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The aging brain seems to be characterized by neuronal loss leading to cognitive
decline and progressively worsening symptoms related to neurodegeneration. Also,
pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive
activation of microglia and their pro-inflammatory by-products, which is seen as
individuals increase in age. Consequently, microglial activity is tightly regulated by
neuron-microglia communications. The endocannabinoid system (ECS) is emerging as
a regulator of microglia and the neuronal-microglia communication system. Recently,
it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic
interneurons plays a crucial role in regulating microglial activity. Interestingly, if
endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic
central nervous system insult models by activating microglia and leading to accelerated
brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions
yields the potential to understand the communication system and mechanism by which
the ECS regulates glial cells and aspects of aging. While there remains much to
discover with the ECS, the information gathered and identified already could lead to the
development of cell-specific therapeutic interventions that help in reducing the effects of
age-related pro-inflammatory states and neurodegeneration.
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INTRODUCTION

Aging is the primary factor in the rise of neurodegenerative disorders because of accumulation
of mitochondria dysfunction and disrupted intercellular communications (Hou et al., 2019).
Neurons are post-mitotic cells making them particularly susceptible to the age-related dysfunctions
that will cumulate in progressive decrease in brain functions related to pro-inflammatory and
pro-oxidative states (Saez-Atienzar and Masliah, 2020). Mitophagy, inflammatory states, and
metabolism are primarily mediated by microglia in the brain to maintain normal neuronal viability
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and communications (Wolf et al., 2017; Valles et al.,
2019; Vainchtein and Molofsky, 2020). The problem with
neurodegenerative diseases is that each person has individual
variability of neurodegenerative symptoms, but it is not known
whether the variability stems from pathological causes or age-
related changes in the brain. The confusion is best illustrated
by the knowledge that most aged persons will experience mild
physiological decreased brain performance; whereas a few
individuals will show increased cognitive impairment and suffer
from neurodegenerative disorders such as Alzheimer’s disease.
At the moment, the age-related changes that affect brain function
lead to altered synaptic plasticity and neuronal connectivity
(Bano et al., 2011). The downstream effect is alterations in CNS
cellular communication that leads to neuronal vulnerability,
cognitive decline, and neurodegenerative disorders from chronic
pro-inflammatory states via the CNS innate immune response
(Bilbo et al., 2012; Cribbs et al., 2012; Hou et al., 2019).

Microglia are the CNS immune cells that continuously
survey the brain parenchyma and rapidly respond to changes
in the brain (Nimmerjahn et al., 2005). In response to pro-
inflammatory cytokines and other signaling molecules, they can
transition to an active state by altering glial-specific intermediate
filament proteins in the cytoplasm, resulting in extended cellular
processes, diminished cellular processes, and soma hypertrophy
(Sierra et al., 2007). In the normal healthy brain, activation of
microglia is a complex process requiring well-organized and
tightly regulated communications with neurons and extrinsic
factors (Wendeln et al., 2018; Valles et al., 2019; Salas et al., 2020).
As such, the study of microglia regulation and communication
is crucial to derive new therapies and develop knowledge of
neuropathies related to aging. The endocannabinoid system
(ECS) is emerging as a neuroprotective system by regulating
age-related effects of chronically activated microglia. Current
evidence shows the ECS directly effects microglia or indirectly
alters the neuron-microglia communication system leading to a
reduction in oxidative stress and increased clearance of damaged
macromolecules (Bilkei-Gorzo, 2012). With their relation to
neuronal and microglial pro-inflammatory by-products, the ECS
is an ideal candidate for study in relation to the neuron-microglia
communication system and future therapeutics, since the ECS
acts as a feedback communication route that modulates the
secretion of neurotransmitters from the presynaptic terminals of
neurons that may affect microglia (Basavarajappa et al., 2017;
Cristino et al., 2020).

