developed a methodology for SRR based
on the gradient guidance regularization method (Sui et al.,
2019). It allows for high spatial resolution MRI with high
SNR, excellent contrast-to-noise ratio (CNR), and reduced scan
time, in comparison to direct HR acquisition. We achieved
high quality brain MRI at a spatial resolution of isotropic
0.4 mm with 6 min of imaging time, using SRR from three
short duration scans with variable directions of slice selection.
Motion compensation is achieved by aligning the three short
duration scans together. Our technique is thus suitable for use
in a setting where direct HR acquisition is impractical. We
applied this technique to 20 newborns and assessed the quality
of the images we reconstructed. Experiments show that our
SRR approach achieved considerable improvement in spatial
resolution and SNR, while, in parallel, substantially reduced scan
time, as compared to direct HR acquisition. The experimental
results demonstrate that our approach allows for fast and high-
quality neonatal brain MRI for both scientific research and
clinical studies.

The novelty of this work is four-fold: (1) We take advantage
of undersampling which allows us to form three undersampled
neonatal scans with reduced acquisition time; (2) We encode the
HR k-space data with three rapid undersampled observations
of the HR k-space data convolved with a spatially oriented
low-pass filter (being oriented axial, coronal, and sagittal). The
estimation of the HR image from the undersampled observations
is formulated as a deconvolution reconstruction problem; (3)
The deconvolution reconstruction benefits from priors on edge
position, which are easy to obtain and accurate in our setting; and
(4) We apply our technique to neonatal brain MRI and achieve
high quality images with reduced acquisition time.
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2. MATERIALS AND METHODS

The purpose of our approach is to construct neonatal brain MRI
images at isotropic high spatial resolution and high SNR with
reduced acquisition time for both scientific research and clinical
studies. We develop an SRR technique that can reconstruct
isotropic HR images from multiple anisotropic acquisitions with
variable directions in slice selection. To assess our approach, we
simulated an MPRAGE data set based on images at an ultra high
resolution of isotropic 250 µm and acquired 60 T2 FSE images
from 20 newborns on a Siemens 3T scanner. In this section,
we present the theory and algorithm used in our approach, the
detailed descriptions of our data sets, the criteria used in the
assessments, and the experimental designs, respectively.

2.1. Neonatal MRI Acquisition Strategy
As SRR is effective in enhancing the through-plane resolution
of 2D slice stacks, we acquire the images with large matrix
size and thick slices. The large matrix size ensures the in-plane
high resolution while the use of thick slices enables short scan
duration and high SNR. However, the thicker the slices, the more
severe the partial volume effect, and thus the more difficult the
super-resolution. To this end, we acquire multiple LR images to
facilitate SRR, where an increased number of slices are acquired.
However, the total acquisition time is increased accordingly due
to the increased number of scans. Fortunately, we can employ
fast imaging techniques to accelerate the scans, such as fast
spin echo (FSE) imaging. For images that yield long repetition
time (TR), such as T2-weighted images, the FSE technique can
significantly reduce the scan duration by nETL times with an echo
train length (ETL) of nETL that typically ranges from 4 to 32 in
clinical routines.

The goal of SRR is to estimate the missing signal in k-space
based on the sampled k-space data. Our approach performs the
estimation in the spatial image domain, which relates to the k-
space data through Fourier transforms. Variable slice selection
directions are incorporated in the acquisitions of the LR scans,
where each LR scan contains a certain amount of k-space data
in the slice selection direction. Consequently, the LR scan set
comprises the spatial frequencies in different directions in the 3D
frequency spectrum space. By combining multiple such LR scans,
the difficulty of the SRR is thus reduced as an increased amount
of k-space data is sampled. Although the slice selection directions
and the number of the LR scans can be arbitrary, orthogonal
(axial, coronal, and sagittal) acquisitions typically achieved a
trade-off between acquisition time and SRR performance, since
the acquired data yields the three complementary imaging planes.

We acquire three T2 FSE images from each neonate with
variable directions in slice selection, which are typically carried
out in three complementary planes (axial, coronal, and sagittal),
and perform SRR to form an isotropic HR image. We set the
parameters according to the scan time:

T ≃ TR ·

⌈

FoVp

Sp · facc · ETL

⌉

· NNEX , (1)

where FoVp denotes the Field of view (FoV) in the phase
encoding direction, Sp denotes the voxel size in the phase

encoding direction, facc is the acceleration factor of parallel
imaging, ETL is the echo train length, NNEX is the number of
excitations, and ⌈x⌉ returns the smallest integer that is >x. We
recommend that FoVp ranges from 120 to 150 mm to fit the
head size of the subject. Sp is kept at 0.39 mm. GRAPPA parallel
imaging is leveraged with an acceleration factor of 2. Averaging
is not considered in our fast imaging protocol, so NNEX = 1. We
recommend using ETL between 16 and 21 for fast scans of high
quality. TR is typically set over 10 s depending on the number of
slices required as well as the head size of the subject. We typically
acquire 60–80 slices per image, and the slice thickness is fixed at
2 mm. It takes <2 min with our fast imaging protocol to acquire
a T2 FSE image, i.e., T ≤ 120 s. For the largest value of FOV,
i.e., FoVp = 150 mm, with an ETL =21, it allows a TR ≤13.1
s according to (1), which is a sufficiently high value for TR.
Consequently, our protocol can ensure less than two minutes of
imaging time to acquire a T2 FSE image at the in-plane resolution
of 0.39 mm for a neonate. Besides the parameters related to the
scan time, we set TE = 93 ms, flip angle = 160◦, and echo spacing
= 9.8 ms. We use an interleaved acquisition mode, with which
an even-first ascending slice order with an interleave factor of 2
is incorporated, i.e., the slice order is [2 : 2 :N, 1 : 2 :N − 1] for
an image with N slices. The HR image is reconstructed at the
resolution of isotropic 0.39 mm, which is sufficiently high for
the interpretation and analysis of the anatomical structures of the
neonatal brain in clinical practices.

