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To tackle real-world challenges, deep and complex neural networks are generally used
with a massive number of parameters, which require large memory size, extensive
computational operations, and high energy consumption in neuromorphic hardware
systems. In this work, we propose an unsupervised online adaptive weight pruning
method that dynamically removes non-critical weights from a spiking neural network
(SNN) to reduce network complexity and improve energy efficiency. The adaptive
pruning method explores neural dynamics and firing activity of SNNs and adapts the
pruning threshold over time and neurons during training. The proposed adaptation
scheme allows the network to effectively identify critical weights associated with each
neuron by changing the pruning threshold dynamically over time and neurons. It
balances the connection strength of neurons with the previous layer with adaptive
thresholds and prevents weak neurons from failure after pruning. We also evaluated
improvement in the energy efficiency of SNNs with our method by computing synaptic
operations (SOPs). Simulation results and detailed analyses have revealed that applying
adaptation in the pruning threshold can significantly improve network performance and
reduce the number of SOPs. The pruned SNN with 800 excitatory neurons can achieve
a 30% reduction in SOPs during training and a 55% reduction during inference, with
only 0.44% accuracy loss on MNIST dataset. Compared with a previously reported
online soft pruning method, the proposed adaptive pruning method shows 3.33%
higher classification accuracy and 67% more reduction in SOPs. The effectiveness of
our method was confirmed on different datasets and for different network sizes. Our
evaluation showed that the implementation overhead of the adaptive method regarding
speed, area, and energy is negligible in the network. Therefore, this work offers a
promising solution for effective network compression and building highly energy-efficient
neuromorphic systems in real-time applications.

Keywords: neuromorphic computing, spiking neural networks, pruning, unsupervised learning, STDP,
pattern recognition
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INTRODUCTION

In recent years, as the prediction of Moore’s law slows
down prominently, neuromorphic computing has been widely
regarded as a promising approach for large-scale computing.
Neuromorphic systems are constructed following biological
principles existing in our central nervous systems, which features
in massive parallelism, collocated memory, and processors, and
asynchronous event-driven computation (Mead, 1990; Furber
et al., 2014; Davies et al., 2018).

Generally considered as the third generation of neural network
models, spiking neural networks (SNNs) have started a paradigm
shift in the brain-inspired research exploration. Different from
artificial neural networks (ANNs), SNNs are well-known for
its capability of accurately capturing neural dynamics and
biological behaviors of the central nervous system and processing
spatio-temporal information. With energy-efficient computation
and parallel information processing features, SNNs are widely
adopted for building neuromorphic hardware systems (Thakur
et al., 2018). In such systems, information is transmitted through
synapses from a presynaptic neuron to a postsynaptic neuron
on the occurrence of an event (or a spike). Neural networks
require deep and complex structures to tackle real-world tasks,
like pattern recognition, object detection, and motor controls
(Shrestha and Mahmood, 2019). The complexity leads to large
synaptic memories and high energy consumption, which poses
a big challenge in hardware implementation. Therefore, it is
necessary to search for practical solutions to reduce network
complexity and improve the energy efficiency of SNNs.

During early brain development, creations of synaptic
connections between neurons exponentially increase with the
numerous stimuli coming from environments every day (Zillmer
and Spiers, 2001). The rapid synapse creation is vital for
learning and memory formation. Between early childhood and
adulthood, weight pruning occurs as a natural process during
which our brain eliminates unnecessary synaptic connections. It
is regarded as a purposeful process of maintaining a more efficient
brain function. This biological process has been extensively
studied in current ANNs for its attractive memory and energy
reduction benefits. Han et al. (2015) introduced a training-
pruning-retraining approach that can reduce the number of
synaptic connections by 12x and computational operations by
5x for the VGG-16 network. Weight pruning was also proved
to be an effective means of alleviating the overfitting problem
in ANNs (Paupamah et al., 2020). Moreover, to avoid irregular
structure of pruned weight matrices and aid in the leverage
of sparse matric-vector multiplication, a variety of structured
weight pruning techniques were proposed where the entire rows
and columns in the weight matrices are removed by imposing
certain constraints during the pruning process (Anwar et al.,
2017; Sredojevic et al., 2017).

While weight pruning has been widely applied in different
ANNs, the benefits that weight pruning could provide for
SNNs have yet to be explored. Limited works have reported
applying weight pruning in SNNs so far (Iglesias et al., 2005;
Rathi et al., 2019; Shi et al., 2019). Rathi et al. proposed a
spike-timing-dependent plasticity (STDP) based online synaptic

pruning method, which sets non-critical weights to zero during
the training phase and removes the weights below a certain
threshold at the end of training (Rathi et al., 2019). This method
only sets the weights to zero without removing them. It allows
them to be updated during training, which is not an effective
approach to improve the energy efficiency for online learning
systems. Shi et al. presented an online soft-pruning method by
setting the weights below a constant threshold to a constant value
instead of removing them during training. While this method
could reduce the number of STDP updates during training, it
does not induce any sparsity in the network, leading to little
benefit for hardware implementation. Moreover, these pruning
methods use a constant weight threshold throughout the whole
pruning process. With a constant threshold, the network can
not effectively select the non-critical weights to be pruned.
In the early phase of training, weights are not completely
learned, and a large threshold can mistakenly remove important
weights. If a small threshold is used, some non-critical weights
can not be pruned at the end of training since these weights
could grow. On the other hand, the connection strength of
neurons in one layer with the previous layer varies. A large
threshold could remove most of the critical weights from the
neurons with weak connection and hence severely affect the
neurons’ function, which could lead to substantial performance
degradation of the network. Therefore, it is crucial to adapt the
weight threshold over time and all the neurons during training
to improve network performance. In this work, we propose an
online adaptive weight pruning method that adapts the pruning
threshold over time and neurons during training and completely
remove the weights below the threshold from the network. It is
demonstrated to be an effective approach for reducing network
complexity and improving energy efficiency during both training
and inference operations.

The main contributions of this work are
summarized as follows.

• A simple online adaptation scheme for the pruning
threshold is presented, which can change the threshold
dynamically over time during training. It also considers the
spatial difference of the connection strength of neurons in
one layer with the previous layer and adapts the threshold
over the neurons based on their firing activity.
• The proposed method is demonstrated to be more effective

in retaining classification accuracy after pruning than the
constant threshold weight pruning and neuron pruning
methods. It resulted in a 67% reduction in synaptic
operations (SOPs) while outperforming the previously
reported soft weight pruning method by 3.33%. The
advantage of the proposed method was confirmed in the
SNN on different datasets with different network sizes.
• In terms of training, the proposed online adaptive pruning

method outperformed post-training pruning methods by
providing more than 30% reduction in training SOPs when
the pruning percentage is larger than 90% while providing
more than 3% higher classification accuracy, which shows
significant potential for developing high-performance and
energy-efficient online neuromorphic learning system.
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• The overhead of implementing the proposed method in a
neuromorphic system is demonstrated to be insignificant in
terms of processing speed, area, and energy.

This paper is organized as follows: section “Methods and
Results” introduces different neural models used in this work
and the SNN architecture. It then presents an overview
of our methods, algorithmic implementation details, and
pruning results for each method. In section “Comparisons
and Discussions,” different pruning methods are discussed and
compared. Section “Conclusion” concludes this work.