THE ENDOCANNABINOID SYSTEM AND
CHANGES DURING BRAIN AGING

Throughout the last decade, the extensive research into
endocannabinoids suggest that the system may play a new
and vital role in the regulation of healthy brain aging. The
ECS is comprised of endogenous cannabinoid receptor ligands,
biosynthetic and metabolic enzymes, and G-protein coupled
cannabinoid type 1 receptor (CB1) and cannabinoid type 2
receptor (CB2) expressed in neuron and microglia, respectively
(Luongo et al., 2010; Albayram et al., 2011; Figure 1). In a

“normal” and healthy individual, CB1 receptors are the most
abundant GPCR in the body and is localized in the throughout
the brain, but it is predominately localized in neurons (Di
Marzo et al., 2015). Histologic studies have determined that CB1
receptors in the hippocampus and the cortex are highly expressed
GABAergic neurons, specifically 90% of cholecystokinin -positive
and 10% of calbindin-positive interneurons (Katona et al., 1999;
Marsicano and Lutz, 1999). The majority of other GABAergic
neurons are negative for CB1 receptors (Katona et al., 1999).
As for CB2 receptors, the basal CNS level exists as trace
amounts among neurons and glial cells (Stella, 2010; Di Marzo
et al., 2015). In response to a CNS insult and other pro-
inflammatory states—such as aging—it is the microglia that
drastically upregulate expression of CB2 receptors and the
synthesis of endocannabinoid ligands (Stella, 2010; Di Marzo
et al., 2015). Under “normal” circumstances, the ECS provides a
feedback mechanism by which microglia respond to presynaptic
signals originating from neurons by releasing endocannabinoids
in an attempt to inhibit GABAergic signaling (Alger, 2002).
The dominant and most studied endogenous cannabinoid
receptor ligands are arachidonoylethanolamide (AEA) and
2-arachidonoylglycerol (2-AG). While both ligands are agonist,
AEA—the first discovered ligand—has low-efficacy and high
affinity for CB1 receptors with even less efficacy for CB2 receptors
unlike 2-AG that has lower affinity but is equally effective on
CB1 and CB2 receptors (Luongo et al., 2010; Di Marzo et al.,
2015). The endocannabinoid ligands are produced on demand—
synthesized as necessary and metabolized once activating signals
end (Ativie et al., 2018; Bilkei-Gorzo et al., 2018). The synthesis
of the ligands is dependent on diacylglycerol lipase α (DAGLα);
whereas, monoacylglycerol lipases (MAG) and fatty acid amide
hydrolases (FAAH) are involved in their metabolism (Di Marzo,
2011). Evidence shows that astrocytes and microglia possess
the enzymatic potential to catabolize and anabolize endogenous
cannabinoid receptor ligands in high quantities (Carrier et al.,
2004; Walter et al., 2004; Muccioli et al., 2007). In fact, it is
a known that microglia exceed neuron and astrocyte product
of 2-AG by twenty times (Walter et al., 2003). However, the
concentration of receptors and the expression endocannabinoids
depends on the brain area, the type of cell, and the inflammatory
state of the CNS (Klein, 2005). In the hippocampus, an area
of focus for the aging research field because of its changes
in memory, morphology and electrophysiological properties in
older subjects (Erickson et al., 2012), signaling via the ECS
might influence the expression and activity of three membrane
bound ligand-receptor pairs associated with immune response in
hippocampal neurons and glia (Albayram et al., 2011).

As research in the ECS continues, it has become abundantly
clear that there is age-related alteration in ECS formation
and function that can itself accelerate aging through synaptic
dysfunction and impaired plasticity. In vitro studies have shown
ECS modulates reactive oxidative species (ROS) formation
through 2-AG with the hypothesized mechanism being
attenuation of mitochondrial oxidative phosphorylation via
decreased oxygen consumption (Bilkei-Gorzo, 2012). The ECS
is also responsible for an increase in brain-derived neurotrophic
factor (BDNF) that declines with decreased neurogenesis in a
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FIGURE 1 | Endocannabinoid signaling in neural and microglial circuits. Retrograde neuronal endocannabinoid signaling refers to the process of the release and the
travel of endocannabinoids backward from the postsynaptic neuron to bind to the CB1 receptors on the axon terminal of a presynaptic neuron. Microglial cells
communicate via release of endocannabinoid into the extracellular space, which bind to the CB2 receptors on microglia cell membranes.

