
fnins-15-615279 January 27, 2021 Time: 20:2 # 1

ORIGINAL RESEARCH
published: 02 February 2021

doi: 10.3389/fnins.2021.615279

Edited by:
Huajin Tang,

Zhejiang University, China

Reviewed by:
Anup Das,

Drexel University, United States
Zhaofei Yu,

Peking University, China

*Correspondence:
Luping Shi

lpshi@tsinghua.edu.cn

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 08 October 2020
Accepted: 08 January 2021

Published: 02 February 2021

Citation:
Wang G, Ma S, Wu Y, Pei J,

Zhao R and Shi L (2021) End-to-End
Implementation of Various Hybrid

Neural Networks on
a Cross-Paradigm Neuromorphic

Chip. Front. Neurosci. 15:615279.
doi: 10.3389/fnins.2021.615279

End-to-End Implementation of
Various Hybrid Neural Networks on a
Cross-Paradigm Neuromorphic Chip
Guanrui Wang, Songchen Ma, Yujie Wu, Jing Pei, Rong Zhao and Luping Shi*

Department of Precision Instrument, Center for Brain-Inspired Computing Research (CBICR), Beijing Innovation Center
for Future Chip, Optical Memory National Engineering Research Center, Tsinghua University, Beijing, China

Integration of computer-science oriented artificial neural networks (ANNs) and
neuroscience oriented spiking neural networks (SNNs) has emerged as a highly
promising direction to achieve further breakthroughs in artificial intelligence through
complementary advantages. This integration needs to support individual modeling of
ANNs and SNNs as well as their hybrid modeling, which not only simultaneously
calculates single-paradigm networks but also converts their different information
representations. It remains challenging to realize effective calculation and signal
conversion on the existing dedicated hardware platforms. To solve this problem, we
propose an end-to-end mapping framework for implementing various hybrid neural
networks on many-core neuromorphic architectures based on the cross-paradigm
Tianjic chip. We construct hardware configuration schemes for four typical signal
conversions and establish a global timing adjustment mechanism among different
heterogeneous modules. Experimental results show that our framework can implement
these hybrid models with low execution latency and low power consumption with
nearly no accuracy degradation. This work provides a new approach of developing
hybrid neural network models for brain-inspired computing chips and further tapping
the potential of these models.

Keywords: hybrid neural networks, cross-paradigm computing, neuromorphic chip, mapping framework, end-to-
end implementation

INTRODUCTION

Neural networks have been widely used to deal with intelligence problems. In general, they can be
divided into non-spiking artificial neural networks (ANNs) (Lecun et al., 2015) and spiking neural
networks (SNNs) (Maass, 1997; Ghosh-Dastidar and Adeli, 2009). These two types of neural models
are distinct in information representation and processing. In ANNs, information is propagated
with multi-valued data. Intensive representation makes ANNs achieve high accuracies in a myriad
of tasks, such as image classification (He et al., 2016), speech recognition (Lam et al., 2019), and
action recognition (Wu et al., 2016). In contrast, SNNs encode information in event-driven binary
spike trains. Through internal neuron dynamics to memorize spatio-temporal information, SNNs
show advantages in various scenarios with rich temporal information and sparse data streams (Shi
et al., 2017; Haessig et al., 2018; Wu et al., 2019). Owing to their different advantages, in recent
years there is a growing trend of integrating ANNs and SNNs to explore hybrid neural networks

Frontiers in Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.615279
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.615279
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.615279&domain=pdf&date_stamp=2021-02-02
https://www.frontiersin.org/articles/10.3389/fnins.2021.615279/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 2

Wang et al. End-to-End Hardware Implementation of HNNs

(HNNs) toward artificial general intelligence (Marblestone et al.,
2016; Zhang et al., 2016; Ullman, 2019). For example, in some
cases of event-driven tasks (Srinivasan and Roy, 2019; Lee
et al., 2020), researchers use SNN modules for abstracting sparse
temporal information, and further combine ANN modules for
improving the classification performance. Similarly, in some
cases of static image processing tasks (Kheradpisheh et al., 2018;
Chancán et al., 2020), researchers use ANN modules to extract
the edge contrasts in images and further process them with SNN
modules for low power consumption. Besides, ANNs and SNNs
also work collaboratively to perform complex tasks in Pei et al.
(2019); Yang et al. (2019).

Hybrid neural networks have a promising perspective on the
development of artificial general intelligence. However, by far
these models are mainly studied and implemented on general-
purpose platforms (i.e., CPU or GPU) (Kheradpisheh et al., 2018;
Srinivasan and Roy, 2019; Chancán et al., 2020; Lee et al., 2020).
On the other side, HNNs retain the basic properties of neural
networks, being promising in high-efficiency implementation
on domain-specific hardware platforms (Sze et al., 2017).
However, their unique cross-paradigm mechanisms, such as the
mixed dataflow of multi-valued data and spike trains, hinder
the implementation on dedicated platforms, thereby slowing
down the exploration of diverse cross-paradigm integration.
Thus, it is highly expected to develop a general scheme of
implementing HNNs on dedicated platforms for high efficiency,
which can facilitate the iteration of software and hardware
co-optimization and eventually promote the development of
hybrid neural models.

There are two challenges in implementing HNNs on dedicated
hardware platforms. The first is to support the simultaneous
execution of ANN and SNN computing paradigms. In the
traditional ANN or SNN field, each has its respective hardware
platforms to support their efficient execution, e.g., deep learning
accelerators for ANNs (Chen et al., 2014; Han et al., 2016; Jouppi
et al., 2017; Chen et al., 2019) and neuromorphic chips for
SNNs (Furber et al., 2014; Merolla et al., 2014; Davies et al.,
2018). However, due to the significant differences between ANNs
and SNNs in terms of information representation, computation
philosophy and memory organization, the basic operators and
data transmission methods of these two types of platforms are
incompatible. Therefore, neither of the above hardware platforms
can simultaneously support the execution of ANNs and SNNs,
which impedes the implementation of HNNs. The second is the
hybrid data interactions between ANNs and SNNs. In HNNs, the
hybrid data interaction modules connect ANNs and SNNs, which
have a non-negligible impact on the performance of the models
when implemented on a hardware platform. Usually, the hybrid
data interaction results in at least two-fold computational costs:
(1) realizing signal conversion between multi-valued data and
spike trains will bring extra resource consumption and execution
delay; (2) the signal conversion and timing configuration will in
turn affect the resource consumption and execution time of ANN
and SNN modules. In current dedicated hardware platforms,
signal conversion at the input interface needs to be implemented
when the external data cannot match the information format
transmitted and processed internally. Therefore, extra devices

and resources are usually required, such as “spike generator”
(Esser et al., 2016; Shukla et al., 2019) or “frame maker”
(Shukla et al., 2019). However, this separative method will not
only destroy the continuity of hardware execution to a certain
extent, but also make it difficult to comprehensively measure
and evaluate the implementation cost of signal conversion and
network computing via a unified standard.