2.2. Neonatal MRI Reconstruction
We leverage the gradient guidance regularized SRR algorithm
(Sui et al., 2019) to reconstruct the neonatal MRI images1. Given
n acquired LR images {Y}n

k=1
, the forward model that describes

the MRI acquisition process can be found from the HR image
X by

yk = DkHkTkx+ εk, , k = 1, 2, 3, . . . , n, (2)

where yk and x are column vector form of Yk and X, respectively;
Tk denotes a coordinate transform of X in the 3D space; Hk

denotes a blur kernel;Dk denotes a downsampling operation; and
εk denotes the imaging noise.

The noise εk can be considered as additive and Gaussian when
SNR>3 (Hansen and Kellman, 2015). Therefore, the noise in
each acquisition can be independently formulated as an identical
Gaussian distribution. The HR reconstruction x is consequently
obtained by solving the inverse problem

min
x

n
∑

k=1

∥

∥DkHkTkx− yk
∥

∥

2

2
+ λ

∑

s∈S

∥

∥∇sx− gs
∥

∥

1
, (3)

where S indexes a set of spatial image gradients, gs denotes
the s-th component of the gradient guidance, ∇sx computes the
s-th spatial gradient of x, which is calculated from the same
orientation and the same scale as gs, and λ > 0 is a weight
parameter for the regularization term. The above minimization
can be accomplished by a subgradient descent (Bertsekas, 1999)

1The term “image” indicates a volumetric image of slice stack here and hereafter.
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or a proximal gradient descent algorithm (Daubechies et al.,
2003).

As the images are acquired fast, we consider that there is no
intra-volume head motion during the acquisition. Therefore, the
transform Tk in Equation (3) compensates for the misalignment
between scans. We use a rigid body transform to represent the
misalignment. Consequently, Tk is defined by the parameters
of six degrees of freedom (three for rotation and three and
translation). We first interpolate all the LR images to those
of the same size and the same resolution as the HR image
being reconstructed by using a third-order B-spline interpolation
method. We set T1 to an identity transform and evaluate Tk for
k > 1 by aligning the k-th interpolated LR image to the first
interpolated LR image. In the alignments, mutual information
is leveraged to measure the similarity between the first and k-th
images. We use the CRKIT2 to accomplish the image alignment.

The blur kernel Hk in Equation (3) is a spatial invariant
operator. It raises the partial volume effect in the acquired image.
As only the through-plane resolution is enhanced while the in-
plane resolution is kept unchanged, we design the blur kernel
as a low-pass filter in the slice selection direction, also known
as the slice profile. In the MRI acquisition, each slice is excited
by incorporating a selective gradient that is generated by the
radio frequency (RF). Ideally, the slice profile is desired to be
a boxcar function. This requires infinitely many frequencies to
yield the RF, which are impossible to obtain in practice. It is
crucial to appropriately approximate the slice profile in SRR
as the approximation directly influences the accuracy of the
forward model. In general, bell-curve profiles with wider bases
and narrower central peaks are leveraged, and slice thickness
is measured as the full width at half maximum (FWHM)
signal intensity. Gaussian profiles are widely used in MRI
reconstruction and have been demonstrated to be effective in
SRR (Rousseau et al., 2005; Jiang et al., 2007; Gholipour et al.,
2010a,b; Murgasova et al., 2012; Sui et al., 2019, 2020). Therefore,
we approximate the slice profile by a Gaussian function with an
FWHM equal to the slice thickness.

As the downsampling factor can be arbitrary, instead of
an integer for natural images, it is inconvenient to perform
the downsampling in the image domain. Consequently, the
downsampling operator Dk in Equation (3) is implemented in
the frequency domain by cropping out the low frequencies.
The respective upsampling operation is thus implemented
by inserting zeros at the missing high frequencies. In our
implementations, we combine the Gaussian profile and the
downsampling operator into a single filter in the frequency
domain for computational efficiency. As the Gaussian profile
is performed in a manner of a low-pass filter, truncating
high frequencies for downsampling does not cause intensity
oscillations in the image domain.