genetic deletion of CB1 receptors (Albayram et al., 2011; Bilkei-
Gorzo, 2012). The system itself experiences age-related decline.
In rodent histological samples, there are significant declines
in CB1 receptor mRNA and agonist binding—particularly
in the hippocampus (Bilkei-Gorzo, 2012; Di Marzo et al.,
2015). Similar results were seen in human histological samples
(Bilkei-Gorzo, 2012). With modulations in age-related process,
genetic deletions of CB1 receptors or Cnr1 (the gene that codes
for CB1 receptors) knockout mice were used to confirm hallmark
signs of accelerated aging. The use of old CB1−/− mice and
Crn1−/− knockout (KO) mice showed decreased production
of AEA, increased neuronal loss, the presence of chronic
pro-inflammatory states, and impairment in learning and
memory skills compared to age-matched wildtype mice–changes
which were particularly noticed and verified in hippocampal
GABAergic neurons using a GABA-Cnr1−/− KO mouse model
(Albayram et al., 2011; Bilkei-Gorzo, 2012; Di Marzo et al., 2015;
Ativie et al., 2018; Figure 2). The CB2 receptor, compared to the
CB1 receptor, has been far less researched; however, a CB2−/−
receptor mouse model showed decreased responsiveness to
pro-inflammatory stimuli and decreased microgliosis that may

play a role in the age-accelerating affects when discussing ECS
and glial regulation (Chen et al., 2017).

NEURONAL-MICROGLIAL
COMMUNICATION

In a healthy individual, microglial are in a resting state that
continuously surveys the entire brain parenchyma (Nimmerjahn
et al., 2005), and upon encountering an activating trigger
via the TLR or IFN-γ pathways, microglia gradient transition
into ameboid is the “activated” state that responds to CNS
injury (Kettenmann et al., 2011; Colonna and Butovsky, 2017).
The phenotype and the microglial subtype that undergoes
gliosis depends on pro-inflammatory signaling molecules of the
surrounding damaged tissue, as well as signals from neurons
via soluble factors (Pocock and Kettenmann, 2007) and direct
cell-to-cell surface interactions (Hoek et al., 2000; Cardona
et al., 2006; Bessis et al., 2007). Natural disturbances accumulate
throughout aging resulting in more severe and prolonged
pro-inflammatory states that contributes to symptoms associated
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FIGURE 2 | Reciprocal interactions between microglia and presynaptic GABAergic neuron. (A) Old WT mouse brain: Normal neuronal-glial communication prevents
microglial reactivation through endocannabinoid signaling between CB1 expressed GABAergic neurons and microglia. (B) Old GABA-CB1KO mouse brain:
Disrupted endocannabinoid signaling between CB1 expressed GABAergic neurons and microglia break down control of microglial reactivation and thus,
exacerbating age-dependent neuro-inflammation in the brain.

to neurodegeneration (Hanisch and Kettenmann, 2007). In
this sense, the CNS immune system has dual contrasting
roles that are primary managed through the neuron-microglia
communication system.