In this paper, we provide a systematic scheme of implementing
HNNs on many-core neuromorphic architectures based on
software-hardware cooperation from the perspectives of
hardware features and mapping framework. First, we use a new
type of cross-paradigm Tianjic chip (Pei et al., 2019) as the
hardware infrastructure. From the aspects of basic operations,
communication method, and timing execution mechanism,
the hardware features that support the implementation of
HNNs are abstracted. On this basis, we propose an end-to-
end mapping framework to implement HNNs on many-core
neuromorphic chips. Inspired by the modular approach, we
divide the implementation of HNNs into the pure computing
modules of single ANNs and SNNs, and the signal conversion
modules between them. The pure computing modules can
be realized by using the existing single-paradigm mapping
methods (Esser et al., 2013; Deng et al., 2018; Ji et al., 2018).
To realize the hybrid data interactions between ANNs and
SNNs, configuration schemes for four typical signal conversions
methods are established. Besides, we also develop a global timing
adjustment mechanism to match the different working periods
among these modules. Taking some HNN models as examples,
we analyze their performance in terms of resource overhead,
running speed, and energy consumption when deployed on
the Tianjic chip. This implementation framework provides a
generic approach for developing hybrid neural models through
the hardware-software collaboration.

The rest of this paper is organized as follows. Section
“Hardware Infrastructure” introduces the basic operation,
communication format, and timing schedule mechanism of
the Tianjic chip from the perspective of hardware feature
abstraction. Section “End-to-End Mapping Framework” shows
the characteristics of neural networks’ execution on many-core
neuromorphic chips, and presents the proposed end-to-end
mapping framework for hybrid neural models. The resource
overhead, timing analysis, and energy consumption of the
example hybrid networks are reported in Section “Experimental
Results.” Finally, we come up with the overall conclusions
and carry out further discussions in Section “Conclusion
and Discussion.”

HARDWARE INFRASTRUCTURE

Tianjic adopts a unified, configurable, and scalable architecture
to support cross-paradigm computing, which provides a general
platform for the separative execution or hybrid computing of
ANNs and SNNs. In this section, we will briefly introduce the
overall architecture of the Tianjic chip (see Figure 1), including
its basic operation, communication format, and timing schedule
mechanism which support our mapping framework.

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 3

Wang et al. End-to-End Hardware Implementation of HNNs

FIGURE 1 | Illustration of the Tianjic chip architecture: (A) fine-grained configurable operation modules; (B) unified communication format; (C) adjustable timing
schedule.

Fine-Grained Configurable Operation
Modules
Functional core (FCore) is the basic unit of the Tianjic
chip, which consists of four modules, including an axon for
input organization, a dendrite (with synapses) for integration
operations, a soma for non-linear neuronal transformation, and
a router for activation transmission (Figure 1A). Each module
can be configured to work in different modes or perform
different operations, which enables the chip to support both
ANN and SNN models. Among these modules, the dendrite and
the soma are the main computing engines. Equipped with the
synapse memory, the dendrite constitutes a 256 × 256 virtual
crossbar, which can realize various vector and matrix operations.
Table 1 lists the vector and matrix operations used in this paper,
including vector-matrix multiplication (VMM), vector-vector
accumulation (VVA) and vector buffering (VB).

The calculation results of the dendrite are updated into a
memory shared with the soma and the soma generates the
neuronal output according to the updated membrane potential.
By combining some basic calculations, the soma can realize
a variety of non-linear transformations in different modes of

ANNs and SNNs. In an ANN-mode soma, arbitrary activation
function can be supported by a configurable lookup table (LUT).
In an SNN-mode soma, its internal operation corresponds
to the leaky-integration-and-fire (LIF) operation of spiking
neurons. Furthermore, some more complicated operations, such
as threshold adaption and random firing, can also be enabled

TABLE 1 | Integration and transformation operations in Tianjic.

Mode Definition

Dendrite
operation

VMM y = W·x

VVA y =
∑

i
x1 + x2 + . . .+ xn

VB y = x

Soma
transformation

LUT_fun y = f(u+ b)

LIF_fun Leaky-integration-and-fire operation

Membrane
potential

change Update membrane potential after soma
transformation

keep Membrane potential keeps unchanged after soma
transformation

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 4

Wang et al. End-to-End Hardware Implementation of HNNs

through specific configurations. After the transformation of
the soma, the update mode of the shared memory can be
divided into keep or change, corresponding to whether the
membrane potential stored therein will be changed according to
the calculation result of the soma.

Unified Communication Format
These FCores are connected by a multifunctional and scalable
routing network, and arranged in a 2D mesh topology.
The routing network is composed of the router and the
axon in each FCore, which are responsible for sending and
receiving information respectively. In the router, both artificial
and spiking neurons transmit their information through a
unified communication format. In addition to the address
and control information in the traditional AER (Address-
Event Representation) protocol (Mahowald, 1993), the routing
packet can also carry different multi-valued data in this
unified communication format. Specifically, this multi-valued
data represents the efferent activation value of artificial
neurons in the ANN mode and the state information of
spiking neurons (e.g., membrane potential) in SNN mode.
Notably, the router generates a packet only when a spike is
generated and needs to be transmitted, which is in an even-
driven manner.

As shown in Figure 1B, these data packets can be delivered
to single or multiple arbitrary target FCores through point-
to-point (P2P) or multicast routing. When arriving at the
destination FCore, the packet is decoded to a binary spike
or multi-valued activation according to the working mode of
the local axon. In the ANN mode, the axon directly obtains
multi-value activations from routing packets and store them in
a ping-pong buffer. In the SNN mode, the axon stores spike
trains of each input within a historical temporal window. Via a
timing factor calculator (TFC), the spike trains can be weighted
and summed according to the timing factors. Based on this
cross-paradigm and unified data communication format, we can
easily realize the basic connection structure that supports mixed
dataflows as described in section “Execution of Neural Networks
on Neuromorphic Chips.”

Adjustable Timing Schedule
The timing execution mechanism in the Tianjic chip has two
typical characteristics: the reconfigurable phase pattern in an
execution time step and the independent working schedule of
each FCore’s modules.

Reconfigurable phase pattern in an execution time step:
There are two levels of execution period in Tianjic, which are
time phase and time step. The time phase is a basic computational
period to perform a round of computation, and the time step
includes multiple time phases and therefore is a higher level
of execution period. As shown in Figure 1C, the number of
time phases in a time step and their on-off (enable and disable)
pattern are controlled by timing registers (i.e., start-up delay,
#on_phases and #off_phases). This configurable phase pattern
provides a flexible support for matching different execution
periods of ANNs and SNNs.