The spatial image gradient guides the HR reconstruction. The
index set S in the regularization term of Equation (3) comprises
40 spatial gradient fields that yield different orientations and
different scales, as suggested in Sui et al. (2019). All the 40
gradient fields are combined into a gradient guidance, denoted

2CRKIT - Computational Radiology Kit, http://crl.med.harvard.edu/software/.

by g in Equation (3). The s-th component of g is separately
computed from the image constructed by the interpolation and
average (IAA) method. In the IAA method, the n aligned LR
images are interpolated to the same size at the same resolution as
the HR reconstruction, and then the reconstructed HR image is
formed by averaging out the n interpolated images. Specifically,
with an image obtained by IAA, denoted by I, a component of

the gradient guidance is calculated by I − Dα
xD

β
yD

γ
z I where D

n
m

denotes the operation that circularly shifts an image in m ∈

{x, y, z} direction by n voxels. We set α to integers between −2
and 2, and β and γ between 0 and 2. We exclude the components
calculated at α = β = γ = 0 and α + β + γ < 0 to eliminate
the replicates. Consequently, we have 40 components calculated
for the gradient guidance. We put all the 40 components in a set
S and index them by gs in Equation (3). We set the regularization
weight parameter λ in Equation (3) to 0.1 in all experiments in
this paper according to our experimental investigation.

The source codes and a docker version of our reconstruction
algorithm can be checked out from our website3.

2.3. Assessment Criteria
We assess our approach in terms of spatial resolution, SNR, CNR,
and acquisition time.

2.3.1. Spatial Resolution

The signal intensity in a voxel is quantified as the integration
of the signal over a spatial region defined by the position and
size of the voxel. Spatial resolution is usually used to describe in
an image the number of independent voxels per unit length or
volume. Different from the measure based on voxel size, spatial
resolution refers to the ability to differentiate two types of brain
tissues that are relatively close together. As partial voluming
artifacts occur due to the dependent voxels, the number of voxels
suffering from partial volume effects can be an effective measure
for spatial resolution. The higher the spatial resolution, the fewer
the voxels affected by partial volume effects. To this end, we
evaluate the percentage of the voxels that comprise the signal
from more than one type of brain tissue and use it as the metric
of the partial volume effect estimation. An image at a higher
spatial resolution thus yields a lower metric value of partial
volume effect.

We consider three types of brain tissues in the estimation of
the partial volume effect from the neonatal MRI reconstruction:
cerebrospinal fluid (CSF), gray matter (GM), and white matter
(WM). As the three tissues yield different contrasts in MR
images, the intensities of the voxels from them scatter in three
clusters. Due to the partial voluming, there may be overlaps in
the three clusters. We thus investigate the distribution of the
voxel intensities of the HR reconstruction. First, we select an
image region that contains the three tissues, and then construct a
histogram of the voxel intensities over the selected image region.
It has been shown in Laidlaw et al. (1998) that the distribution
of voxel intensities from a pure tissue is Gaussian. Therefore, we
fit the histogram of the voxel intensities by a Gaussian mixture

3We are preparing the codes and the docker file, and will make them publicly

available after the paper is accepted.
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model (GMM) with three components that characterize the three
types of brain tissues. The voxels from a pure tissue are thus
identified if their intensities range from µ − δ to µ + δ for µ

and δ being the mean and half of FWHM of the corresponding
Gaussian component in the GMM, respectively. We apply the
GMM to the entire image to form the voxel set-1 containing all
voxels from the three tissues (i.e., voxels may contain the signal
from more than one tissues) and set-2 consisting of the voxels
identified from each pure tissue (i.e., voxels contain the signal
from only one tissue). The difference between the two sets of
voxels consequently indicates the number of voxels suffering
from the partial volume averaging.

2.3.2. SNR and CNR

We compute the SNR of an image from the mean of signal
intensities over the noise. Specifically, the SNR is found by

SNR = 10 log10

∑3
k=1 wksk

σ
∑3

k=1 wk
where sk andwk denote themean signal

intensity of the voxels and the percentage of the voxels from
the k-th pure tissue, respectively, and σ denotes noise measure.
Both sk and wk can be directly obtained from the fitted GMM
constructed above. sk is computed from the mean of the k-th
Gaussian component, while wk is evaluated as the maximum of
the k-th Gaussian component. We select an image region in the
background and compute the standard deviation of the voxel
intensities over the region as the noise measure.

Similar to SNR, we compute the CNR from the difference of
the mean of signal intensities between two types of tissues over

the noise: CNRj,k = 10 log10
|si−sj|

σ
We evaluate in the assessment

the CNR between CSF and GM, denoted by CNR:CSF-GM, the
CNR between CSF andWM, denoted by CNR:CSF-WM, and the
CNR between GM andWM, denoted by CNR:GM-WM.

2.4. Experimental Design
We conduct two experiments to assess our approach on
simulated data as well as the data acquired from 20 newborns
on a Siemens 3T scanner. The goal of the experiments is to
demonstrate that our approach achieves high-quality neonatal
brain MRI with reduced imaging time, which allows for the
studies with both research and clinical purposes.

We leveraged two other acquisition strategies as baseline
schemes to compare to in the experiments, including direct HR
acquisition (DA) and the single image-based super-resolution
(SISR) method. Our approach was assessed by comparing to DA
to verify the improved image quality and reduced acquisition
time. The SISR used the same SRR algorithm as our approach
with the same parameters setting. It is in fact a special case of our
approach when only one LR scan was acquired, i.e., n = 1 in
Equation (3). We used approximately three times more slices in
a single LR image than in an LR image in our approach, in order
to ensure equal acquisition time (by conducting the same number
of phase encoding steps) for a fair comparison. Consequently, the
comparisons to SISR evaluated the superiority of our approach
to variable slice selection direction over the acquisition with
constant slice selection direction.