Microglia support neurons and have receptors for
neurotransmitters, and neurons are responsible for inhibitory
control of leading to examine the communication system
between the two cell types (Chavarria and Cardenas, 2013). In
microglia, the bi-directional communication between neurons
and microglia is through adhesive and secreted forms of

chemokines, such as the fractalkine (CX3CL1), the CD200
signaling axis, activation of purinergic receptors (P2Y12R),
neurotransmitters, and extracellular vesicles (EVs). The
CX3CR1 receptor is located on microglia, and the CX3CL1
ligand is located on neuronal membranes where it regulates
microglia (Ativie et al., 2018). Notably, a CX3CL1 receptor
knockout was shown to reduce pro-inflammatory cytokines and
attenuated microglial activation in wildtype aged rats following
lipopolysaccharide (LPS) injection (Lyons et al., 2009). CD200
is an attached and soluble ligand located on neurons, astrocytes,
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and oligodendrocytes with its receptor CD200R located
exclusively on microglia (Barclay et al., 2002), and interactions
between the ligand and receptor promotes a “resting” microglial
phenotype and a decrease of pro-inflammatory cytokines (Hoek
et al., 2000; Banerjee and Dick, 2004; Cox et al., 2012). As
for the microglial-P2Y12R, the key feature is the ability to
promote chemotaxis and motility of microglial architecture or
to sense ATP at sites of acute brain injury to promote microglial
neuroprotection (Eyo et al., 2017, 2018). When the microglia
reach the site of injury, the microglia can form somatic junctions
with the neuron to enhance neuronal mitochondria and the
release of neuronal ATP to increase microglia coverage (Cserep
et al., 2020); however, these junctions can form in healthy tissue
leading to neuronal regulation through neurodevelopment and
neurogenesis, microglial ATP-mediated and P2Y12R-dependant
alterations in excitatory postsynaptic potentials (EPSPs) through
a microglial negative feedback system that converts neuronal
ATP to a neurosuppresive metabolite, or increased neuronal
excitability with a P2Y12R KO mouse model (Eyo and Wu,
2013; Mo et al., 2019; Peng et al., 2019; Badimon et al., 2020).
The state of the neuron excitability and injury dictates the
microglia response based on ATP but not calcium for the
P2Y12R. Hyperactive and hypoactive neurons can both create
calcium influx via the P2Y12R leading to increase microglia
process outgrowths (Eyo et al., 2014; Umpierre et al., 2020).
The P2Y12R is of special importance because it is sensitive
to changes in GABA—when levels of GABA transmission
drop, then there is an increase of microglia chemotaxis and
motility to once area (Eyo and Wu, 2013). GABA is not the
only neurotransmitter to alter the affect the neuron-microglia
communication system. Recently, studies of mice without
anesthesia have seen the normal neuronal activity is coupled
with increased levels of norepinephrine that has a suppressive
effect on microglia function exclusively via the ß2-aderenergic
receptor by decreasing arborization, motility, response to injury,
dendritic connection, and effect on neuronal plasticity (Liu
et al., 2019; Stowell et al., 2019; Hu et al., 2020). Similar to how
neurotransmitters exert effects extracellularly, microglia EVs that
affect both neurons and other microglia in separate pathways.
Through direct action and EV cargo molecules, microglia may
increase miniature excitatory postsynaptic current (mEPSC)
neurotransmission, suppress neuronal apoptosis, and reduce
dendritic spines in the hippocampus (Antonucci et al., 2012;
Drago et al., 2017; Prada et al., 2018). The communication
between neurons and microglia is essential to maintain
homeostasis, which is why it is important in aging because
disturbances may alter morphology and function of glia and
disrupts their neuron-supportive roles.

Age-related changes affect microglia and evidence shows
that aged microglia produce a slowed but exaggerated immune
response coupled with reduced phagocytic potential, increased
pro-inflammatory cytokine release, and increased ROS release
that results in a longer immune response, a longer pro-
inflammatory period, and enhanced neurotoxicity (Dilger and
Johnson, 2008; Nakanishi and Wu, 2009; Luo et al., 2010;
Jurgens and Johnson, 2012; Valles et al., 2019). Part of the
exaggerated and altered immune response is derived from

a more deleterious ameboid morphology witnessed in aged-
microglia composed of fewer ramifications and branches that
are smaller and more swollen (Hickman et al., 2013; Colonna
and Butovsky, 2017). The slowed and sustained microglial
immune response suggests the presence of immunosenescence, a
process of age-related dysregulation of the brains immune system
(Damani et al., 2011). The end result of the aging brain and
aging microglia results in increased neuron vulnerability that
accelerates neurodegeneration (Jurgens and Johnson, 2012).