Independent working schedule of each FCore’s modules: In
a time phase, the dendrite integrates the inputs stored in the axon
and updates the membrane potential into the shared memory,
meanwhile the soma performs non-linear transformation given
the integrated membrane potential. In each FCore, the phase
patterns of the dendrite and the soma can be configured
independently. In this way, different timings of input and
output processing can be implemented in the same FCore
to perform signal conversion between spike trains and multi-
valued activations.

END-TO-END MAPPING FRAMEWORK

Before introducing the mapping scheme, we briefly recall the
execution mechanism of single-paradigm neural network models
on many-core neuromorphic chips. Then, we introduce the
main design features of our end-to-end mapping framework,
which enable a high-performance mapping of HNNs on many-
core neuromorphic chips. With configurable FCores, three basic
connections are designed to support the mixed dataflows. By
using the divide-and-conquer strategy, we further divide the
implementation of HNNs into the pure computing modules of
single ANNs and SNNs, and the hybrid data interaction modules
between them. The pure computation can be implemented using
the existing mapping methods for the single paradigm. To solve
the problem of the hybrid data interaction, we construct the
configuration schemes for typical signal conversion methods
and a global timing adjustment mechanism between these
different modules.

Execution of Neural Networks on
Neuromorphic Chips
Generally, the implementation of neural networks on many-
core neuromorphic chips is achieved by utilizing spatial mapping
methods, in which the calculations in different layers are realized
via the allocated FCore groups. These FCore groups continuously
process the input data in a pipelined manner. Taking a fully
connected network (Figure 2A) for illustration, we present this
process in Figure 2. As shown in Figure 2B, in each layer,
the calculations between input activations and weights are split
into multiple spatial VMM operations due to the limited fan-
in capability (the number of inputs a neuron can handle)
and fan-out capability (the number of outputs a neuron can
drive) of each FCore. Therefore, each VMM FCore obtains
partial calculation results, and extra VVA FCores are required
to accumulate the corresponding neurons’ partial states. In
this layer-wise splitting manner, the workload of the original
network will be mapped to a combination of FCore groups that
perform different operations. Figure 2C exhibits the execution
timing of these FCore groups, wherein each FCore performs
the same operation repeatedly and continuously at every time
phase. In addition, the data is continuously propagated and
processed among FCore groups along the depth dimension of
the network. When the calculation results are sent to the next
FCore group for processing, the current FCore group can start
the processing the following input sample at the same time,

Frontiers in Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 5

Wang et al. End-to-End Hardware Implementation of HNNs

Layer1

P1 P2 P3 P4 P5 P6 P7

...
P1 P2 P3 P4 P5 P6 P7

P1 P2 P3 P4 P5 P6 P7

P1 P2 P3 P4 P5 P6 P7

L1 VMM

L1 VVA

L2 VMM

L2 VVA
... ...

Time
phase 0 T

Layer1 VMM

...

Layer1

Layer1 VVA Layer2 VMM

...

Layer2

Layer2 VVA

A

B

C

FIGURE 2 | Illustration of the execution of the neural network on neuromorphic chips: (A) the example network structure; (B) the FCore groups after network
mapping; (C) timing schedule of the FCore groups.

achieving an efficient pipelined processing. This inter-group
pipeline brings high throughput, and is decoupled with the
network depth. Most single-paradigms of ANNs and SNNs follow
this method when implemented on many-core neuromorphic
chips (Akopyan et al., 2015; Ji et al., 2018; Shao et al., 2019;
Jiao et al., 2020). It’s worth noting that since SNNs use the
binary spike for information representation, the multi-valued
data preferred by ANNs are encoded into spike train with a time
window. When an SNN is mapped to many-core neuromorphic
chips, each FCore group needs to perform repeatedly along
the Tw (length of time window) phases to process a frame
image or feature map.

Overall, to end-to-end implement hybrid networks on
neuromorphic chips, it requires to not only establish connections
among FCore groups that support mixed dataflows, but also
coordinate the different requirements of execution phases
between ANNs and SNNs.

Basic Connections for Mixed Dataflow
In order to support mixed dataflows of multi-valued data and
spike trains, we design three basic connections based on the
fine-grained configuration of input and output modes of the
FCores. According to the configuration, four kinds of FCores
with different output and input relations can be formed. When
the axon and the soma are configured in the same mode (either
ANN or SNN mode), the FCore processes pure ANN signals in
multi-value data or SNN signals in binary spikes respectively,

which can be allocated to perform the calculation in ANN and
SNN modules of HNNs. We call such FCores working in the
pure-ANN or pure-SNN mode. When data conversion is needed,
the axon and the soma are configured to work in different modes,
forming hybrid FCores with ANN-input and SNN-output (A2S)
or with SNN-input and ANN-output (S2A). These hybrid FCores
can be used to implement the conversion between multi-valued
data and spike trains, thus supporting hybrid modeling and
interaction in HNNs.

By virtue of the unified routing infrastructure, these different
types of FCores can formulate a variety of basic connections
that enable to process single and mixed dataflows. When the
soma of the pre-connected FCore and the axon of the post-
connected FCore are configured in the same working mode, data
can be directly transmitted between them. Figures 3A,B depict
the connections that can be used to realize conversion from
multi-valued data to spike trains and vice versa, respectively. In
Figure 3A, the first and last FCores work in the pure-ANN and
pure-SNN modes respectively. The intermediate FCore, working
in the A2S mode, receives multi-valued data and converts it
into binary spikes via designed internal operations. Similarly, the
intermediate FCore working in the S2A mode converts the spike
trains to multi-valued data in Figure 3B. In addition, as shown in
Figure 3C, an ANN axon can also directly connect with an SNN
soma and access neuronal state information from the routing
packet. In this connection, the signal conversion occurs during
data transmission and reception.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 6

Wang et al. End-to-End Hardware Implementation of HNNs

ANN

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

SNN

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

S2A

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

A2S

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

SNN

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

ANN

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

SNN

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

ANN

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

SNN

Ax
on

D
en
dr
ite

(s
yn
ap
se
)

So
m
a

A

B

C

FIGURE 3 | Illustration of three basic connections for mixed dataflow: (A)
connection supporting the conversion from multi-valued data to spike trains;
(B,C) connection supporting the conversion from spike trains to multi-valued
data.

By constructing these basic connections for mixed dataflows,
the signal conversion can be naturally performed on the critical
data path of FCores without extra devices. In this manner, the
signal conversion of the model can be realized on the same carrier
as other components. Its effects on the execution performance of
the model can be directly displayed.