We employed other four state-of-the-art SRR methods
as baseline methods to assess our approach, including the

interpolation and average (IAA) method, total variation (TV)
prior (Plenge et al., 2012), non-local upsampling (NLU) method
(Manjón et al., 2010), and a deep convolutional network-based
SRR (SRCNN) method (Dong et al., 2016). The IAA method
interpolated the n LR images to the same size at the same
resolution as the HR reconstruction by a third-order B-spline
method, and then aligned all the interpolated images together.
The reconstruction was finally obtained by averaging all the
interpolated and aligned images. IAA is one of the most widely
used methods in both clinical practices and scientific research
studies due to its effectiveness in improving SNR. We therefore
compared our approach to IAA to assess the applicability of our
approach in practical imaging tasks. The NLU method further
processed the results generated by IAA with a non-local mean
algorithm. The TVmethod used the same deconvolution scheme
as our approach to reconstruct the HR image. Our scan strategy
allows for training deep 2D SRR models as it acquires in-plane
HR slices. The deep SRR models can be trained on these HR
slices and then used to super-resolve the through-plane LR slices
to generate an isotropic HR image. Although recent years have
witnessed the extensively proposed deep neural networks-based
SRR methods, only lightweight deep architectures allow for the
training due to the limited number of HR slices acquired with our
scan strategy. We therefore employed SRCNN as a deep baseline
model in the experiments, which comprises about 8 k parameters
to train. The trained model was applied to the through-plane
LR slices of each LR image. The reconstructed HR image was
formed by averaging out all the super-resolved images on their
voxels. We set the weight parameter of the TV method at 0.1
for its best results according to the simulation results. We set the
parameters in NLU according to the recommendation in Manjón
et al. (2010).

2.4.1. Experiment 1: Simulations on MPRAGE Data

The goal of this experiment is three-fold: (1) to investigate
the influence of the gradient guided regularization on the SRR
performance; (2) to demonstrate that our anisotropic acquisition
strategy with variable directions in slice selection leads to
superior SRR to the strategy of single acquisition; and (3) to show
that our SRR approach achieves the MR images of higher quality
than direct HR acquisition in terms of spatial resolution and SNR.

For the experimental goal, we simulated a data set based on
the Dryad data set containing eight MPRAGE images at an ultra
high resolution of isotropic 250 µm (Lusebrink et al., 2017). This
data set was acquired from an adult subject, and the acquisition
time was about 1 h per image with very complicated protocols
and pre- and post-acquisition processing operations, in order
to preserve a satisfactory SNR. So it is practically impossible to
acquire such images in clinical routines. As there is currently no
publicly available HR neonatal brain scan, and it is challenging
to acquire an HR image from a neonate at a satisfactory SNR, we
used this data set for the simulation demonstrations. Considering
the goal of this experiment addressed above, it is reasonable to use
this data set for the demonstrations.

We generated eight images at the resolution of isotropic 0.5
mm by downsampling each original image, and used them as the
direct HR acquisitions. The downsampling followed the process
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FIGURE 1 | Investigation on the influence of the gradient guided regularization to the SRR performance in terms of PSNR and SSIM. The results show that our SRR

approach performed the best with the regularization weight parameter λ ranging from 0.05 to 0.3. The results also suggest that the regularization considerably

improved the SRR performance on the simulation data set by referring to the results at λ = 0 (in the case of no regularization).

defined in the forwardmodel, as shown in Equation (2). Then, we
simulated three LR images based on each direct HR acquisition
in the three complementary planes and used them as our
anisotropic acquisitions with variable directions in slice selection.
The in-plane resolution of these LR images was 0.5× 0.5 mm and
the slice thickness was 2mm. To keep the contrast unchanged, we
assumed the echo time (TE) and repetition time (TR) of these LR
images the same as the direct HR acquisitions. Each direct HR
acquisition comprised 193,600 phase encoding steps, while the
three LR images contained 132,000 phase encoding steps in total.
Therefore, the acquisition time of the three LR images was∼68%
of that of the direct HR acquisition. For the single acquisition-
based SRR, we generated an LR image at the resolution of 0.5 ×
0.5 × 0.73 mm. The resolution was derived from that the same
number of phase encoding steps (132,000 steps) were conducted
for this image. All the simulations for the LR images followed the
process described in Equation (2).

We investigated the regularization weight parameter λ in
Equation (3) to study the influence of the gradient guided
regularization on the SRR performance. We ran our SRR
approach with different λ values in a certain range and evaluated
the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) (Wang et al., 2004) against the ground truth image
in the simulation experiment. We fixed the value of λ in
all other experiments reported in this paper according to the
investigation results.

We reconstructed the HR images at the resolution of
isotropic 0.5 mm by using the gradient guidance regularized
SRR algorithm, as shown in Equation (3) on the data sets
simulated from the anisotropic and single acquisition strategies,
respectively. We compared the HR images reconstructed by our
approach to the HR reconstructions by SISR and the direct
HR acquisitions in terms of the spatial resolution, SNR, and
CNR. Through the comparisons, we can answer the questions:
(1) can SRR constructs images of higher quality with lower

acquisition time than direct HR acquisition? and (2) with
the same acquisition time, which acquisition strategy leads to
better SRR, our anisotropic acquisition or the single acquisition?
The second question is essentially about how we allocate data
acquisitions for a better SRR given a fixed acquisition time.