METHODS AND RESULTS

Network Models and Architecture
To model spiking neurons, the leaky integrated-and-fire (LIF)
model was used in this work because of its computational
efficiency and capability of capturing the essential features of
information processing in the nervous system (Burkitt, 2006).
The model consists of one first-order linear differential equation
that defines the dynamics of membrane potential where synapses
are modeled as conductance, as described by

τm
dv
dt
= (vr − v)− ge (v− Eexc)− gi (v− Einh) (1)

where τm is the time constant, vr is the resting membrane
potential, ge is the excitatory conductance associated with an
excitatory channel, Eexc is the reverse potential of the channel, gi is
the conductance associated with an inhibitory channel, Einh is the
reverse potential of the channel. The model resets the membrane
potential to vr and generates a spike if the membrane potential
reaches a defined threshold vth. Synaptic conductance follows a
time-varying dynamics governed by Diehl and Cook (2015),

τg
dg
dt
= −g +

∑
j

wijδ(t − tfj ) (2)

where g is the conductance, τg is the time constant, wij is the
synaptic weight from the presynaptic neuron j to the postsynaptic
neuron i, and tfj is the firing time of the presynaptic neuron j.

Spike-timing-dependent plasticity relates the synaptic
plasticity to the relative timing difference between a presynaptic
spike and a postsynaptic spike. A triplet-based STDP model was
used in this work because of its biological plausibility and easy
implementation (Pfister and Gerstner, 2006). It overcomes the
limitation of the paired-based STDP models to accommodate the
dependence on the repetition frequency of the pairs of spikes. It
was shown that the triplet rule is more biological plausible where
its response can fit the experimental data from the visual cortical
slices and hippocampal cultures (Pfister and Gerstner, 2006). The
model considers sets of three spikes (one presynaptic and two
postsynaptic spikes), each of which leaves a time-varying trace
whose dynamics are described below.

ds
dt
= −

s
τs

, s ∈ {xj, y1
i , y2

i } (3)

where xj is the trace variable associated with the firing event
of the presynaptic neuron j, y1

i , and y2
i are the fast and slow

trace variables associated with the firing event of the postsynaptic
neuron i, respectively, and τs is the corresponding time constant.
When the presynaptic neuron (or postsynaptic) fires, the related
trace xj (or yi) is reset to 1. The weight updates are carried
out as below.

1wij =

{
−µprey1

i , if the neuron i fires,
+µpostxjy2

i , if the neuron j fires.
(4)

where µpre and µpost are the corresponding weight updating rates.
In this work, a two-layer SNN architecture was adopted,

as shown in Figure 1, and tested on the Modified National
Institute of Standards and Technology (MNIST) dataset and
Fashion-MNIST dataset (Lecun et al., 1998; Xiao et al., 2017).
This architecture consists of an input layer and a processing
layer. The input layer has 784 units, each of which receives the
corresponding pixel in a digit image from the MNIST dataset and
produces a Poisson spike train with a frequency proportional to
the pixel intensity. This encoding scheme is commonly referred
to as rate coding (O’Connor et al., 2013). The input layer is
fully connected to the processing layer. In the processing layer,
excitatory neurons send spikes to inhibitory neurons in a one-
to-one fashion, whereas each inhibitory neuron sends spikes
to all the excitatory neurons except the one that it receives
spikes from. This connection pattern implements a winner-
take-all (WTA) mechanism, which imposes lateral inhibition on
excitatory neurons and hence competitions for learning input
features. To ensure fair competition, a threshold adaptation
scheme is applied. Whenever a neuron fires, its threshold is
increased by an adaptation constant and then slowly decays
with time. The phenomenon of threshold adaptation has been
commonly observed in the central nervous system (Fontaine
et al., 2014). In this work, the networks with 100 and 800
excitatory neurons were used to verify the effectiveness of our
proposed pruning method. A simple classification scheme is
implemented based on the firing activity of excitatory neurons.
After training, excitatory neurons are assigned labels to which
they fire the most spikes. They are then divided into ten groups,
each of which corresponds to a digit and contains all the neurons
labeled by this digit. During inference, the classification result for
an input image is the digit of the group with the highest average
spike counts. The model parameters used in the simulation are
listed in Table 1. The parameters were configured through a
genetic algorithm to achieve the best accuracy. The classification
accuracy on MNIST dataset achieved in these two SNNs without
pruning is 85.78%/90.40%, respectively, while the accuracy on
Fashion-MNIST dataset is 64.57%/69.21%, respectively. All the
simulations in this work were run in a Python-based platform.

Overview of the Proposed Pruning
Methods
Pruning is a natural process existing in human brains to maintain
their efficient function. It is widely adopted in neural networks
to reduce network complexity and improve energy efficiency.
Various works have demonstrated the practical effectiveness of
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FIGURE 1 | Overview of the proposed adaptive pruning process in SNNs. The SNN architecture consists of two layers, an input layer and a winner-take-all (WTA)
layer with excitatory and inhibitory neurons connected to each other. Pruning only happens in the synapses from the input layer to the WTA layer. wth is the weight
pruning threshold.

TABLE 1 | Model parameters used in the simulation.

Model parameters Description Value

τm, τge, τgi Time constants in the
LIF model

100 ms, 1 ms, 2 ms

vr , vth, Eexc, Einh Potential constants in
the LIF model

−60 mV, −50 mV, 0,
−100 mV

τx, τy1, τy2 Time constants in the
STDP model

8 ms, 16 ms, 32 ms

µpre, µpost Learning rates in the
STDP model

0.0001, 0.01

θ Threshold adaptation
constant

0.01 mV

weight pruning in reducing the number of parameters and
computational operations without losing accuracy (Han et al.,
2015; Li et al., 2019; Tung and Mori, 2020). For example, Li et al.
compressed different deep neural networks using weight pruning
on mobile devices for real-time applications. They showed
significant memory storage reduction and speedup. Pruning is
commonly applied after training, which is suitable for improving
the energy efficiency of inference systems with offline training.
Pruning while training technique has been proved to be very
useful in SNNs to improve online learning systems that can
learn and infer the real-world information (Rathi et al., 2019;
Shi et al., 2019).

However, in the previously reported online pruning methods,
pruning was conducted with a constant threshold for all the
synaptic weights during training. It is not an effective approach
to select the non-critical weights since weights change over time
during training. A large threshold can mistakenly remove many
important weights at the beginning of training and severely affect
the functions of the neurons with weak synaptic connections,
leading to substantial performance degradation of the network,
while a small threshold is not able to remove some non-critical
weights at the end. In this work, we will present different pruning

while training methods by adapting the pruning threshold over
time and neurons. The overview of the proposed pruning
process is depicted in Figure 1, where the pruning process
progresses during training. Pruning is carried out only in the
synapses between the input and excitatory layers since only these
synaptic weights are plastic and subject to training. Initially,
the network has a fully-connected structure between the input
layer and the WTA layer. When the pruning process starts, the
pruning threshold (wth) is adapted and remains different for all
the excitatory neurons according to their firing activity. Fewer
weights are removed for the neurons with lower thresholds.
Moreover, over time, the threshold for each neuron is increased
so that more weights are pruned at later pruning stages.