Configuration Schemes for Signal
Conversion
In general, different signal conversion methods are applied
according to the algorithm details. The data interaction between
ANNs and SNNs requires signal conversion between spike trains
and multi-valued data. The commonly used data conversion
methods can be summarized as: probabilistic sampling, ANN-
SNN encoding layer, space expansion, and time accumulation
(Deng et al., 2020b). Probabilistic sampling and ANN-SNN
encoding layer are responsible for the conversion from multi-
valued data to spike trains, while spatial expansion and temporal
accumulation are responsible for the conversion from spike trains
to multi-valued data. We establish configuration schemes for
these typical signal conversions (as illustrated in Figure 4), whose
operations are mapped into the configurations of the working
modes of the building blocks in each FCore.

Probabilistic sampling converts multi-valued data to spike
trains through an element-by-element operation. At each time
phase in the time window, a random vector with the same size as
the original multi-valued data is generated. After comparison, the
multi-valued data is sampled as binary spikes. The FCores used
for realizing probabilistic sampling work in the A2S mode. The
axons’ input data is directly transmitted to the soma through VB
operation. Their somas work in the SNN mode and the random
threshold is enabled. Random numbers with uniform distribution
are generated as the threshold of membrane potential, so as to

realize the sampling of input multi-valued data. The update mode
of membrane potential is set to keep, so that the multi-valued data
can be saved after the first reception, which will be converted into
a spike train latter via soma sampling with multiple time phases.

ANN-SNN encoding layer can be regarded as a special SNN
layer that can process multi-valued input data. Different from
probabilistic sampling, the encoding layer adopts a rank-order
coding format. Before being converted into spikes, the original
multi-valued data is processed by a global calculation in advance,
which can be a fully connected calculation (Bellec et al., 2018),
a convolution (Wu et al., 2019), or a difference-of-Gaussians
(DoG) (Kheradpisheh et al., 2018). The integration results are
continuously accumulated onto the membrane potential of the
output neuron, and the neuron fires a spike once the membrane
potential exceeds the firing threshold at any time phase. In
order to reduce redundant integration operations, we implement
the encoding layer in two FCore groups: integration FCores
and conversion FCores. In integration FCores, the dendrite
performs the VMM operation at the first time phase in a
time window and stores the integration results in the shared
memory. The ANN soma of FCores continuously sends out
the integration results (or their partial sums) to the conversion
FCores, where spikes are generated through the LIF operation
in the SNN soma.

Spatial expansion directly transfers the spatio-temporal two-
dimensional spike pattern into a static binary image. Each “1” in
the static binary image corresponds to the existence of a spike
in the original spike pattern. In hardware implementation, this
spatial expansion method needs to buffer and rearrange data
from different time steps. To solve this problem, we establish a
self-feedback routing connection in the conversion FCore. The
input spikes are shifted and sorted at each time phase. The
rearranged spikes are sent to the downstream adjacent ANN axon
through multicast routing as binary image data. However, in this
conversion method, the scale of the newly generated binary data
is proportional to the length of the time window. Consequently,
it will consume massive computing and storage resources in the
case of a large time window.

Temporal accumulation directly accumulates the spike train
of each input node within the time window into a multi-valued
data. This kind of conversion can be regarded as the reverse
process of rate coding, and the converted multi-valued data has
the same spatial size as the input spikes. This conversion can
be realized by the TFC in axon. Spike accumulation for Tw
length is enabled in TFC, and the corresponding time factors
are configured as 1. In this way, the data transmitted to the
dendrite module for integrated calculation is the multi-valued
data obtained by accumulation. In the conversion FCore, only the
axon is used for signal conversion, and the dendrite and the soma
can directly execute the subsequent ANN calculations.

The configuration schemes for these typical signal conversions
are summarized in Table 2. In the hybrid networks, the signal
conversion operations are mapped into the configuration of the
FCore according to the algorithmic computing operations. The
model can generate the corresponding special conversion FCore
groups in accordance with different requirements to form a
connection with hybrid dataflows.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 7

Wang et al. End-to-End Hardware Implementation of HNNs

FIGURE 4 | Illustration of the implementation of typical signal conversions: (A) probabilistic sampling; (B) ANN-SNN encoding layer; (C) spatial expansion; (D)
temporal accumulation.

TABLE 2 | Summary of the configuration schemes for typical signal conversions.

Probabilistic sampling Encoding Layer Spatial expansion Temporal accumulation

Integration Conversion

Axon Mode ANN ANN ANN SNN SNN (with TFC)

Dendrite Operation VB VMM VVA/VB VB VMM

Enable time the first phase the first phase always on always on always on

Soma Mode LIF_fun (random firing) LUT_fun LIF_fun LIF_fun LUT_fun

Enable time always on always on always on the last phase the last phase

Membrane
potential

keep keep change change change

Global Adjustment of Timing Schedule
As introduced in Section “Execution of Neural Networks on
Neuromorphic Chips,” ANNs and SNNs have different pipelining
cycles (1 phase in ANN and Tw phases in SNN) and need to
adjust the timing schedule when combining the ANN layers
and SNN layers together. In hybrid models, when an ANN
layer runs ahead of an SNN layer, the ANN layer is expected
to wait for the SNN layer to execute Tw times continuously
before transmitting the next data. Similarly, when an ANN

layer runs behind an SNN layer, the ANN layer only needs to
perform the calculation once after the SNN layer continuously
executes Tw times. Therefore, it is preferred that in hybrid
models, the ANN only starts at a suitable time for effective
calculation and data transmission, instead of performing the
same operation phase by phase repeatedly. Hence, we use the
configurable phase pattern introduced in Section “Adjustable
Timing Schedule” to realize a global timing adjustment of the
timing schedule of the FCores.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 8

Wang et al. End-to-End Hardware Implementation of HNNs

Tw -1 phases

Hybrid Model : ANN SNN
P1 P2

P1 P2

t1 t2 t3 t4 t1 t2 t3 t4

t1 t2 t3 t4 t1 t2 t3 t4

P3

P3

Time
phase 0 T

Conversion

P1 P2

VMM

VVA

VMM

VVA

Tw phases

Tw -1 phases
ANN Layer

SNN Layer
Tw -1 phasesTw -1 phases

Conversion

Hybrid Model : SNN ANN
t1 t2 t3 t4 t1 t2 t3

t1 t2 t3 t4 t1 t2 t3

t4

t4

P1 P2

P1 P2

P1 P2

...Time
phase 0 T

Tw-1
phases

VMM

VVA

VMM

VVA

SNN Layer

ANN Layer

SNN Layer

P1 P2

VMM
VVA

Time
phase 0 T

Tw = 4ANN Layer

VMM
VVA

Time
phase 0 T

P1 P2 P3 P4 P5 P6 P7 P8 t1 t2 t3 t4 t1 t2 t3 t4

t1 t2 t3 t4 t1 t2 t3 t4P1 P2 P3 P4 P5 P6 P7 P8

A

B C

FIGURE 5 | Illustration of the global adjustment of timing schedule: (A) original ANN and SNN layers; (B) timing configuration of an SNN layer running after an ANN
layer; (C) timing configuration of an ANN layer running after an SNN layer.