2.4.2. Experiment 2: Assessment on Clinical T2 FSE

Data

The objective of this experiment is to evaluate our approach
on the clinical data and to demonstrate that our approach
can provide high quality images for both scientific research
studies and clinical routines in neonatal brains. To this end, we
acquired a data set with the protocol presented above. The data
set comprised 60 neonatal brain MR images acquired from 20
newborns (acquired three from each). All scans were performed
in accordance with the local institutional review board (IRB)
protocol. We incorporated the IAA method as a baseline in this
experiment, which is one of the most widely used methods in
both clinical practices and scientific research studies. The HR
images were reconstructed at the resolution of isotropic 0.39
mm in this experiment by our approach and the IAA method.
These reconstructed HR images were assessed in terms of spatial
resolution, SNR, and CNR.

3. RESULTS

Our reconstruction algorithm was implemented in MATLAB
(The MathWorks Inc.) without any code optimizations. We
carried out our algorithm on a workstation with an Intel Xeon
CPU@2.1 GHz and 128 GB memory. It took about 15 min to
reconstruct an image of the typical size 384× 384× 384 voxels.

We reported and visualized our quantitative results by using
the box and whisker plot (McGill et al., 1978; Langford, 2006).
On each box, the central mark indicated the median, and the
bottom and top edges of the box indicated the 25th and 75th
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FIGURE 2 | Estimates of partial volume effects (PVE) from the eight MPRAGE

images directly acquired and reconstructed by SISR and our approach on the

simulated data set, respectively. The average percentages of the voxels

suffering from PVE were, respectively 10.82 ± 5.02, 10.48 ± 4.93, and 9.99 ±

4.80% with the methods of direct acquisition (DA), SISR, and ours. The results

show that our approach generated the highest spatial resolution on this data

set. Our approach yielded a 7.7% reduction in the partial volume effects,

leading to the enhancement in spatial resolution, as compared to the direct HR

acquisitions. The results also suggest that SRR (both SISR and our approach)

achieved higher spatial resolution with much lower acquisition time than direct

HR acquisition.

percentiles, respectively. The whiskers extended to the most
extreme data points.

3.1. Experiment 1: Simulations on MPRAGE
Data
Figure 1 shows the investigation results on the influence of the
gradient guided regularization on the SRR performance in terms
of PSNR and SSIM. The results show that our SRR approach
performed the best with the regularization weight parameter
λ ranging from 0.05 to 0.3. The results also suggest that the
regularization considerably improved the SRR performance on
the simulation data set by referring to the results at λ = 0 (in the
case of no regularization). According to the investigation results,
we therefore fixed the regularization weight parameter λ at 0.1 in
all the rest experiments reported in this paper.

Figure 2 shows the estimates of partial volume effect from the
eight MPRAGE images directly acquired and reconstructed by
SISR and our approach on the simulated data set, respectively.
The average percentages of the voxels suffering from partial
volume effect were respectively 10.82 ± 5.02%, 10.48 ± 4.93%,
and 9.99 ± 4.80% with the methods of direct acquisitions, SISR,
and ours. The results show that our approach generated the
highest spatial resolution on this data set. Our approach yielded
a 7.7% reduction in the partial volume effects, leading to the
enhancement in spatial resolution, as compared to the direct
acquisitions the resolution of isotropic 0.5 mm. The results also
suggest that SRR (both SISR and our approach) achieved higher
spatial resolution with much lower acquisition time than direct
HR acquisition.

Figure 3 shows the results of direct acquisition, SISR, and our
approach in terms of SNR and CNR from the eight MPRAGE

acquisitions/reconstructions on the simulated data set. The
average SNRs obtained from direct acquisition, SISR, and our
approach were 14.51 ± 0.57, 15.66 ± 0.48, and 16.62 ± 0.56
dB, respectively. Our approach achieved higher SNR on this data
set, and yielded 2.11 dB enhancement in SNR as compared to
the direct acquisitions. Two-sample t-test at the 5% significance
level showed that our approach significantly outperformed DA
(p = 3.02e−6) and SISR (p = 2.40e−3). Wilcoxon signed-rank
tests, where the null hypothesis was the difference of two sets of
data comes from a distribution with zeromedian, showed that the
populationmean rank of our approach significantly differed from
the two baselines in SNR at the 5% significance level (rejected
the null hypothesis with p = 7.8e−3 for both DA and SISR).
Our approach consistently offered the highest CNRs between
the three types of brain tissues on this data set. In particular,
our approach achieved 1.31 dB higher CNR between GM and
WM than direct acquisition. The results show that SRR led to
considerably improved SNR and CNR as compared to direct
HR acquisition.

Figure 4 shows the qualitative results in representative slices
from the images directly acquired, reconstructed by SISR and our
approach, respectively. The slices directly acquired and formed
by SISR were much noisy as compared to our reconstructions.
The noise was more prominent for SISR in the voxels from the
skull, as highlighted by the red arrows. Although what we were
interested in were CSF, GM, and WM, the noisy voxels from the
skull rendered that SISR generated noise all over the images but
just not as obvious as those from the skull.