To perform pruning while training effectively, we need to
determine when to start the pruning process. If the pruning
process starts too early, important weights that have a profound
impact on the output could be mistakenly pruned away, which
will deteriorate network performance. On the other hand,
if it starts too late, the network might not have enough
training cycles to compensate for the accuracy loss and reduced
improvement in training energy efficiency. To find this critical
point, we have observed how the network dynamics evolve
with time by monitoring firing activities and weight updates
of excitatory neurons. Figure 2A shows that neurons start
to fire regularly after training over 30,000 images, suggesting
that the network has learned the major input features and
starts to adjust for small details. In Figure 2B, the statistics
(mean and variance) of weight updates over time have also
revealed the same network behavior. As a result, the pruning
process was decided to start after training over 30,000 images.
Moreover, the pruning process was performed in multiple steps
by dividing the whole dataset into multiple batches. The batch
size was selected as 5,000 under the consideration of pruning
frequency. The detailed implementation and algorithm of the
proposed pruning methods are presented and discussed in the
following sections.
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FIGURE 2 | Network dynamics were monitored every 5,000 training images in the SNN with 100 excitatory neurons during training and without pruning. (A) Firing
activity. The average of spike counts of 100 excitatory neurons was calculated. (B) Statistics of weight updates 1w with the mean (black) and variance (red).

FIGURE 3 | (A) The illustration of the online adaptive pruning scheme over time. w0
th is the initial pruning threshold and wth(t) is the pruning threshold at time t.

(B) The evolution of the pruning threshold over time with w0
th set as 0.036.

APT: Online Adaptive Pruning Over Time
During training, synaptic weights are randomly initialized and
updated according to the input features over time. Some
weights approach high value and contribute largely to network
performance, whereas some are reduced to zero and less critical.
The first adaptation scheme is to adapt the pruning threshold
over time during training. The pruning process is illustrated in
Figure 3A. The pruning starts after training over 30,000 images
at a time tm and an initial pruning threshold w0

th is given. It ends
when the training process is finished. This scheme is to increase
the pruning threshold with time. The motivation behind it is to
allow more weights to be trained and avoid removing critical
weights mistakenly at the early training phase. At the end of
the training, weights are already trained enough, and a larger
threshold will not significantly increase the chance of critical
weights being pruned unintentionally. The threshold adaptation
scheme can be formularized by wth (t) = f (t), where wth (t) is the

purning threshold at time t, and f (t) is the adaptation function.
To select a suitable adaptation function, we propose two different
exponential functions (f1 and f2) and a linear function (f3),
described below.

f1 (t) = w0
tha

t−tm , (5)

f2 (t) = wmax −
(
wmax − w0

th
)
b−(t−tm), (6)

and
f3 (t) = w0

th + c (t − tm) (7)

where w0
th is the initial pruning threshold at the starting pruning

time tm, wmax is the maximum value of weights, a, b, and c
are the corresponding adaptation factors in the functions. These
three functions are all confined in the range [w0

th, wmax]. It is
worth noting that the pruning threshold has to be less than wmax
to avoid pruning the entire network. Figure 3B shows how these
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FIGURE 4 | Simulation results of the online adaptive pruning over time for different adaptation functions in the SNN trained on MNIST dataset with 100 excitatory
neurons. (A,C,E) show the network connectivity changes with the initial threshold for the adaptation functions f1, f2, and f3, respectively. (B,D,F) present the
accuracy changes with the network connectivity for the adaptation functions f1, f2, and f3, respectively. The connectivity is defined as the percentage of the
unpruned weights in the total weights.

functions change the pruning threshold over time. Clearly, the
f1 function increases the threshold slowly at the beginning and
rapidly at the end, while the f2 function has the opposite effect.
The linear function (f3) keeps the same updating rate.

We simulated SNNs with the proposed online pruning
method. Online pruning with a constant threshold was also

included as a reference to demonstrate the effectiveness of our
proposed pruning methods and will be referred to as online
constant pruning hereinafter. Figure 4 shows the simulation
results of SNNs with the online adaptive pruning over time for
three different adaptation functions, namely f1, f2, and f3, as
described above. For each adaptation function, the results of
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FIGURE 5 | The illustration of the online adaptive pruning scheme over neurons. wn
th is the pruning threshold for the n-th group (Gn). Nn is the number of neurons in

the n-th group. SI = 50 is used as an example for demonstrating the grouping method based on an example spike count distribution.

network connectivity vs. initial threshold (wth (t0)) and accuracy
vs. connectivity are presented, where the connectivity is defined
as the percentage of non-zero weights in the total weights. The
impact of different values of the corresponding adaptation factors
(a, b, and c) is also studied. In Figures 4A,C,E, it can be seen
that different initial thresholds result in different connectivity
levels, and the higher the threshold, the smaller the connectivity.
It should be noted that for a = 1, b = 1, and c = 0, they all
are equivalent to the constant pruning case. By increasing the
corresponding adaptation factors, a smaller initial threshold is
needed to reach certain connectivity. In Figure 4C, with the
factor b > 1, the connectivity becomes very small (<15%) even
when a very low threshold is used. This is because the adaptation
function f2 increases the threshold value very rapidly at the early
phase of pruning process and hence results in a high threshold
most of the time, as shown in Figure 3B. In Figures 4B,D,F,
the accuracy decreases with the connectivity, as synaptic weights
are pruned, and the network becomes sparse. We use the
accuracy vs. connectivity as a performance metric to compare
these adaptation functions and different pruning methods since
pruning aims to reduce network complexity and maintain
high classification accuracy. A network with high accuracy and
small connectivity is desired. By applying adaptation over time
(the adaptation factor >1), performance improvement can be
observed for all the three adaptation functions. In Figure 4B,
for the function f1, a = 1.3 is slightly better than a = 1.5 and
hence selected as the optimized value for a. In Figure 4D, for
the function f2, all the three cases (>1) have similar overall
performance, but b = 1.1 is able to reach higher accuracy with
larger connectivity and thus selected as the optimized value for b.
In Figure 4F, for the function f3, c = 0.01 shows the best overall
performance and thus is selected.

APN: Online Adaptive Pruning Over
Neurons
The excitatory neurons in the network play different roles in
contributing to network performance. The connection strength
of these neurons to the input layer is different. A stronger
connection makes the neuron more resilient to pruning, whereas
a weaker connection makes the neuron more susceptible.

Applying a constant threshold for all the neurons can not
effectively take the difference into consideration, and a large
threshold can significantly deteriorate the function of the neurons
with a weak connection. Thus, we propose an adaptation scheme
over neurons by adapting the pruning threshold over all the
excitatory neurons. The aim is to ensure that a smaller threshold
is applied for weaker neurons and a larger threshold is for
stronger neurons. So, we can balance the connection strength of
all the neurons after pruning to achieve large network sparsity
and maintain high classification accuracy.

The adaptation scheme is illustrated in Figure 5. The
connection strength of each neuron to the input layer can be
reflected by the firing activity. The more the neuron fires, the
stronger connection it has to the input. So, the neurons are
ranked according to their spike counts and divided into multiple
groups. The spike count of each neuron was calculated as the
average spike count during one batch training. Each group
shares the same pruning threshold, and the threshold increases
along from the first group (G0) to the n-th group (Gn). The
grouping scheme is explained as follows. Firstly, a spike count
interval is defined as SI. Starting from the neuron with the
minimum spike count, we group all the neurons with spike
counts within [S, S+ SI], where S is the minimum spike count
of the ungrouped neurons. In this way, the neurons in the same
group have a spike count difference not larger than SI, so we
can fairly sort the neurons with similar connection strength into
one group. Across all the groups, the pruning threshold wn

th
is adapted according to an adaptation function f (n), where n
is the group index. In Figure 5, an example of the grouping
process is shown where an example spike count distribution and
SI = 50 are used. The neurons with spike counts that fall into an
interval (red segment) are grouped together. In this example, six
groups are sorted out. The number of neurons in each group is
dependent on the spike count distribution and spike interval. The
algorithmic implementation of this threshold adaptation scheme
is described in Algorithm 1.