THE ENDOCANNABINOID SYSTEM AND
NEURON-MICROGLIA
(MIS)COMMUNICATION DURING BRAIN
AGING

Several experiments have showed that retrograde communication
via the ECS modulates a variety of functions including the
regulation of glutamate excitotoxicity, altered proliferation and
migration of the neural immune system cells, pro-inflammatory
cytokine release, reduced ROS release, and lowered cerebral
vasoconstriction (Walter et al., 2003; Carrier et al., 2004; Klein,
2005; Stelt and Marzo, 2005). The ECS mediates its effects
via cannabinoid ligands, and microglia are a primary source
of 2-AG—one of the main bodily endogenous cannabinoids—
producing an amount that is twenty-fold higher than neurons
and astrocytes (Walter et al., 2003). A surprising finding in
light of the evidence is that microglia have barely detectable
levels of ECS receptors at rest (Stella, 2010). When undergoing
gliosis, however, CB2 receptors (and CB1 receptors to an extent)
are upregulated in microglia opening the possibly for direct
effects from the ECS to modulate its response. The typical
function of endocannabinoids on CB1 and CB2 receptors on
microglia are to counter pro-inflammatory mediators and retain
normal phagocytic potential known to delay brain aging (Benito
et al., 2008; Di Marzo et al., 2015; Plaza-Zabala et al., 2017).
Endocannabinoid ligands in both the early and late phases
of gliosis have been tested in rodent models (Schmidt et al.,
2012) and the effects have been associated with prevention of
neurodegenerative symptoms in disorders such as Huntington’s
Disease (Ullrich et al., 2007; Palazuelos et al., 2009). Specifically,
endocannabinoids have a direct effect on the interactions
between microglial CD200 and CD200R via anandamide that
enhances CD200R expression and increases IL-10 levels to have a
neuroprotective effect (Hernangomez et al., 2012). In reciprocal
communication, microglia may transmit AEA through EVs to
stimulate CB1 receptors, leading to the suppression GABA
inhibitory transmission that may lead to neuron vulnerability,
if prolonged (Gabrielli et al., 2015). The same AEA transmitted
via EVs can reach and activate other microglia to propagate the
immune response (Szepesi et al., 2018).

Another line of evidence suggests that modulation of
microglia regulation is not a direct effect through CB2 receptors
but an indirect effect by CB1 receptor. Immediate effects of
ECS communication inhibits transmitter release that can activate
or inhibit neurotransmission depending on the type of neuron
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(Mechoulam and Parker, 2013); whereas, the long-term effects
can elicit modification of gene transcription (Stelt and Marzo,
2005). The mediation of the indirect CB1 is primarily carried
by GABAergic neurons of the hippocampus (Luongo et al.,
2010). Specifically, approximately 90% of CB1 receptors are
located on CCK + GABAergic neurons that are predominantly
located in the ventral stratum lacunosum moleculare (slm) in
the CA1 of the hippocampus, as supported by major differences
in protein expression between WT and a CB1−/− receptor
knockout mouse model in the slm (Jinno and Kosaka, 2006;
Jinno et al., 2007). The high concentration of microglia and
cholecystokinin (CCK)- expressing GABAergic neurons located
in the ventral slm of the CA1 provides a strong basis for this
layer and the ECS as an indirect modulating factor for neuron-
microglia communications. The previous speculation is further
confirmed by the fact that in the previously mentioned knockout
mouse model only GABAergic neurons increase activation of
microglia in aging—a non-observable effect in glutamatergic
neurons (Albayram et al., 2011).