3.2. Experiment 2: Assessment on Clinical
T2 FSE Data
Figure 5 shows the quality of the 20 HR images reconstructed by
the five SRR methods on the clinical data set in terms of SNR
and CNR. The average SNR achieved by the five methods are,
respectively: IAA = 20.19 ± 2.57 dB, TV = 19.17 ± 3.40 dB,
NLU = 19.92 ± 2.04 dB, SRCNN = 20.18 ± 1.98 dB, Ours =
20.04± 2.77 dB. IAA, NLU, and SRCNN generated high SNR, as
they benefited from the averaging to improve the SNR and CNR.
Our approach offered comparable SNR with IAA, NLU, and
SRCNN, and outperformed TV by ∼1 dB in terms of SNR. Our
approach generated slightly superior CNRs to the five baselines
about cerebrospinal fluid, and yielded considerably higher CNR
between gray matter and white matter than these baselines.

Figure 6 the spatial resolution evaluated from the twenty
images reconstructed by the four baselines and our approach on
the clinical data set in terms of partial volume effect. The average
PVE achieved by the five methods are, respectively: IAA = 19.40
± 11.85%, TV = 9.02 ± 7.30%, NLU = 11.35 ± 7.69%, SRCNN
= 10.88 ± 7.46%, Ours = 7.25 ± 4.37%. Our approach offered
a considerably lower percentage of the voxels suffering from
partial volume averaging in the HR reconstructions than the four
baselines, leading to substantially enhanced spatial resolution.
Two-sample t-test at the 5% significance level showed that our
approach significantly outperformed IAA (p = 1.40e−6), NLU
(p = 2.65e−4), and SRCNN (p = 5.39e−4). Wilcoxon signed-
rank tests, where the null hypothesis was the difference of two sets

Frontiers in Neuroscience | www.frontiersin.org 7 June 2021 | Volume 15 | Article 636268

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sui et al. Fast and High-Resolution Neonatal Brain MRI

FIGURE 3 | Results of direct acquisition (DA), SISR, and our approach in terms of SNR and CNR from the eight MPRAGE acquisitions/reconstructions from the

simulated data set. (A) The average SNRs obtained from DA, SISR, and our approach were 14.51 ± 0.57, 15.66 ± 0.48, and 16.62 ± 0.56 dB, respectively. Our

approach achieved higher SNR on this data set, and yielded 2.11 dB enhancement in SNR as compared to direct acquisition. Two-sample t-test at the 5%

significance level showed that our approach significantly outperformed DA (p = 3.02e−6) and SISR (p = 2.40e−3). Wilcoxon signed-rank tests, where the null

hypothesis was the difference of two sets of data comes from a distribution with zero median, showed that the population mean rank of our approach significantly

differed from the two baselines in SNR at the 5% significance level (rejected the null hypothesis with p = 7.8e−3 for both DA and SISR). (B–D) Our approach

consistently offered the highest CNRs between the three types of brain tissues on this data set. In particular, our approach achieved 1.31 dB higher CNR between GM

and WM than direct acquisition. The results show that SRR led to considerably improved SNR and CNR as compared to direct HR acquisition.

of data comes from a distribution with zero median, showed that
the population mean rank of our approach significantly differed
from the baselines in PVE at the 5% significance level (rejected
the null hypothesis with p = 8.86e−5 for IAA, p = 2.76e−2

for TV, p = 1.89e−4 for NLU, and p = 2.93e−4 for SRCNN).
Figure 6B shows the demonstration of the partial volume effect
estimation on a representative image. The curve with a square
marker shows the voxel distribution of the image. The dotted
lines depict the three Gaussian components in the fitted GMM.
The solid line addresses the fitted GMM. The three components
from left to right represented the voxels fromGM,WM, and CSF,
respectively. The difference in the area under the curve between
the voxel distribution and the fitted GMM in the range between
two successive components corresponded to the estimate of the
partial volume effect.

Figure 7 shows the estimated voxels suffering from partial
volume averaging in the representative slice from the image
reconstructed by the four baselines and our approach,
respectively. The results show that almost all voxels with
partial volume effect were from the boundaries between different
types of brain tissues. Our approach comprised much fewer
voxels with partial volume effect than the four baseline methods.
The red arrows highlight the image regions with severe partial
volume effect in the slice obtained from the four baseline
methods. The results demonstrate that our approach offered
considerably enhanced spatial resolution of this image.

Figure 8 shows the qualitative results in representative slices
of the images reconstructed by the five SRR methods. The
results show that our approach achieved the best qualitative
performance with regarding to the image contrast and sharpness,
in particular, on the delineation of the structures of the
hippocampus as shown in the coronal and sagittal planes.
The TV method sharpened the image excessively, resulting in
noisy reconstructions. Our approach appropriately suppressed
the noise contamination while enhancing the sharpness of the
image edges. The images reconstructed by IAA, NLU, and
SRCNN contained artifacts caused by averaging the images
transformed due to the alignment, as highlighted by the
red arrows. In contrast, our approach was not affected by
the alignment.

