AUTHOR=Hazan Avi , Ezra Tsur Elishai TITLE=Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation JOURNAL=Frontiers in Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.627221 DOI=10.3389/fnins.2021.627221 ISSN=1662-453X ABSTRACT=
Brain-inspired hardware designs realize neural principles in electronics to provide high-performing, energy-efficient frameworks for artificial intelligence. The Neural Engineering Framework (NEF) brings forth a theoretical framework for representing high-dimensional mathematical constructs with spiking neurons to implement functional large-scale neural networks. Here, we present OZ, a programable analog implementation of NEF-inspired spiking neurons. OZ neurons can be dynamically programmed to feature varying high-dimensional response curves with positive and negative encoders for a neuromorphic distributed representation of normalized input data. Our hardware design demonstrates full correspondence with NEF across firing rates, encoding vectors, and intercepts. OZ neurons can be independently configured in real-time to allow efficient spanning of a representation space, thus using fewer neurons and therefore less power for neuromorphic data representation.