We simulated SNNs with the proposed online pruning
method that uses the three different adaptation functions, namely
f1, f2, and f3. Different values of the adaptation factor (a, b, and
c) associated with each function were used in the simulation. The
results are presented in Figure 6, including connectivity vs. initial
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Algorithm 1 | Online adaptive pruning over time and neurons.

Input parameters: initial threshold w0
th, spike count interval SI.

Pruning process starts after 30,000 training images.

Initialize the group index n = 1, the global threshold wth = w0
th.

for batch k = 1, 2, . . . do

Sort all the excitatory neurons according to their spike counts from

low to high.

Set S = Smin, the minimum of the spike counts.

for the sorted neuron i = 1, 2, . . . do

if the spike count of the neuron i, Si < S+ SI,

Set the pruning threshold of the neuron i, wi
th = wth.

else

The group index n increases by 1.

Adapt the pruning threshold, wth = fN(n).

Set S = Si .

end if

end for

Adapt the pruning threshold over time, wth = fT (k).

end for

threshold and accuracy vs. connectivity. In the simulation, the
spike count interval is fixed as 30 to study the impact of different
adaptation functions. In Figures 6A,C,E, a higher threshold
leads to smaller connectivity, and a larger adaptation factor
requires a smaller threshold to reach certain connectivity. Similar
observations to those described in the case of adaptation over
time can also be seen. In Figures 6B,D,F, for the three different
adaptation functions, the optimized values of the corresponding
adaptation factors can be selected as a = 1.15, b = 1.05, and
c = 0.03, respectively.

APTN: Online Adaptive Pruning Over
Time and Neurons
In the adaptation scheme over time, the threshold changes
with time, but all the neurons share the same threshold. In
contrast, the adaptation scheme over neurons considers the
spatial difference of firing activities of all the neurons and adapts
the threshold over them, but the thresholds for neuron groups
are constant over time. A full adaptation scheme combines these
two schemes by adapting the pruning threshold for each neuron
over time during training. The algorithmic implementation is
described in Algorithm 1. The pruning process starts after
training over 30,000 images, and a global pruning threshold
is initialized as w0

th. At each pruning step, all the neurons are
sorted according to their spike counts in the order from low
counts to high counts. Neurons are grouped according to the
grouping method described in section “APN: Online Adaptive
Pruning Over Neurons.” The global threshold is first assigned
to the first neuron group (G0). It is then adapted according
to the adaptation function fN(n), and assigned to the following
groups. After the adaptation process over neurons is completed,
the global threshold is reset and updated with the time adaptation
function fT(k), where k is the pruning-step index. This combined
method takes into consideration both the time evolution of
synaptic weights and the spatial difference of firing activity of
neurons during training.

COMPARISONS AND DISCUSSION

Comparison Among the Proposed
Weight Pruning Methods
Firstly, we will compare the three different adaptation functions
and select the best spike count interval. Figure 7A shows
the comparison among the three adaptation functions with
the optimized adaptation factors for the APT method. Clearly,
the function f1 gives the best performance improvement over
the constant pruning method, i.e., the highest accuracy when
connectivity is smaller than 15% and similar accuracy to other
functions otherwise. This can be attributed to the fact that
f1 allows the pruning threshold to grow slowly at the early
phase of the pruning process and hence more weights to be
trained. It increases the threshold rapidly at the end, which
guarantees largely reduced network connectivity. Figure 7B
shows the comparison among the three adaptation functions
with the optimized adaptation factors for the APN method.
The same conclusion can be drawn that the function f1 gives
the best performance. Moreover, after selecting the adaptation
function as f1, we studied the effect of the spike count interval
on the performance. The results are shown in Figure 8. The
spike count interval is used to identify how similar the firing
activities of neurons in the same group are. In Figure 8A, with
a smaller interval, a smaller initial threshold is needed to reach
a certain threshold. A small interval results in a large number of
groups and hence creates a large difference in pruning threshold
among the groups. This can cause a very high threshold to be
applied in the group with weak neurons and deteriorate their
performance significantly. So, it is not an effective grouping.
A large interval can gather the neurons with very different firing
activity into one group where the same pruning threshold is
shared. This way is also not effective because a large threshold can
significantly deteriorate the performance of weak neurons and a
small threshold is not able to remove enough non-critical weights
from strong neurons. From the results in Figure 8B, SI = 30
shows the best performance.

To apply adaptation over both time and neurons, we
combined the proposed adaptive pruning methods with the
selected adaptation functions and adaptation factors. In this
approach, the pruning threshold is increased over time and
adapted across all the excitatory neurons. The comparisons
among the proposed adaptive pruning methods for MNIST
dataset and Fashion-MNIST dataset are shown in Figures 9A,C
obtained from the SNN with 100 excitatory neurons, respectively.
The same adaptation function and parameters were used to
obtain the pruning results on Fashion-MNIST dataset. For all the
pruning methods, up to 80% of weights trained on MNIST dataset
can be pruned with less than 1% accuracy loss. It is because
the trained weight maps on MNIST dataset are very sparse,
as shown in Figure 10A. Whereas, only up to 50% of weights
trained on Fashion-MNIST dataset can be pruned with less than
1% accuracy loss since the input patterns from Fashion-MNIST
dataset are more complex, as shown in Figure 10B. Clearly,
applying adaptation over both time and neurons can further
improve the network performance, especially when the network
becomes very sparse (connectivity < 10%). When the sparsity
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FIGURE 6 | Simulation results of the online adaptive pruning over neurons for different adaptation functions in the SNN trained on MNIST dataset with 100 excitatory
neurons. (A,C,E) show the network connectivity changes with the initial threshold for the adaptation functions f1, f2, and f3, respectively. (B,D,F) present the
accuracy changes with the connectivity for the adaptation functions f1, f2, and f3, repectively. The connectivity is defined as the percentage of the unpruned weights.
The spike interval is set as 30.

of the network increases, the performance of each excitatory
neuron is very sensitive to critical weights, so it is very important
for a pruning method to effectively identify critical weights and
prevent the neurons from failure. The effect of the threshold
adaptation lies in two different aspects. The first one is to allow
the network to reserve critical weights when the network is not

trained enough in the early phase of training. The second aspect
is to balance the connection strength of excitatory neurons in
the network so that more weights can be pruned from strong
neurons and less from weak neurons to avoid causing substantial
performance degradation of some neurons since neurons are
critical processing units in the network. Moreover, a post-training
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FIGURE 7 | Performance comparison among different adaptation functions in the SNN trained on MNIST dataset with 100 neurons. (A) APT: Online adaptive
pruning over time, and (B) APN: Online adaptive pruning over neurons. The spike count interval is set as 30.