4. DISCUSSION

We have developed a methodology to perform fast and high-
resolution neonatal brainMRI. This methodology allows for high
spatial resolution, high SNR and CNR, and reduced scan time,
in comparison to direct HR acquisition. We have achieved high
quality brain MRI at a spatial resolution of isotropic 0.4 mm with
6 min of imaging time. We have also demonstrated our approach
on simulated data as well as clinical data acquired from twenty
newborns. The experimental results have demonstrated that our
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FIGURE 4 | Qualitative results in representative slices from the images (A) directly acquired, (B) reconstructed by SISR, and (C) reconstructed by our approach,

respectively, on the simulated data set. The slices directly acquired and formed by SISR were much noisy as compared to our reconstructions. The noise was more

prominent for SISR in the voxels from the skull, as highlighted by the red arrows. Although what we were interested in were CSF, GM, and WM, the noisy voxels from

the skull rendered that SISR generated noise all over the images but just not as obvious as those from the skull.

approach allows for fast and high-quality neonatal brain MRI for
both research and clinical studies.

We have shown in the simulation experiment that SRR
achieved 7.7% lower partial volume effects and 2.11 dB higher
SNR than the direct acquisitions at the resolution of isotropic 0.5
mm, while, in parallel, with only 68% of scan time of direct HR
acquisition, as reported in Figure 2. Because the directly acquired
HR images were very noisy, the image edges were blurred by the
noise and in turn the spatial resolution was reduced. In SRR,
because thick slices were used, the SNR was improved in the LR
images, as described in the forward model shown in Equation
(2). The blur kernel Hk in Equation (2) reduced the noise by the
low-pass filtering. The thicker the slices, the more the reduction
in the noise. Furthermore, the gradient guidance regularized
SRR algorithm was used to reconstruct the HR images in both

SISR and our approach. This algorithm incorporates an image
deconvolutional filter that allows for further noise reduction in
the HR reconstructions. If the scan time can be increased, e.g.,
taking the rest 32% of scan time to acquire more LR images
with our protocol, our approach can achieve much higher spatial
resolution and SNR.

In the experiment on the clinical T2 FSE data, we have
shown that our approach generated comparable SNR to the IAA,
NLU, and SRCNN methods while considerably higher spatial
resolution. The averaging operation in the three baselinemethods
improved the SNR since the noise was smoothed out by the
averaging. However, the averaging unexpectedly reduced the
spatial resolution since it also blurred the tissue boundaries
(image edges), as shown in Figure 7. Our approach, instead
of averaging the data, combined the three LR images in a
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FIGURE 5 | Quality of the 20 HR images reconstructed by the five SRR methods on the clinical data set in terms of SNR and CNR. (A) SNR; (B) CNR between

cerebrospinal fluid and gray matter; (C) CNR between cerebrospinal fluid and white matter; and (D) CNR between gray matter and white matter. The average SNR

achieved by the five methods are, respectively: IAA = 20.19 ± 2.57 dB, TV = 19.17 ± 3.40 dB, NLU = 19.92 ± 2.04 dB, SRCNN = 20.18 ± 1.98 dB, Ours = 20.04 ±

2.77 dB. IAA, NLU, and SRCNN generated high SNR, as they benefited from the averaging to improve the SNR and CNR. Our approach offered comparable SNR

with IAA, NLU, and SRCNN, and outperformed TV by ∼1 dB in terms of SNR. Our approach generated slightly superior CNRs to the five baselines about

cerebrospinal fluid, and yielded considerably higher CNR between gray matter and white matter than these baselines.

FIGURE 6 | Spatial resolution evaluated from the twenty images reconstructed by the five SRR methods on the clinical data set in terms of partial volume effect (PVE).

(A) The average PVE achieved by the five methods are, respectively: IAA = 19.40 ± 11.85%, TV = 9.02 ± 7.30%, NLU = 11.35 ± 7.69%, SRCNN =10.88 ± 7.46%,

Ours = 7.25 ± 4.37%. Our approach offered a considerably lower percentage of the voxels suffering from PVE in the HR reconstructions than the four baselines,

leading to substantially enhanced spatial resolution. Two-sample t-test at the 5% significance level showed that our approach significantly outperformed IAA

(p = 1.40e−6), NLU (p = 2.65e−4), and SRCNN (p = 5.39e−4). Wilcoxon signed-rank tests, where the null hypothesis was the difference of two sets of data comes

from a distribution with zero median, showed that the population mean rank of our approach significantly differed from the baselines in PVE at the 5% significance

level (rejected the null hypothesis with p = 8.86e−5 for IAA, p = 2.76e−2 for TV, p = 1.89e−4 for NLU, and p = 2.93e−4 for SRCNN). (B) The demonstration of the

PVE estimation on a representative image. The curve with a square marker shows the voxel distribution of the image. The dotted lines depict the three Gaussian

components in the GMM. The solid line addresses the fitted GMM. The three components from left to right represented the voxels from GM, WM, and CSF,

respectively. The difference in the area under the curve between the voxel distribution and the fitted GMM in the range between two successive components

corresponded to the estimate of the PVE.

deconvolution manner that simultaneously improved the spatial
resolution and SNR. As addressed in the forward model shown
in Equation (2), the acquired image yk was degraded by the
convolution with the blur kernel Hk. In the derived inverse
problem defined in Equation (3), a deconvolution operation was
leveraged, as an inverse operation of the convolution with Hk, to

restore the image from the blurring. This operation is also known
as deblurring. As only the kernel Hk was involved, the noise
that was filtered out in the convolution was not restored by the
deconvolution, leading to an improved SNR in the reconstructed
HR image. The TV method leveraged the same deconvolution
scheme as our approach. However, the TV prior sharpened the
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FIGURE 7 | Estimated voxels suffering from partial volume effect (PVE) in the representative slice of from the image reconstructed by the four baselines and our

approach. The results show that almost all voxels with PVE were from the boundaries between different types of brain tissues. Our approach comprised much fewer

voxels with PVE than the four baselines. The red arrows highlight the image regions with severe PVE in the slice obtained from the four baseline methods. The results

demonstrate that our approach offered considerably enhanced spatial resolution of this image.

image excessively as it left the local smoothing unconsidered,
resulting in noisy reconstructions.