We demonstrate this global adjustment mechanism in
Figure 5. Figures 5B,C illustration the situation of “ANN layer
to SNN layer” and “ SNN layer to ANN layer” respectively.
In both situations, the time step is set to include Tw time
phases. In each time step, the FCore groups corresponding to the
SNN calculation execute continuously, while the FCore groups
corresponding to the ANN calculation only start at the first phase.
Therefore, the phase patterns of these two types of FCore groups
will be configured as #on_ phases = Tw, #off_ Phases = 0 and #on_
phases = 1, #off_ phases = Tw-1 respectively. Due to the delay
of data transmission, different FCore groups will have different
start-up time. Generally, this start-up delay is the number of
FCore groups that need to pass before data arrives. However, in
the mapped structure, as long as there exists an FCore group for
ANN-SNN conversion, the subsequent start-up delay needs to
increase the extra time required by the ANN to wait for SNN to
process data (i.e., Tw-1 time phases, see Figure 5C). After setting
the correct start-up delay, the ANN and SNN in the hybrid model
can continually process each frame of input data in a pipelined
manner, “step” by “step.”

As shown in the Table 2, following the same method,
the dendrite and the soma in the conversion FCores are
also configured to have different phase patterns to deal with
the intra-FCore mixed dataflow. These timing patterns are
eventually transformed into the configuration of timing registers
in each FCore. Such a global timing adjustment can not
only keep the original pipeline mechanism, but also reduce
redundant calculations.

EXPERIMENTAL RESULTS

Experimental Setup
We have built some examples of hybrid networks to verify our
mapping framework and illustrate the implementation results.

TABLE 3 | Network models used in the experiments.

Dataset Structure Conversion Method Name

MNIST (28 × 28) MLP Probabilistic Sampling Model 1

Encoding Layer Model 2

LeNet Probabilistic Sampling Model 3

Encoding Layer Model 4

NMNIST (34 × 34 × 2) MLP Spatial extension Model 5

Temporal accumulation Model 6

LeNet Spatial extension Model 7

Temporal accumulation Model 8

We chose MNIST (LeCun et al., 1998) and NMNIST (Orchard
et al., 2015) data sets to demonstrate the proposed conversion
approach. Each digit sample in MNIST is a 28 × 28 grayscale
image and NMNIST is a neuromorphic version of MNIST
with a spike pattern size of 34 × 34 × 2 at each time step.
As for the network structure, we chose the fully connected
structure of input-512-512-10 and the convolutional neural
network structure of LeNet (LeCun et al., 1998) (input-6c5-
AP2-16c5-AP2-120-84-10). The overall settings of input data,
network structure and signal conversion method are shown in
the Table 3.

Figure 6 shows the settings of signal conversion in these
models. From Model 1 to Model 4, the signal conversion from
multi-value data to spike trains happens in the first layer of
the network. At the output of these models, the spikes within
the time window are accumulated and converted into multi-
valued data to obtain the classification results. In Model 5 and
Model 6, the signal conversion from spike trains to multi-
valued data occurs in the connection between the first and
second hidden layers. In Model 7 and Model 8, the signal
conversion is performed between the last pooling layer and the
fully connected classifier.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 9

Wang et al. End-to-End Hardware Implementation of HNNs

MNIST

NMNIST

Probabilistic
Sampling

Encoding
Layer LeNet

Signal Conversion

MLP Temporal
Accumulation

Signal Conversion

Temporal
Accumulation

MLP-FC1

LeNet-Conv

Spatial
Expansion

Temporal
Accumulation

MLP-FC2&3

LeNet-FC

Tianjic Chip

FIGURE 6 | Illustration of the configuration of the models.

We developed a mapping compiler in python to automatically
implement the partition of networks, generation of conversion
FCores, and global timing adjustment in our mapping
framework. We used a direct quantization method for these
hybrid models. We first loaded a pre-trained model with FP32
weights, and then followed the quantization method in Yang
et al. (2020) to re-train the model by quantizing the weights into
INT8 precision during each weight update. After this process,
we can obtain the resource utilization report of network and the
binary file for the chip configuration. At last, the configuration
file is downloaded into the chip for execution, where the latency
and power consumption of network execution can be measured
accurately. We use a single-chip PCB equipped with an Altera
Cyclone 4 FPGA as the test board. The input data is pre-stored
in an SDRAM on the board, and injected into the chip through
FPGA whiling testing. At 300 MHz clock, 16.8 µs is needed
for a time phase.

Analysis of Resource Consumption of
Various Hybrid Models on Tianjic
After mapping, these hybrid network models are transformed
into the connections between FCores with four different input
and output types, as described in Section “Basic Connections
for Mixed Dataflow.” Figure 7 shows the resource utilization
of different types of FCores in each hybrid model. When
mapping the SNN part of these hybrid models, according
to the method in Pei et al. (2019); Deng et al. (2020a), we
transfer the partial sums calculated by VMM in the form
of multi-valued data. This method can avoid the decrease of
accuracy caused by the fan-in limitation of FCores in the
mapping process. Therefore, when the number of input neurons
in an SNN layer exceeds the fan-in of FCore, there exist
S2A-type VMM FCores and A2S-type VVA FCores in the
mapping result. Additionally, we define the ratio of effective
computing FCores as the ratio of the number of FCores that
perform network computing and the number of the total
FCores. The larger the ratio of effective computing FCores

is, the smaller the extra cost of signal conversion in hybrid
models consumes.

In a connection with the signal conversion from multi-
valued data to spike trains, the resource consumption required
by the probabilistic sampling and ANN-SNN encoding layer is
determined by the number of input and output neurons in the
connection, respectively. In the MLP structure, the conversion
takes place in a 784-512 connection. Therefore, compared with
Model 2, Model 1 uses more A2S-type FCores. Similarly, in the
LeNet structure, the size of input and output in the connection
with signal conversion is 28 × 28 × 1 and 24 × 24 × 6,
respectively, which leads to Model 4 consuming more conversion
FCores than Model 3. In the implementation of probabilistic
sampling and ANN-SNN encoding layer, the signal conversions
are carried out through additional FCores. From Figure 7, we
can see that the ratio of effective computing FCores in Model
1∼Model 4 are 84%, 96%, 92%, and 81%, respectively. This result
also indicates that with the increase of the scale of converted
signals, the proportion of the FCores that undertake the network
computation in the hybrid model decreases.