Evidence for the indirect microglia regulation of GABAergic
CB1 receptors have been studied through miscommunication
experiments with a GABA-CB1−/− knockout mouse model.
This model is hypothesized to induce a modified expression
of ligand-receptor pairs, which contributes to altered immune
responses. As such, small perturbations of the signaling cascades
leading to the expression of ligand receptor pairs could lead
to a spontaneous activation of glial cells without any injury
or infection (Kierdorf and Prinz, 2013). Therefore, efficient
modulation of these molecules is essential in brain homeostasis,
especially in terms of aging. Specifically, the CB1 receptors are
a known point for glial regulation by neurons (Chavarria and
Cardenas, 2013), so current research examines how the presence
or absence of CB1 receptors affects neuron-glial communications
and gliosis. Initial studies of a CB1—primarily controlled by
GABAergic hippocampal neurons—null mice model identified
that there was an increased level of microglia and pro-
inflammatory cytokines in the molecular layer in wildtype
mice (Cutando et al., 2013). Additionally, the microglia in this
knockout show an altered reactivity to CNS insults and an
altered wildtype morphology characterized by a larger cell body,
increased ionized calcium-binding adapter molecule-1 (Iba1)
density, and reduced number and complexity of branches (Ativie
et al., 2018). As for the hippocampus, the lack of CB1 resulted
in an accelerated loss of neurons in the CA1 and CA3 region
that was associated with reduced efficiency in cognitive tests,
specifically in the smaller population of GABAergic neurons
(Albayram et al., 2012). One of the proposed mechanisms is the
decreased levels of CX3CL—a neuronal control for microglia—
in the knockout (Ativie et al., 2018). The slm region of the
hippocampus is the primary site of alteration, indicated by
increased positive areas, density, pro-inflammatory cytokines,
and more detectable arborizations (Bilkei-Gorzo et al., 2018).
In fact, the changes experienced by the lack of CB1 receptors
are similar to a wildtype mouse injected with LPS (Ativie et al.,
2018). As for CB2 receptors, current research has only looked at
effects of the receptor on microglia. In a paradoxical result, the
deletion of CB2 receptors in microglia also led to a reduction

of the response to pro-inflammatory stimuli without a CNS
insult, which is the same result as when wildtype mice are
given a CB2 agonist (Schmole et al., 2015). Results apart from
this aberration show that the deletion of the CB2 receptor also
caused reduced gliosis, reduced pro-inflammatory cytokines, and
reduced pro-inflammatory chemokines during a CNS insult, but
it is clear that further research of this knockout model is required
(Schmole et al., 2015). Given the research, the ECS is a key
modulator for age-related symptoms such as pro-inflammatory
changes can lead to neurodegenerative disorders, and the ECS
is essential for proper communication between neurons and
microglia making the communication system a potential target
for neurodegenerative disorder therapeutics.

CONCLUSION

Since glial cells have a strict arrangement in the hippocampal
architecture in young mice, it is appealing to consider if this
is the morphological equivalent of the functional units that
glial processes form with the neurons they enfold. Current
studies suggest that the ECS is an essential part of neuron and
glial communication channel in the hippocampus that aids in
neuroprotective events, reducing oxidative stress, regulation of
glial activity, and clearance of damaged macromolecules. As
such, the ECS activity and its disruption in aging is a potent
model studying how neuron-glia communication is interrupted
in normal brain aging, which may result in age-dependent
neurodegenerative disorders. Normal communications
between the neuron and glia through ECS activity tend
to regulate neuroprotective and neurosupportive roles in
glutamate excitotoxicity, proliferation, metabolic balance,
pro-inflammatory cytokine release, and ROS release that all
play a role in preventing neurodegeneration by a prolonged
pro-inflammatory state. Currently, the direct mechanism for
enhancing or inhibiting the pro-inflammatory state response
is unknown, but there are still many aspects of the ECS to be
researched to reduce or prevent accelerated age-related pro-
inflammatory changes and brain aging. The current evidence
provides a clear picture that the ECS is a crucial system for
regulating neuron, glia, and the inflammatory process in the CNS
that makes it a potential target for therapeutics due to its role in
age-related pro-inflammatory states and brain aging.
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