AUTHOR=Burton Harold , Reeder Ruth M. , Holden Tim , Agato Alvin , Firszt Jill B. TITLE=Cortical Regions Activated by Spectrally Degraded Speech in Adults With Single Sided Deafness or Bilateral Normal Hearing JOURNAL=Frontiers in Neuroscience VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.618326 DOI=10.3389/fnins.2021.618326 ISSN=1662-453X ABSTRACT=

Those with profound sensorineural hearing loss from single sided deafness (SSD) generally experience greater cognitive effort and fatigue in adverse sound environments. We studied cases with right ear, SSD compared to normal hearing (NH) individuals. SSD cases were significantly less correct in naming last words in spectrally degraded 8- and 16-band vocoded sentences, despite high semantic predictability. Group differences were not significant for less intelligible 4-band sentences, irrespective of predictability. SSD also had diminished BOLD percent signal changes to these same sentences in left hemisphere (LH) cortical regions of early auditory, association auditory, inferior frontal, premotor, inferior parietal, dorsolateral prefrontal, posterior cingulate, temporal-parietal-occipital junction, and posterior opercular. Cortical regions with lower amplitude responses in SSD than NH were mostly components of a LH language network, previously noted as concerned with speech recognition. Recorded BOLD signal magnitudes were averages from all vertices within predefined parcels from these cortex regions. Parcels from different regions in SSD showed significantly larger signal magnitudes to sentences of greater intelligibility (e.g., 8- or 16- vs. 4-band) in all except early auditory and posterior cingulate cortex. Significantly lower response magnitudes occurred in SSD than NH in regions prior studies found responsible for phonetics and phonology of speech, cognitive extraction of meaning, controlled retrieval of word meaning, and semantics. The findings suggested reduced activation of a LH fronto-temporo-parietal network in SSD contributed to difficulty processing speech for word meaning and sentence semantics. Effortful listening experienced by SSD might reflect diminished activation to degraded speech in the affected LH language network parcels. SSD showed no compensatory activity in matched right hemisphere parcels.