In the implementation of spatial expansion, the conversion
FCores work in the SNN mode to buffer and rearrange
input spikes. As mentioned above, the FCores consumed by
spatial expansion will increase with the increase of the SNN
time window. To observe this trend, we show the resource
consumption of Model 5 and Model 7 when Tw equals 2, 6,
10, and 14 respectively (shown as -T2, -T6, -T10 and T14 in
Figure 7). As we can see, with the increase of Tw, the number
of SNN-type FCores increases concomitantly, which is caused
by the increase of the number of occupied conversion FCores.
Furthermore, due to the growth of the scale of the converted
binary image, the number of ANN-type FCores that are used
to perform subsequent ANN calculations also increases. It is
observed that, under the joint influence of these two kinds of
growth, the ratio of effective computing FCores of the network
finally shows an obvious downward trend. In the implementation
of spatial expansion, only axons in the FCores are used, which
does not affect the subsequent calculation of dendrites and somas.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 10

Wang et al. End-to-End Hardware Implementation of HNNs

FIGURE 7 | Resource consumption of the example hybrid models.

As a result, the ratios of effective computing FCores are both
100% in Model 6 and Model 8. Regardless of the types of FCores,
the resource consumption of these two models is the same as that
of a single-paradigm network with the same structure.

Comparison of Performance on Tianjic
and GPU
We tested the implementation of these hybrid models on
GPU (Nvidia RTX 2080Ti) and the Tianjic chip, respectively,
and summarized the outcomes in Table 4. The time window
of SNNs in these hybrid models was set as 10. These
hybrid models ran on GPU with the default FP32 precision.
While running on Tianjic chip, all the weights and output
activations were quantized to INT8. It is observed that there
is no evident difference in recognition accuracy between
the fixed-point network implemented on the Tianjic chip
and the floating-point network running on GPU. In some
models (i.e., Model 2 and Model 7), the accuracy on
the Tianjic chip was slightly improved, which is owing to
the regularization effect of quantization. Generally speaking,
the accuracy of the model varies within 0.15%, which is
almost negligible.

TABLE 4 | Execution performance of different implementations on Tianjic and
GPU.

GPU (Nvidia RTX 2080Ti) Our Implementation

Acc. (%) Latency (ms) Acc. (%) Latency (ms)

Model1 98.70 6.84 98.69 0.286

Model2 98.20 6.02 98.22 0.269

Model3 99.15 14.27 99.15 0.319

Model4 99.19 13.22 99.13 0.319

Model5 98.43 3.56 98.41 0.252

Model6 98.36 3.22 98.30 0.269

Model7 98.27 8.79 98.28 0.302

Model8 98.97 8.87 98.85 0.319

It is worth noting that, while running on Tianjic, all these
models consume about 300 ms latency to process one frame of
data. Compared with GPU, the processing speed is increased
by an average of 20 times. This is mainly due to the high
computational parallelism of the many-core architecture in the
Tianjic chip. In all these models, the average power consumption
is below 400 mW, verifying the advantage of low power
consumption compared with GPU (usually with a dynamic
power of 1∼100 W).

Through the comprehensive comparison, we can conclude
that when implemented on the Tianjic chip, the hybrid models
not only obtain nearly lossless accuracies, but also exhibit
significant advantages of low processing latency and low power
consumption. In the next section, we will further analyze the
energy consumption of different parts that are responsible for
ANN calculations, SNN calculations, and signal conversions,
respectively, in the hybrid models.

Analysis of Energy Consumption
Taking Model 5 to Model 8 as examples, we analyze the
distribution of dynamic energy consumption and its change
along with the time window. The dynamic energy distribution
in these hybrid models when Tw equals 2, 4, 6, 8, and 10
are visualized in Figure 8. For each Tw value, the dynamic
energy consumption transformation before and after the global
adjustment of timing schedule are also plotted.

The Global adjustment of timing schedule can reduce the total
dynamic energy consumption of network by reducing redundant
ANN operations. Evidently, as the time window increases, the
energy saving of the ANN calculations under the same conversion
method retains the same. Model 5 and Model 7 use the spatial
extension method and the input size of the ANN layer will
increase along with Tw. As shown in Figure 7, the increase
of the input size will consume more ANN FCores and thus
more dynamic energy consumption. Nevertheless, due to the
reduction of redundant operations brought by the global timing
adjustment, the dynamic energy saving of ANN FCores in both
Model 5 and Model 7 increases from about 50% to about 90%

Frontiers in Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 11

Wang et al. End-to-End Hardware Implementation of HNNs

FIGURE 8 | Variation of dynamic energy consumption distribution with time window of panels (A) Model 5, (B) Model 6, (C) Model 7, and (D) Model 8.

as Tw increases. In Model 6 and Model 8, after the global timing
adjustment, there are still some VMM operations that need to be
executed repeatedly in the conversion FCores to drive the shift
of the axon’s spike buffer. Along with the increase of Tw, these
repeated executions lead to the increase of ANN FCores’ dynamic
energy consumption in the adjusted models. As a result, Model
6 and Model 8 have a lower dynamic energy saving than Model
5 and Model 7, which increases from about 31% to about 56%.
Additionally, due to the different proportion of ANN and SNN,
the total energy saving also differs in different models. In a hybrid
network, the larger the proportion of ANN calculations is, the
more energy can be saved after global timing adjustment.

After the global timing adjustment, when Tw equals 2, the
energy consumptions required for signal conversion in Model
5 to Model 8 accounts for a small part, which are 7.3%, 1.6%,
1.3%, and 0.9%, respectively. With the increase of Tw, these
ratios all increase slightly. In the method of spatial expansion,
because the number of conversion FCores is also increasing,
the proportion will rise a little faster. But these ratios do not
exceed 10% in the end. Furthermore, the difference in the
dynamic energy consumed by SNN and ANN calculations is not
as large as the difference in the number of FCores (about 6: 1
and 10: 1 in MLP and LeNet, respectively), indicating that the
advantage of the computational sparsity in SNNs is well utilized
in hardware execution.