As shown in Figure 8, the IAA, NLU, and SRCNN methods
introduced the artifacts caused by averaging over the different
number of voxels at the lattice because the image alignment
rendered some voxels with undefined intensity values. Although
the artifacts were outside the brain in this case, it would be an
issue if the LR images, which only contain partial regions of the
brain, are included in the SRR, leading to usable reconstructions.
Benefiting from the method that we used to combine the images,
our approach was not affected by the alignment and did not
introduce such artifacts in the HR reconstructed images. As
shown in the inverse problem defined in Equation (3) for
our SRR, the deconvolution operations on each LR image
are jointly combined in the data fidelity term. Furthermore,
the regularization incorporates a spatial gradient guidance
that constrains the HR reconstruction including local smooth
regions separated by strong image edges. The ℓ1-minimization
imposed on the regularization guarantees that the local regions
are not smoothed excessively. Consequently, our SRR offered

both local region smoothing for homogeneous intensities and
edge enhancement for tissue boundary preservation in the
reconstructed HR image and did not involve the artifacts raised
by the image alignment.

Our protocol allows for acquiring a T2 FSE image at the
resolution of 0.39 × 0.39 × 2 mm in 2 min. It is considerably
fast for neonatal MRI to obtain an image with T2 contrast at the
resolution of isotropic 0.39 mm in 6 min of total imaging time.
As a comparison, in 6 min of imaging time, we can only directly
acquire a 3D T2 SPACE image at the resolution of isotropic 1 mm
on our 3T scanner. Acquiring that same data at the resolution
of isotropic 0.39 mm can be carried out, but acquires about 16.9
times more data, and so requires an extended acquisition time,
with lengthened phase encodes, reduced readout bandwidth per
pixel, and much more demanding variable flip angle calculation
for signal loss in the lengthened phase encodes. Assuming we
account for only the increased number of phase encodes required,
this data would require 6 × 6.57 = 39.4 min to acquire. In
addition, the SNR is reduced as each voxel shifts from 1 cubicmm
to 0.393 cubic mm, a reduction in the signal by a factor of 16.9.
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FIGURE 8 | Qualitative results in representative slices of the images reconstructed by the five SRR methods. Our approach achieved the best qualitative performance

with regarding to the image contrast and sharpness, in particular, on the delineation of the structures of the hippocampus as shown in the coronal and sagittal planes.

The TV method sharpened the image excessively, resulting in the noisy reconstruction. Our approach appropriately suppressed the noise contamination while

enhancing the sharpness of the image edges. The images reconstructed by IAA, NLU, and SRCNN contained artifacts caused by averaging the images transformed

due to the alignment, as highlighted by the red arrows. In contrast, our approach was not affected by the alignment.

In order for the HR data SNR to match the SNR of the 1 cubic
mm data requires increasing the SNR by a factor of 16.9, which
can be done by averaging together 16.9× 16.9≈285 acquisitions.
Consequently acquired one HR image with matched SNR would
require 285 × 39.4 = 11,266 min, or slightly shorter than 8 days
in the MRI scanner.

Our approach enables extensive resolution critical clinical
applications due to the enhanced spatial resolution and improved
SNR while in parallel at reduced imaging time. It has shown that
high spatial resolution facilitates the diagnosis of brain diseases,

such as epilepsy (Conlon et al., 1988), multiple sclerosis (Truyen
et al., 1996), and tumor characterization (Naruse et al., 1986).
Our approach has achieved an isotropic spatial resolution of 0.4
mm, which allows for the clinical routines, such as the detection
of signal abnormalities due to brain injury and the measurement
of biometrics for impaired brain growth (Kidokoro et al., 2013),
and in turn enables new assessment tools for neonatal brain MRI.
Our fast and high-resolution imaging technique can be applied to
the clinical and scientific research studies in the neonatal brain,
such as the prediction and prognosis of brain injury (Kidokoro
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et al., 2014; Haebich et al., 2019), for a better understanding
of the potential pathways leading to altered brain structure and
outcome in the preterm infant (Inder et al., 1999; Thompson
et al., 2007).

In conclusion, we have exploited the acquisition strategy for
improved SRR in neonatal brain MRI, which utilizes multiple
anisotropic acquisitions with variable directions in slice selection.
We have achieved neonatal brain MRI at a spatial resolution
of isotropic 0.4 mm with 6 min of imaging time. We have
demonstrated that our approach enabled considerably fast and
high-quality neonatal brain MRI, as compared to direct HR
acquisition. Extensive experimental results have shown that our
approach allowed for high quality neonatal brain MRI for both
scientific research and clinical studies.
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