AUTHOR=Hülsdünker Thorben , Mierau Andreas TITLE=Visual Perception and Visuomotor Reaction Speed Are Independent of the Individual Alpha Frequency JOURNAL=Frontiers in Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.620266 DOI=10.3389/fnins.2021.620266 ISSN=1662-453X ABSTRACT=
While the resting-state individual alpha frequency (IAF) is related to the cognitive performance and temporal resolution of visual perception, it remains unclear how it affects the neural correlates of visual perception and reaction processes. This study aimed to unravel the relation between IAF, visual perception, and visuomotor reaction time. One hundred forty-eight (148) participants (28 non-athletes, 39 table tennis players, and 81 badminton players) investigated in three previous studies were considered. During a visuomotor reaction task, the visuomotor reaction time (VMRT) and EMG onset were determined. In addition, a 64-channel EEG system identified the N2, N2-r, and BA6 negativity potentials representing the visual and motor processes related to visuomotor reactions. Resting-state individual alpha frequency (IAF) in visual and motor regions was compared based on sport experience (athletes vs. non-athletes), discipline (badminton vs. table tennis), and reaction performance (fast vs. medium vs. slow reaction time). Further, the differences in the IAF were determined in relation to the speed of neural visual (high vs. medium vs. low N2/N2-r latency) and motor (high vs. medium vs. low BA6 negativity latency). Group comparisons did not reveal any difference in the IAF between athletes and non-athletes (