CONCLUSION AND DISCUSSION

In this paper, we propose a systematic solution of implementing
various hybrid networks on many-core neuromorphic

chips through software-hardware cooperation. Based on
the abstraction of the Tianjic chip, we summarize that the
fine-grained configurable basic units, unified communication
format, and adjustable timing schedule provide the hardware
foundation for implementation of hybrid models. On this
basis, we propose an end-to-end mapping framework to
facilitate implementation of hybrid models on hardware. By
constructing basic connections for mixed dataflows, signal
conversions are performed on the critical data paths of FCores
without requiring additional devices. The configuration schemes
for the typical four types of signal conversions are designed
and proved to promote the mapping of the operations in
hybrid models into FCores in the same way as that of the
networks’ computing operation. The global adjustment of
timing schedule not only ensures the continuity and correctness
of data transmission and processing in the network, but
also reduces the energy consumption caused by the repeated
redundant calculations. Furthermore, we built a tool chain to
automatically implement the mapping framework. By mapping
typical hybrid models to the Tianjic chip, we demonstrate
that these models not only obtain almost lossless accuracy
compared with the general computing platform, but also exhibit
significant advantages of low execution latency and low power
consumption. The results of the experiment show that although
the implementation of signal conversion in HNNs generates
additional resource overhead, the overall energy consumption of
the network can be significantly reduced by disabling repeated
redundant operations.

Generally, SNNs have rich coding schemes to encode
information in spatio-temporal domain, including rate coding
schemes (Deng et al., 2020b) and temporal coding schemes

Frontiers in Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 615279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 12

Wang et al. End-to-End Hardware Implementation of HNNs

like rank-order coding schemes (Tang et al., 2020), inter-spike
interval based (Dong et al., 2019) and time-to-first spike based
encoding schemes (Liu and Yue, 2017; Mostafa, 2017). Our
framework can effectively support the rate coding and rank-order
coding scheme for SNNs and in principle can support the
temporal coding schemes via the unified communication format.
The unified communication format can directly transmit the
temporal information through its data segment (i.e., 8-bit
Fire_data in the routing packet) to support the inter-spike
interval based and time-to-first spike based encoding schemes.
To effectively support these temporal coding schemes, efficient
capture of the absolute or interval time information of each
neuron’s output spikes is necessary and requires further improved
hardware design.

With the increasing complexity of tasks and the deepening
of artificial intelligence research, it is expected that more
and further cross-paradigm fusions of ANNs and SNNs will
emerge. Hence, we are convinced that our proposed end-to-
end hardware implementation method will provide a systematic
solution to map hybrid models onto neuromorphic chips, and
provide guidance for further development of hybrid neural
models. Moreover, through the modeling abstraction of hardware
characteristics, mapping mechanisms can be established to fully
explore the potential of the hardware carrier and support more
complex algorithm models. Through the iteration of hardware-
software co-optimization, it is highly possible to develop a
general brain-inspired computing platform that can handle
more complex tasks.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

GW proposed the idea, designed and did the experiments, and
wrote the manuscript. GW and YW conducted the algorithm
modeling work. GW, SM, and JP conducted the design and
implementation of the hardware testing platform. GW and SM
contributed to the analysis and interpretation of results. RZ
led the discussion and revised it. LS directed the project and
provided overall guidance. All authors contributed to the article
and approved the submitted version.

FUNDING

This work was partly supported by the National Key R&D
Program of China 2018YFE0200200, National Nature Science
Foundation of China (No. 61836004), Brain-Science Special
Program of Beijing under grants Z181100001518006 and
Z191100007519009, the Suzhou-Tsinghua innovation leading
program 2016SZ0102, and CETC Haikang Group-Brain Inspired
Computing Joint Research Center.

REFERENCES
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long
short-term memory and learning-to-learn in networks of spiking neurons,” in
Proceedings of the 32nd Conference on Neural Information Processing System
Montreal.

Chancán, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B., and Milford, M.
(2020). A hybrid compact neural architecture for visual place recognition. IEEE
Robot. Autom. Lett. 5, 993–1000. doi: 10.1109/LRA.2020.2967324

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., et al. (2014). Dadiannao:
a machine-learning supercomputer. Paper Presented at the 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture (New Jersey, NJ:
IEEE). doi: 10.1109/MICRO.2014.58

Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. (2019). Eyeriss v2: a flexible
accelerator for emerging deep neural networks on mobile devices. IEEE J.
Emerg. Sel. Top. Circuits Syst. 9, 292–308. doi: 10.1109/JETCAS.2019.291
0232

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, L., Liang, L., Wang, G., Chang, L., Hu, X., Ma, X., et al. (2018). Semimap:
a semi-folded convolution mapping for speed-overhead balance on crossbars.
IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39, 117–130. doi: 10.1109/
TCAD.2018.2883959

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020a). Tianjic: a unified
and scalable chip bridging spike-based and continuous neural computation.
IEEE J. Solid State Circ. 55, 2228–2246. doi: 10.1109/JSSC.2020.297
0709

Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., et al. (2020b). Rethinking
the performance comparison between SNNS and ANNS. Neural Netw. 121,
294–307. doi: 10.1016/j.neunet.2019.09.005

Dong, S., Zhu, L., Xu, D., Tian, Y., and Huang, T. (2019). “An efficient coding
method for spike camera using inter-spike intervals,” in Proceedings of the 2019
Data Compression Conference (New Jersey, NJ: IEEE). doi: 10.1109/DCC.2019.
00080

Esser, S. K., Andreopoulos, A., Appuswamy, R., Datta, P., Barch, D., Amir, A.,
et al. (2013). “Cognitive computing systems: algorithms and applications for
networks of neurosynaptic cores,” in Proceedings of the The 2013 International
Joint Conference on Neural Networks (New Jersey, NJ: IEEE). doi: 10.1109/
IJCNN.2013.6706746

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,
Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-
efficient neuromorphic computing. Proc. Natl. Acad. Sci. USA 113, 11441–
11446. doi: 10.1073/pnas.1604850113

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Ghosh-Dastidar, S., and Adeli, H. (2009). Spiking neural networks. Int. J. Neural
Syst. 19, 295–308. doi: 10.1142/S0129065709002002

Haessig, G., Cassidy, A., Alvarez, R., Benosman, R., and Orchard, G. (2018). Spiking
optical flow for event-based sensors using IBM’s truenorth neurosynaptic
system. IEEE Trans. Biomed. Circ. Syst. 12, 860–870. doi: 10.1109/TBCAS.2018.
2834558

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., et al. (2016).
EIE: efficient inference engine on compressed deep neural network. SIGARCH
Comput. Archit. News 44, 243–254. doi: 10.1145/3007787.3001163

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (New Jersey, NJ: IEEE). doi: 10.1109/CVPR.2016.90

Ji, Y., Zhang, Y., Chen, W., and Xie, Y. (2018). “Bridge the gap between neural
networks and neuromorphic hardware with a neural network compiler,” in

Frontiers in Neuroscience | www.frontiersin.org 12 February 2021 | Volume 15 | Article 615279

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/LRA.2020.2967324
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/TCAD.2018.2883959
https://doi.org/10.1109/TCAD.2018.2883959
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1109/DCC.2019.00080
https://doi.org/10.1109/DCC.2019.00080
https://doi.org/10.1109/IJCNN.2013.6706746
https://doi.org/10.1109/IJCNN.2013.6706746
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1109/TBCAS.2018.2834558
https://doi.org/10.1109/TBCAS.2018.2834558
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1109/CVPR.2016.90
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-615279 January 27, 2021 Time: 20:2 # 13