FIGURE 8 | Simulation results of online adaptive pruning over neurons for different spike count intervals (SI) in the SNN trained on MNIST dataset with 100 neurons.
(A) Connectivity vs. initial threshold, and (B) Accuracy vs. connectivity. SI = Infinity (Inf) means that there is only one group and hence no adaptation over neurons.

pruning method is included for comparison (Rathi et al., 2019).
Instead of pruning weight while training, this method prunes
weights after the training process is done. It shows slightly better
performance than the online constant pruning method but much
worse performance than the proposed online APTN method
when the connectivity is smaller than 10%. This is because, during
the online constant pruning process, some critical weights can be
mistakenly removed, whereas the adaptive method can effectively
reserve the critical weights and provide more chances for them to
be trained. The proposed pruning methods were also studied in
the SNN with 800 excitatory neurons trained on both datasets.
The adaptation function f1 was used. The time adaptation factor,
the neurons adaptation factor, and the spike count interval were
optimized and selected as 1.2, 1.15, and 30, respectively. The
comparison among the proposed pruning methods is shown in
Figures 9B,D. The pruning results show similar comparisons,
and the same analysis can be applied. The post-training pruning

shows slightly better performance than the online constant
pruning method but worse performance than the proposed
online adaptive pruning methods. The pruning results further
confirm that the proposed APTN method outperforms the other
weight pruning methods, especially when the network becomes
very sparse (connectivity < 10%). We can draw a conclusion
that the proposed APTN method is the most effective pruning
method that can significantly reduce network connectivity and
maintain high accuracy.

For the proposed online pruning method, it is crucial to find
the right starting point for pruning during training. If pruning
starts too early, weights are not learned enough, and hence some
critical weights can be mistakenly removed. While the weights
are learned for enough time after 30,000 training images, the
remaining training process will further fine-tune the unpruned
critical weights as they get more chance for STDP updates when
more weights are pruned. This is due to the dynamics of the
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FIGURE 9 | Comparison among different weight pruning methods in the SNN trained on different datasets. MNIST dataset: (A) 100 excitatory neurons and (B) 800
excitatory neurons. Fashion-MNIST dataset: (C) 100 excitatory neurons and (D) 800 excitatory neurons.

FIGURE 10 | Trained weight maps on (A) MNIST dataset and (B) Fashion-MNIST dataset in the SNN with 100 neurons without pruning. Each pattern in the maps is
formed by arranging the weights associated with each neuron to a 28 × 28 matrix.
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FIGURE 11 | MNIST accuracy results at different connectivity values in the
SNN with 100 neurons after applying APTN method. The number of
pre-pruning training images was changed from 1,000, 10,000, 20,000,
30,000, 50,000, to 60,000.

STDP learning rule that the weights with more contribution to
the neural firing are strengthened more often. So if pruning starts
during the last stage of training, the unpruned weights will not
have enough chance to be fine-tuned to preserve good network
performance. The adaptation will not be carried out effectively,
and there will be less improvement in accuracy and training
energy efficiency. In section “Methods and results,” we decided
to start pruning after training over 30,000 images based on the
change of network dynamics. To further investigate the impact
of the number of pre-pruning training images, we have obtained
pruning results for the various number of pre-pruning training
images which are presented in Figure 11. It confirms that pruning
too early causes more performance loss. If the pruning happens at
the later stage of training (50,000 pre-pruning training images),
the performance loss is also observed, as there is almost no
adaptation effect. 30,000 is proven to be the optimal point where
neurons start to fire stably, and weight updates start to stabilize.
Different from the post-training pruning method (60,000 pre-
pruning training images), the online APTN method requires a
crucial starting point during training in order to achieve the
best network performance, and it also provides more chance for
the unpruned critical weights to be trained during the training
process. Starting at the 30,000 point, the online APTN method
outperforms the post-training pruning method, especially when
the network becomes very sparse, as demonstrated before.

Additionally, the selection of an adaptation function and
the corresponding adaptation factors can be further optimized
with more choices of functions and a finer grid of factor
values. However, this is not in the scope of this work
that aims to demonstrate the effectiveness of the proposed
adaptive pruning method.

Computational Cost Reduction
In general, for neuromorphic hardware systems, like TrueNorth,
SpiNNaker, and Loihi, the fundamental operation is the synaptic

event that occurs when a spike is transmitted from a source
neuron to a target neuron. So the computational energy of an
SNN is proportional to the synaptic activity (Merolla et al.,
2014). Pruning leads to a reduced number of synapses in the
network and hence less synaptic events. To evaluate the energy
improvement benefit of our proposed adaptive pruning method,
we computed the number of SOPs per image (SOPs/image)
during both training and inference. The training SOPs include
weight accumulations and STDP updates, while the inference
SOPs only count weight accumulations. The results for the SNNs
trained on MNIST dataset with 100 and 800 excitatory neurons
are shown in Figure 12A. The SOPs/image is normalized to
the value obtained from the SNN without pruning. Clearly,
the SOPs/image during both training and inference decreases
almost linearly with connectivity, as the number of synaptic
events is proportional to the number of unpruned synapses.
The inference SOPs/image is reduced more significantly than
the training SOPs/image. Moreover, the online pruning method
can effectively reduce the number of training SOPs and hence
improve training energy efficiency, making it promising for
improving online learning systems. To help choose the network
connectivity to reach the best overall performance, we define
a figure of merit by considering accuracy loss and the total
SOPs/image (training+ inference) as below.

FOM = Accuracy loss× Nomalized total SOPs/image

The defined FOM is used on a per-network basis to help
identify the best network connectivity for that specific network,
as demonstrated in Figure 12B. As a result, the best choices of the
connectivity are 14.5% and 17% for 100-neuron and 800-neuron
networks, respectively. Specifically, at 14.5% connectivity, the
adaptive pruning method leads to a 27% reduction in SOPs/image
during training and a 60% reduction during inference with
2.85% accuracy loss in the SNN with 100 excitatory neurons.
In the case of 800 excitatory neurons, at 17% connectivity, the
method leads to a 30% reduction during training and a 55%
reduction during inference with only 0.44% accuracy loss. It
should be noted that the proposed FOM provides one way to
determine the best network connectivity, and other factors or
definitions could also be applied depending on the requirements
of specific applications.

Comparison With Prior Works
Neuron pruning is one of the structured weight pruning
strategies, which eliminates all the weights associated with
the pruned neurons and reduces the network complexity
proportionally. However, directly removing neurons from
the network could cause severe deterioration of network
performance. We compared the proposed online weight pruning
methods with an online adaptive neuron pruning method
presented in our previous work (Guo et al., 2020). The
comparison is shown in Figure 13. In Figure 13A, the online
adaptive neuron pruning method shows worse accuracy than
the weight pruning methods, which proves that weight pruning
is more effective in preserving network performance. Despite
the severe accuracy drop, the neuron pruning method requires
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FIGURE 12 | (A) Normalized SOPs/image and (B) a figure of merit (FOM) for different connectivity values are obtained in the SNNs with 100 and 800 excitatory
neurons using the online adaptive pruning over time and neuron method.

FIGURE 13 | Comparison between online weight pruning methods and an online adaptive neuron pruning method in the SNN trained on MNIST dataset with 100
excitatory neurons. (A) Accuracy and (B) normalized SOPs/image change with connectivity. CWP, AWP, and ANP are short for constant weight pruning, adaptive
weight pruning, and adaptive neuron pruning, respectively.

fewer training SOPs/image than the adaptive weight pruning
method and can reduce the inference SOPs/image much more
significantly. Moreover, an additional benefit of the neuron
pruning method is the elimination of state memory and
processing power of the pruned neurons.

An online soft weight pruning method for unsupervised SNNs
was reported in Shi et al. (2019). Unlike conventional pruning
methods, instead of removing the pruned weights, this method
sets the pruned weights constant at the lowest possible weight
value or the current value and stops updating them for the rest
of the training process. By setting the pruned weights to the
lowest possible value, the soft pruning method is equivalent to
the constant pruning method in our case since the lowest value
is 0. In this comparison, we refer to the soft pruning method
as the case where the pruned weights are kept constant at their
current values. Since the soft pruning method does not induce the

sparsity in the network, the connectivity remains 100% and hence
is not applicable in the comparison. Instead, we use the unpruned
percentage that is the percentage of the unpruned weights in the
total weights before pruning. In Figure 14A, it can be seen that
the soft pruning method starts to have performance improvement
over the constant pruning method after the unpruned percentage
drops below 10%. Our proposed adaptive pruning method gives
better performance when the unpruned percentage is between 5%
and 20%, but worse performance after the unpruned percentage
drops below 5%. When most of the weights are pruned, the
soft pruning method is still able to retain high accuracy by
keeping the pruned weights that were trained for some time
in the network. However, the soft pruning method brings less
benefit to the computational cost compared with the adaptive
pruning method. Figure 14B shows that it contributes to less
reduction in training SOPs/image and no reduction in inference
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FIGURE 14 | Comparison with the online soft weight pruning method adopted from Shi et al. (2019) in the SNN trained on MNIST dataset with 100 excitatory
neurons. (A) Accuracy and (B) normalized SOPs/image change with unpruned weights percentage. Since the soft pruning method does not remove the pruned
weights, the connectivity is not applicable as the x axis here. Instead, the unpruned percentage is used, which is defined as the percentage of the unpruned weights
in the total weights before pruning.

TABLE 2 | Comparison among different pruning methods in the SNN trained on MNIST dataset.

Pruning methods Accuracy loss 100/800 Training SOPs reduction 100/800 Inference SOPs reduction 100/800

Online adaptive neuron pruning Guo et al., 2020 38.64%/38.85% 33%/48% 90%/90%

Post-training weight pruning Rathi et al., 2019 9.43%/9.21% 0%/0% 70%/71%

Online soft weight pruning Shi et al., 2019 12.45%/5.94% 25%/24% 0%/0%

Online constant weight pruning Shi et al., 2019 13.23%/6.73% 46%/46% 70%/69%

Online adaptive weight pruning (Our work) 6.73%/3.87% 30%/36% 69%/68%

Accuracy loss and SOPs reduction for two network sizes (100 and 800 neurons) are shown. The connectivity is selected as 10%.

SOPs/image. In comparison, our proposed adaptive pruning
method can lead to more reduction in SOPs/image, especially
during inference. The constant pruning method gives the most
improvement in decreasing the training SOPs/image when a large
number of weights are pruned at the cost of severe accuracy
loss, because it applies a large constant threshold throughout the
whole pruning process.

Comprehensive comparisons among different pruning
methods in terms of accuracy loss and SOPs are provided in
Algorithm 1, Table 3, including results for two network sizes and
two datasets. The reduction is defined as the reduced percentage
of the SOPs/image by pruning against the SOPs/image in the
SNN without pruning. Network connectivity is selected as 10%.
The neuron pruning method achieves the highest reduction in
inference SOPs but the worst accuracy loss on both datasets.
The post-training weight pruning method is able to produce
small accuracy loss but no reduction in training SOPs. The
soft online pruning method leads to the least accuracy loss
on Fashion-MNIST dataset, because classifying more complex
patterns in the dataset is more sensitive to the weights loss and
this pruning method keeps the pruned weights in the network
at their current values instead of removing them. However, this
method leads to no benefits in reducing inference operations.
The constant online pruning method can reduce both training

and inference operations effectively at the cost of high accuracy
loss. Our method achieves the least accuracy loss on MNIST
dataset and slightly higher accuracy loss on Fashion-MNIST
dataset than the soft online pruning method. Our method can
lead to a large reduction in SOPs comparable to the constant
online weight pruning and adaptive online neuron pruning
methods during both training and inference. The network size
has no substantial impact on the comparisons. In conclusion,
our proposed adaptive pruning method can significantly reduce
computational operations during both training and inference
and maintain high accuracy at the same time.

Implementation Overhead
The proposed adaptive pruning algorithm can be implemented
in hardware systems without adding significant overhead. To
investigate the overhead, we chose three metrics: processing
speed, area, and energy.

Figure 15A shows the software simulation runtime of the
whole network during training, including the time used for
executing the pruning algorithm. The software simulation is
programmed in Python language and runs sequentially in a single
process. The runtime decreases with the increasing pruning
percentage (decreasing connectivity), which proves that the
proposed online pruning method is able to shorten the network
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TABLE 3 | Comparison among different pruning methods in the SNN trained on Fashion-MNIST dataset.

Pruning methods Accuracy loss 100/800 Training SOPs reduction 100/800 Inference SOPs reduction 100/800

Online adaptive neuron pruning Guo et al., 2020 42.14%/40.88% 23%/39% 90%/90%

Post-training weight pruning Rathi et al., 2019 16.35%/19.98% 0%/0% 82%/85%

Online soft weight pruning Shi et al., 2019 12.23%/9.63% 27%/29% 0%/0%

Online constant weight pruning Shi et al., 2019 20.43%/19.24% 45%/49% 88%/87%

Online adaptive weight pruning (Our work) 14.09%/13.67% 28%/31% 85%/84%

Accuracy loss and SOPs reduction for two network sizes (100 and 800 neurons) are shown. The connectivity is selected as 10%.

FIGURE 15 | Simulation runtime. (A) Total network simulation runtime during training at different network connectivity values after applying the proposed adaptive
pruning method APTN. (B) Pruning algorithm runtime percentage over the total network simulation time at different network connectivity values. Different batch sizes
were used as 100, 1,000, and 5,000.

TABLE 4 | Estimated number of clock cycles and computational operations (Ops) for the pruning algorithm and SNN training phase in the network with 100 neurons.

Phase Pruning (single batch) Pruning (average per image) Batch: 100/5,000 SNN Training (average per image)

Grouping Adapting Weight pruning

# Cycles 120 2,000 78,400 404/9 >>96,099

# Ops 400 1,100 156,800 794/18 96,099

Two batch sizes (100 and 5,000) were used for estimating the average per image. The number of operations for SNN training only includes synaptic operations obtained
at the connectivity of 10%.

runtime as it reduces the number of SOPs, including weight
accumulations and STDP updates. Besides, the APTN pruning
runtime is negligible compared to the total runtime (SNN
runtime plus pruning runtime). For example, in Figure 15B,
the pruning runtime percentage is around 0.001% at the batch
size of 5,000 and less than 0.04% even when the batch size
is decreased to 100. For hardware runtime, we estimated the
number of clock cycles required to run the pruning algorithm
in a general synchronous digital system, as shown in Table 4. At
each batch, the proposed pruning process requires three essential
phases, including dividing the neuron groups (grouping phase),
adapting pruning thresholds over neurons (adapting phase), and
writing 0 s to weight memory (weight pruning phase) operations.
The grouping method with sorting in the proposed algorithm
can be replaced by simply searching for the minimum and
maximum values of firing activities of neurons and dividing the

whole range of firing activity (max – min) according to the spike
interval without performance loss. The adapting phase is simply
to position each neuron in the right group according to its firing
activity and assign the corresponding pruning threshold. Both
grouping and adapting phases depend on the number of groups
that varies over time but is smaller than 20. We used 20 for the
estimation. For both phases, we assume that no parallelism is
applied for estimating the upper limit. Moreover, we assume that
all the weights are stored in one memory, and the weight pruning
operations can only access one weight at a time. However, it
should be noted that multiple accesses to weight memory are
available in practice. So the estimation is at the upper limit of the
running cycles of the pruning algorithm. The estimated number
of different phases in the table is for single-batch pruning. The
number of clock cycles for the SNN training phase is much
larger than the number of training SOPs/image, 96,099, since
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TABLE 5 | Estimated number of essential digital gates and memories required for the pruning algorithm and equivalent NAND gates.