Wang et al. End-to-End Hardware Implementation of HNNs

Proceedings of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (Williamsburg, VA: ASPLoS).
doi: 10.1145/3173162.3173205

Jiao, Y., Han, L., Jin, R., Su, Y.-J., Ho, C., Yin, L., et al. (2020). “7.2 A 12nm
programmable convolution-efficient neural-processing-unit chip achieving
825TOPS,” in Proceedings of the 2020 IEEE International Solid-State Circuits
Conference-(ISSCC) (New Jersey, NJ: IEEE). doi: 10.1109/ISSCC19947.2020.
9062984

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al. (2017).
“In-datacenter performance analysis of a tensor processing unit,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture Toronto.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).
STDP-based spiking deep convolutional neural networks for object recognition.
Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Lam, M. W., Chen, X., Hu, S., Yu, J., Liu, X., and Meng, H. (2019). Gaussian
process Lstm recurrent neural network language models for speech recognition.
Paper Presented at the ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (New Jersey, NJ: IEEE). doi:
10.1109/ICASSP.2019.8683660

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436.
doi: doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.
726791

Lee, C., Kosta, A., Zhu, A. Z., Chaney, K., Daniilidis, K., and Roy, K. (2020). Spike-
flownet: event-based optical flow estimation with energy-efficient hybrid neural
networks. [arXiv Preprint] Available online at: https://arxiv.org/abs/2003.06696
(accessed October 1, 2020).

Liu, D., and Yue, S. (2017). Fast unsupervised learning for visual pattern
recognition using spike timing dependent plasticity. Neurocomputing 249,
212–224. doi: 10.1016/j.neucom.2017.04.003

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)
00011-7

Mahowald, M. (1993). The Address-Event Representation Communication Protocol.
AER 0.02. (Pasadena, CA: California Institute of Technology).

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an integration of
deep learning and neuroscience. Front. Comput. Neurosci. 10:94. doi: 10.3389/
fncom.2016.00094

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668–673. doi: 10.1126/
science.1254642

Mostafa, H. (2017). Supervised learning based on temporal coding in spiking
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235. doi:
10.1109/TNNLS.2017.2726060

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting
static image datasets to spiking neuromorphic datasets using saccades. Front.
Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., et al.
(2019). “Simba: scaling deep-learning inference with multi-chip-module-based
architecture,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (New Jersey, NJ: IEEE).

Shi, G., Liu, Z., Wang, X., Li, C. T., and Gu, X. (2017). Object-dependent sparse
representation for extracellular spike detection. Neurocomputing 266, 674–686.
doi: 10.1016/j.neucom.2017.05.082

Shukla, R., Lipasti, M., Van Essen, B., Moody, A., and Maruyama, N.
(2019). REMODEL: rethinking deep CNN models to detect and count
on a NeuroSynaptic system. Front. Neurosci. 13:4. doi: 10.3389/fnins.2019.
00004

Srinivasan, G., and Roy, K. (2019). Restocnet: residual stochastic
binary convolutional spiking neural network for memory-efficient
neuromorphic computing. Front. Neurosci. 13:189. doi: 10.3389/fnins.2019.
00189

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing of
deep neural networks: a tutorial and survey. Proc. IEEE 105, 2295–2329. doi:
10.1109/JPROC.2017.2761740

Tang, H., Cho, D., Lew, D., Kim, T., and Park, J. (2020). Rank order coding
based spiking convolutional neural network architecture with energy-efficient
membrane voltage updates. Neurocomputing 407, 300–312. doi: 10.1016/j.
neucom.2020.05.031

Ullman, S. (2019). Using neuroscience to develop artificial intelligence. Science 363,
692–693. doi: 10.1126/science.aau6595

Wu, J., Wang, G., Yang, W., and Ji, X. (2016). Action recognition with joint
attention on multi-level deep features. [arXiv Preprint] Available online at:
https://arxiv.org/abs/1607.02556 (accessed October 1, 2020).

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). Direct training for
spiking neural networks: faster, larger, better. Paper Presented at the Proceedings
of the AAAI Conference on Artificial Intelligence (Menlo Park, CL: AAAI).
doi: 10.1609/aaai.v33i01.33011311

Yang, Y., Deng, L., Wu, S., Yan, T., Xie, Y., and Li, G. (2020). Training high-
performance and large-scale deep neural networks with full 8-bit integers.
Neural Netw. 125, 70–82. doi: 10.1016/j.neunet.2019.12.027

Yang, Z., Wu, Y., Wang, G., Yang, Y., Li, G., Deng, L., et al. (2019). DashNet:
a hybrid artificial and spiking neural network for high-speed object tracking.
[arXiv Preprint] Available online at: https://arxiv.org/abs/1909.12942 (accessed
October 1, 2020).

Zhang, B., Shi, L., and Song, S. (2016). Creating more intelligent robots through
brain-inspired computing. Sci. Robot. 3:1445.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wang, Ma, Wu, Pei, Zhao and Shi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 February 2021 | Volume 15 | Article 615279

https://doi.org/10.1145/3173162.3173205
https://doi.org/10.1109/ISSCC19947.2020.9062984
https://doi.org/10.1109/ISSCC19947.2020.9062984
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1109/ICASSP.2019.8683660
https://doi.org/10.1109/ICASSP.2019.8683660
https://doi.org/doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/2003.06696
https://doi.org/10.1016/j.neucom.2017.04.003
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1016/j.neucom.2017.05.082
https://doi.org/10.3389/fnins.2019.00004
https://doi.org/10.3389/fnins.2019.00004
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1016/j.neucom.2020.05.031
https://doi.org/10.1016/j.neucom.2020.05.031
https://doi.org/10.1126/science.aau6595
https://arxiv.org/abs/1607.02556
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1016/j.neunet.2019.12.027
https://arxiv.org/abs/1909.12942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	End-to-End Implementation of Various Hybrid Neural Networks on a Cross-Paradigm Neuromorphic Chip
	Introduction
	Hardware Infrastructure
	Fine-Grained Configurable Operation Modules
	Unified Communication Format
	Adjustable Timing Schedule

	End-To-End Mapping Framework
	Execution of Neural Networks on Neuromorphic Chips
	Basic Connections for Mixed Dataflow
	Configuration Schemes for Signal Conversion
	Global Adjustment of Timing Schedule

	Experimental Results
	Experimental Setup
	Analysis of Resource Consumption of Various Hybrid Models on Tianjic
	Comparison of Performance on Tianjic and GPU
	Analysis of Energy Consumption

	Conclusion and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