Pruning unit SNN

Sub/Add (16 bits) Comparator (16 bits) Register NAND BRAM (18 Kb) NAND BRAM (18 Kb)

4 18 620 8284 2 3.0 × 106 50

The number of NAND gates and BRAMs for an SNN were obtained with 100 neurons according to the proposed digital implementation from (Guo et al., 2020).

each SOP includes many processes, such as searching for
destination addresses, reading out synaptic weights, routing
spikes to the destination, and weight addition or STDP update,
which takes multiple cycles to finish. It can be seen that the
average number of clock cycles per image for pruning with
a small batch size of 100 is far smaller than the number of
training SOPs. Therefore, the hardware runtime of the pruning
algorithm is negligible.

For energy overhead, the number of basic operations, such
as addition, comparison, and memory access, was estimated
in Table 4 for different pruning phases. For the estimation,
16 bits and 8 bits were used to represent the integer part
and fractional part, respectively. The multiplication operation
involved in the algorithm can be approximated by shift and
addition operations. The grouping phase requires addition,
comparison, and memory access operations, while the adapting
phase only needs comparison and memory access operations. The
operations in the weight pruning phase involve memory access
and comparison between weights and a pruning threshold. The
average number of operations per image is 794 and 18 for the
batch size of 100 and 5,000, respectively, which are very small
compared to the number of training SOPs/image. For energy
comparison, we take an example of SNN implementation on
Loihi neuromorphic hardware (Davies et al., 2018). The reported
minimum energy/SOP on this hardware is 23.6 pJ. So the
minimum SOP energy per image is around 2.3 uJ. Since memory
access consumes more energy than addition and comparison
operations, we used the energy of memory access for all the
operations for the comparison. The memory access (read and
write) to an SRAM cell under the same technology consumes
around 0.5 pJ (Yang et al., 2016). So, the estimated energy for
pruning operations per image is 3.4 nJ at the batch size of 100,
which is around 0.1% of the SOP energy. Besides, the network
also spends energy on updating neural states in neural cores,
which makes the percentage even smaller. Thus, we can claim that
the energy overhead is negligible.

As for area overhead, the number of essential digital gates
and memories required to implement the pruning algorithm and
equivalent NAND gates was estimated in Table 5. Each weight
needs a flag bit to indicate if it has been pruned. This bit can
be simply attached to the weight bits in the memory with very
little overhead. The number of NAND gates for an SNN with
100 neurons was estimated according to the proposed digital
implementation from Guo et al. (2020). Clearly, the number
of equivalent NAND gates for the pruning algorithm is much
smaller than that for the SNN. For example, the number of
equivalent NAND gates in the pruning unit is only around 0.3%
of that in the SNN. For memory comparison, in the pruning unit,
firing activity and pruning threshold of neurons are assumed to

be stored in block RAMs (BRAMs). Two 18 Kb BRAMs are totally
enough, which is much smaller than the memory size required in
the SNN. Therefore, the area overhead is very small.

Impact and Future Work
The proposed adaptive method would be effective in improving
the compression rate and preserving good network performance
in other neural networks, as different threshold adaptation
techniques have also been applied to improve the pruning
performance in other neural networks.

The iterative pruning method has been the most successful
and popular pruning technique in ANNs, which relies on
numerous cycles of training and pruning in order to induce
sparsity in weight matrices and preserve network performance
(Han et al., 2015). This method iteratively sets the weights below
a certain threshold to zero and retrains the network to regain
its performance. The main limitation is the need to manually
tweak the thresholds for neurons in different layers to achieve the
best results by iterative tuning. While this iterative method can
effectively compress networks, it requires a large amount of time
and resources in order to find the optimized sparse networks,
which hinders its use in large-scale applications.

In order to eliminate the need for iterative threshold tuning,
many works have explored to adapt threshold values for neurons
in different layers by training the thresholds together with weights
(Manessi et al., 2018; Ye et al., 2019; Azarian et al., 2020). These
methods use the same concept of adapting threshold spatially
as in our method based on the fact that neurons in different
layers have different sensitivity to pruning thresholds, but in a
different adaptation process. In our method, we used the firing
activity of neurons to determine their pruning thresholds, while
these methods adapt the thresholds based on the network loss
in a supervised fashion. These methods were able to find the
optimal thresholds for each layer and do not require pruning-
retaining cycles. The results have shown that with the threshold
adaptation, their methods can achieve a much larger compression
rate with higher classification accuracy than the method without
adaptation. Moreover, threshold adaptation over time during
training was demonstrated to be beneficial in accelerating the
pruning process and achieving a higher compression rate.
Narang et al. (2017) proposed to adapt the pruning threshold
over time using a monotonically increasing function during
training. A heuristic function was presented to calculate the
threshold at different iteration steps, which requires many hyper-
parameters. They tested the method in different types of recurrent
neural networks (RNNs) and demonstrated that this adaptive
method could achieve better network performance and a higher
compression rate without pruning-retraining cycles than a hard
pruning method that simply prunes the weights with a constant
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threshold. Therefore, we believe that the proposed adaptive
pruning method can be useful in improving the compression rate
and preserving good network performance in ANNs. To test the
versatility of our method, we will investigate the impact of the
proposed adaptive method in deep SNNs in our future works.

CONCLUSION

In this work, we proposed an online adaptive weight pruning
method that adapts the pruning threshold over time and
neurons during training in an unsupervised SNN. The effects
of the threshold adaptation over time and neurons were studied
individually. Different functions used to adapt the threshold
were applied and compared. It is demonstrated that both
adaptation over time and neurons can improve the network
performance against an online constant weight pruning method.
The adaptation enables the network to reserve critical weights
when the network is not trained enough at the early phase
of training and balance the connection strength of excitatory
neurons in the network to avoid largely deteriorating the
performance of weak neurons. So, combining the two adaptation
schemes can further improve network performance. The online
adaptive pruning method provides better performance than
the post-training pruning method, suggesting that it can not
only improve training energy efficiency but also achieve higher
accuracy. Regarding the computational cost, the number of SOPs
was analyzed, which shows that the proposed online adaptive
pruning method can significantly reduce the SOPs/image during
both training and inference. Furthermore, comparisons with the
previous works reveal that our method can lead to better accuracy
and a more significant reduction in SOPs. The implementation
overhead of the proposed method was evaluated in terms

of processing speed, area, and energy, which is proven to
be negligible in the network. Therefore, the proposed online
adaptive pruning method provides a promising approach for
reducing network complexity and improving energy efficiency
with good performance in SNNs for real-time applications.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article, further inquiries can be directed to the
corresponding author.

AUTHOR CONTRIBUTIONS

WG, MF, HY, AE, and KS: conceptualization. WG, MF, HY, AE,
and KS: methodology. WG: software, algorithms and writing –
original draft preparation. WG, MF, and HY: investigation and
validation. MF, HY, AE, and KS: writing – review and editing.
AE and KS: supervision. KS: project administration. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was funded by King Abdullah University of Science
and Technology (KAUST) AI Initiative.

ACKNOWLEDGMENTS

We acknowledge the financial support from King Abdullah
University of Science and Technology (KAUST), Saudi Arabia.

REFERENCES
Anwar, S., Hwang, K., and Sung, W. (2017). Structured pruning of deep

convolutional neural networks. J. Emerg. Technol. Comput. Syst. 13:32. doi:
10.1145/3005348

Azarian, K., Bhalgat, Y., Lee, J., and Blankevoort, T. (2020). Learned threshold
pruning. ArXiv [Preprint]. Available online at: https://arxiv.org/pdf/2003.
00075.pdf (accessed October 4, 2020).

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: i.
homogeneous synaptic input. Biol. Cybernet. 95, 1–19. doi: 10.1007/s00422-
006-0068-6

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro
38, 82–99. doi: 10.1109/MM.2018.112130359

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99. doi: 10.3389/
fncom.2015.00099

Fontaine, B., Peña, J. L., and Brette, R. (2014). Spike-threshold adaptation predicted
by membrane potential dynamics in vivo. PLoS Comput. Biol. 10:e1003560.
doi: 10.1371/journal.pcbi.1003560

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The
SpiNNaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.230
4638

Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2020).
Towards efficient neuromorphic hardware: unsupervised adaptive neuron
pruning. Electronics 9:1059.

Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). “Learning both weights
and connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems – Volume
1, (Montreal: MIT Press).

Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., and Villa, A. E. P. (2005).
Dynamics of pruning in simulated large-scale spiking neural networks.
Biosystems 79, 11–20. doi: 10.1016/j.biosystems.2004.09.016

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.
726791

Li, H., Liu, N., Ma, X., Lin, S., Ye, S., Zhang, T., et al. (2019). “ADMM-based
weight pruning for real-time deep learning acceleration on mobile devices,” in
Proceedings of the 2019 on Great Lakes Symposium on VLSI, (Tysons Corner,
VA: Association for Computing Machinery).

Manessi, F., Rozza, A., Bianco, S., Napoletano, P., and Schettini, R. (2018).
“Automated Pruning for Deep Neural Network Compression,” in Proceedings of
the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing,
657–664.

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345:668. doi: 10.1126/science.
1254642

Narang, S., Diamos, G., Sengupta, S., and Elsen, E. (2017). Exploring sparsity in
recurrent neural networks. ICLR

Frontiers in Neuroscience | www.frontiersin.org 17 November 2020 | Volume 14 | Article 598876

https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://arxiv.org/pdf/2003.00075.pdf
https://arxiv.org/pdf/2003.00075.pdf
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1371/journal.pcbi.1003560
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1016/j.biosystems.2004.09.016
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-598876 November 7, 2020 Time: 19:34 # 18

Guo et al. Unsupervised Adaptive Pruning in SNNs

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Paupamah, K., James, S., and Klein, R. (2020). “Quantisation and pruning for
neural network compression and regularisation,” in Proceedings of the 2020
International SAUPEC/RobMech/PRASA Conference, Cape Town, 1–6. doi: 10.
1109/SAUPEC/RobMech/PRASA48453.2020.9041096

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model of spike timing-
dependent plasticity. J. Neurosci. 26, 9673–9682. doi: 10.1523/jneurosci.1425-
06.2006

Rathi, N., Panda, P., and Roy, K. (2019). STDP-based pruning of connections and
weight quantization in spiking neural networks for energy-efficient recognition.
IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 38, 668–677. doi: 10.1109/
TCAD.2018.2819366

Shi, Y., Nguyen, L., Oh, S., Liu, X., and Kuzum, D. (2019). A soft-pruning method
applied during training of spiking neural networks for in-memory computing
applications. Front. Neurosci. 13:405. doi: 10.3389/fnins.2019.00405

Shrestha, A., and Mahmood, A. (2019). Review of deep learning algorithms and
architectures. IEEEAccess 7, 53040–53065. doi: 10.1109/ACCESS.2019.2912200

Sredojevic, R., Cheng, S., Supic, L., Naous, R., and Stojanovic, V. (2017). Structured
deep neural network pruning via matrix pivoting. ArXiv [Preprint]. Available
online at: https://arxiv.org/abs/1712.01084#:~:text=In%20this%20work%
20we%20introduce,for%20obtaining%20resource%2Defficient%20DNNs
(accessed July 15, 2020).

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao,
N., et al. (2018). Large-scale neuromorphic spiking array processors: a
quest to mimic the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.
00891

Tung, F., and Mori, G. (2020). Deep neural network compression by in-parallel
pruning-quantization. IEEE Trans. Pattern Anal. Mach. Intellig. 42, 568–579.
doi: 10.1109/TPAMI.2018.2886192

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. ArXiv [Preprint].
Available online at: https://arxiv.org/abs/1708.07747 (accessed October 11,
2020).

Yang, Y., Jeong, H., Song, S. C., Wang, J., Yeap, G., and Jung, S. (2016). Single
Bit-Line 7T SRAM cell for near-threshold voltage operation with enhanced
performance and energy in 14 nm FinFET technology. IEEE Trans. Circ. Syst. I
Regul. Pap. 63, 1023–1032. doi: 10.1109/TCSI.2016.2556118

Ye, S., Feng, X., Zhang, T., Ma, X., Lin, S., Li, Z., et al. (2019). Progressive DNN
compression: a key to achieve ultra-high weight pruning and quantization rates
using ADMM. ArXiv [Preprint]. Available online at: https://arxiv.org/abs/1903.
09769 (accessed October 4, 2020).

Zillmer, E. A., and Spiers, M. V. (2001). Principles of Neuropsychology. Belmont,
CA: Wadsworth/Thomson Learning.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Guo, Fouda, Yantir, Eltawil and Salama. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 November 2020 | Volume 14 | Article 598876

https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041096
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041096
https://doi.org/10.1523/jneurosci.1425-06.2006
https://doi.org/10.1523/jneurosci.1425-06.2006
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.1109/ACCESS.2019.2912200
https://arxiv.org/abs/1712.01084#:~:text=In%20this%20work%20we%20introduce,for%20obtaining%20resource%2Defficient%20DNNs
https://arxiv.org/abs/1712.01084#:~:text=In%20this%20work%20we%20introduce,for%20obtaining%20resource%2Defficient%20DNNs
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1109/TPAMI.2018.2886192
https://arxiv.org/abs/1708.07747
https://doi.org/10.1109/TCSI.2016.2556118
https://arxiv.org/abs/1903.09769
https://arxiv.org/abs/1903.09769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems
	Introduction
	Methods and Results
	Network Models and Architecture
	Overview of the Proposed Pruning Methods
	APT: Online Adaptive Pruning Over Time
	APN: Online Adaptive Pruning Over Neurons
	APTN: Online Adaptive Pruning Over Time and Neurons

	Comparisons and Discussion
	Comparison Among the Proposed Weight Pruning Methods
	Computational Cost Reduction
	Comparison With Prior Works
	Implementation Overhead
	Impact and Future Work

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


